1
|
Böttger LH, DeWeese DE, Iyer SR, Komor AJ, Rogers MS, Sutherlin K, Jacobs AB, Yoda Y, Kitao S, Kobayashi Y, Zhao J, Alp EE, Saito M, Seto M, Que L, Lipscomb JD, Solomon EI. Nature of the Reactive Biferric Peroxy Intermediate P' in the Arylamine Oxygenases and Related Binuclear Fe Enzymes. J Am Chem Soc 2025; 147:11707-11725. [PMID: 40167320 PMCID: PMC12057066 DOI: 10.1021/jacs.4c11712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Binuclear nonheme iron enzymes activate O2 to perform a wide range of chemical transformations. The process of O2 activation typically involves a biferric peroxy-level intermediate P. It has been previously found that this intermediate undergoes further activation, either protonation or rearrangement to form P' or further oxidation to form high-valent intermediates Q or X. This study defines the structure of the P' intermediate in the N-oxygenases CmlI (and AurF based on previous data) using nuclear resonance vibrational spectroscopy (NRVS) in conjugation with density functional theory (DFT) calculations. These results, combined with variable temperature variable field (VTVH) magnetic circular dichroism (MCD) spectroscopy on the 1-electron cryoreduced P', define the structure of the P' intermediate as a μ-1,2-hydroxoperoxo biferric site with a second hydroxide bridge. Reaction coordinate calculations demonstrate that single electron transfer (SET) is facilitated by protonation of the peroxo, activating its reductive cleavage, and that the additional hydroxide bridge does not impact this reaction. VTVH MCD studies further reveal that the hydroxide bridge is absent in the biferrous site, suggesting that during the O2 reaction with the biferrous site, a water molecule forms the hydroxide bridge in providing the proton that activates the peroxide in P' for reactivity.
Collapse
Affiliation(s)
- Lars H Böttger
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Dory E DeWeese
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Shyam R Iyer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Melanie S Rogers
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kyle Sutherlin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ari B Jacobs
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Shinji Kitao
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Jiyong Zhao
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Esen Ercan Alp
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Makina Saito
- Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
- Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D Lipscomb
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Stone S, Peters L, Fricke C, Ray WK, Allen KD. Biochemical characterization of the self-sacrificing p-aminobenzoate synthase from Nitrosomonas europaea reveals key residues involved in selecting a Fe/Fe or Mn/Fe cofactor. J Biol Inorg Chem 2025; 30:271-281. [PMID: 40080163 PMCID: PMC11965152 DOI: 10.1007/s00775-025-02109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
A noncanonical route for p-aminobenzoate (pABA) biosynthesis in select bacteria utilizes a novel self-sacrificing heme oxygenase-like domain-containing oxidase/oxygenase (HDO) superfamily member. The recently characterized self-sacrificing pABA synthase from Chlamydia trachomatis ("CADD") requires manganese and likely employs a heterobimetallic Mn/Fe cofactor. A conserved active site tyrosine residue is cleaved from the protein backbone to serve as the substrate for pABA synthesis and a lysine residue is the amino group donor. Here, we investigated the orthologous pABA synthase from the ammonia-oxidizing bacterium, Nitrosomonas europaea, which we refer to as NePabS. Consistent with the previously studied C. trachomatis enzyme, purified NePabS produces pABA in vitro in a reaction that only requires a metal cofactor, molecular oxygen, and a reducing agent, but no other substrates. Interestingly, maximal activity was observed with the addition of only iron as opposed to manganese and iron; thus, NePabS utilizes the more traditional Fe/Fe cofactor employed by most characterized HDO superfamily members. The self-sacrificing residues were confirmed to be Tyr25 and Lys159, which are the corresponding self-sacrificing residues in the CADD reaction. Strikingly, we could switch the metal dependence (Fe/Fe to Mn/Fe) and significantly improve the activity (~ twofold) of NePabS by substituting two phenylalanine residues with tyrosine residues (F148Y/F177Y), thus rendering the enzyme more similar to CADD. These results demonstrate that these two aromatic residues play an essential role in dictating metal specificity and potentially the proposed radical translocation process that facilitates the tyrosine cleavage reaction for pABA synthesis.
Collapse
Affiliation(s)
- Spenser Stone
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Logan Peters
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Manley OM, Rosenzweig AC. Copper-chelating natural products. J Biol Inorg Chem 2025; 30:111-124. [PMID: 39960524 PMCID: PMC11932072 DOI: 10.1007/s00775-025-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
Bacteria and fungi produce natural products that coordinate copper for a variety of functions. Many copper-binding natural products function as copper-chelating metallophores, or chalkophores, that scavenge copper from the environment to meet cellular needs. By contrast, some compounds sequester toxic levels of environmental copper to protect the producing microorganism. These copper-binding compounds often have antimicrobial activities as well. In recent years, a number of new copper-coordinating natural products have been reported, including both ribosomally and non-ribosomally synthesized molecules. There have also been significant advances in understanding the biosynthesis of these and previously known copper chelators, leading to the discovery of new enzyme families. This review summarizes the recently discovered copper-binding natural products, their biosynthetic pathways, and their functions. By highlighting key biosynthetic enzymes, we hope to inspire the discovery of new copper-coordinating natural products that may be used as therapeutics and antimicrobial agents.
Collapse
Affiliation(s)
- Olivia M Manley
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Adak S, Calderone LA, Krueger A, Pandelia ME, Moore BS. Single-Enzyme Conversion of Tryptophan to Skatole and Cyanide Expands the Mechanistic Competence of Diiron Oxidases. J Am Chem Soc 2025; 147:6326-6331. [PMID: 39939147 PMCID: PMC11869266 DOI: 10.1021/jacs.4c14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Skatole is a pungent heterocyclic compound derived from the essential amino acid l-tryptophan by bacteria in the mammalian digestive tract. The four-step anaerobic conversion of tryptophan to skatole is well-established; though, to date, no aerobic counterpart has been reported. Herein, we report the discovery of the oxygen-dependent skatole synthase SktA that single-handedly converts 5-bromo-l-tryptophan to 5-bromoskatole, obviating the need for a multienzyme process. SktA is part of a three-gene biosynthetic gene cluster (BGC) in the cyanobacterium Nostoc punctiforme NIES-2108 and functions as a nonheme diiron enzyme belonging to the heme oxygenase-like domain-containing oxidase (HDO) superfamily. Our detailed biochemical analyses revealed cyanide and bicarbonate as biosynthetic coproducts, while stopped-flow experiments showed the hallmark formation of a substrate-triggered peroxo Fe2(III) intermediate. Overall, this work unravels an alternative pathway for converting tryptophan to skatole while also expanding the functional repertoire of HDO enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Logan A. Calderone
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - August Krueger
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Bradley S. Moore
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Li RN, Chen SL. Recent Insights into the Reaction Mechanisms of Non-Heme Diiron Enzymes Containing Oxoiron(IV) Complexes. Chembiochem 2025; 26:e202400788. [PMID: 39508533 DOI: 10.1002/cbic.202400788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Oxoiron(IV) complexes are key intermediates in the catalytic reactions of some non-heme diiron enzymes. These enzymes, across various subfamilies, activate dioxygen to generate high-valent diiron-oxo species, which, in turn, drive the activation of substrates and mediate a variety of challenging oxidative transformations. In this review, we summarize the structures, formation mechanisms, and functions of high-valent diiron-oxo intermediates in eight representative diiron enzymes (sMMO, RNR, ToMO, MIOX, PhnZ, SCD1, AlkB, and SznF) spanning five subfamilies. We also categorize and analyze the structural and mechanistic differences among these enzymes.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Wang X, Aleotti M, Hall M, Cong Z. Biocatalytic Strategies for Nitration Reactions. JACS AU 2025; 5:28-41. [PMID: 39886591 PMCID: PMC11775713 DOI: 10.1021/jacsau.4c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 02/01/2025]
Abstract
Nitro compounds are key synthetic intermediates used as enabling tools in synthesis and found in a large range of essential compounds, including pharmaceuticals, pesticides, and various organic dyes. Despite recent methodological developments, the industrial preparation of nitro compounds still suffers from harsh reaction conditions, along with poor selectivity and a problematic environmental footprint. Although biological enzymatic methods exist, mild approaches for bionitration are still underexplored. Enzymes, with their exquisite selectivity and compatibility with mild reaction conditions, have the potential to revolutionize the way nitro compounds are prepared. In this perspective, we systematically analyze currently available biological/enzymatic methods, including the oxidation of an amine precursor or methods consisting of direct oxidative nitration and non-oxidative nitration. By examining both the scope and mechanism of these reactions, we aim to present an update on the state-of-the-art while highlighting current challenges in this emerging field. The goal of this perspective is to inspire innovation in enzymatic nitration for sustainable organic synthesis, providing chemists with a valuable guide.
Collapse
Affiliation(s)
- Xiling Wang
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| | - Matteo Aleotti
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
| | - Mélanie Hall
- Institute
of Chemistry, University of Graz, Graz 8010, Austria
- BioHealth, University of Graz, Graz 8010, Austria
| | - Zhiqi Cong
- Key
Laboratory of Photoelectric Conversion and Utilization of Solar Energy,
Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels,
Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology,
Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Adak S, Ye N, Calderone LA, Duan M, Lubeck W, Schäfer RJB, Lukowski AL, Houk KN, Pandelia ME, Drennan CL, Moore BS. A single diiron enzyme catalyses the oxidative rearrangement of tryptophan to indole nitrile. Nat Chem 2024; 16:1989-1998. [PMID: 39285206 PMCID: PMC11611611 DOI: 10.1038/s41557-024-01603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Nitriles are uncommon in nature and are typically constructed from oximes through the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third nitrile biosynthesis strategy featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the eagle-killing neurotoxin, aetokthonotoxin, AetD transforms the 2-aminopropionate portion of 5,7-dibromo-L-tryptophan to a nitrile. Employing a combination of structural, biochemical and biophysical techniques, we characterized AetD as a non-haem diiron enzyme that belongs to the emerging haem-oxygenase-like dimetal oxidase superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation, which we propose proceeds via an aziridine intermediate. Our work presents a unique template for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other haem-oxygenase-like dimetal oxidase enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Naike Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Wilson Lubeck
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Rebecca J B Schäfer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - April L Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Phan HN, Swartz PD, Gangopadhyay M, Guo Y, Smirnov AI, Makris TM. Assembly of a Heterobimetallic Fe/Mn Cofactor in the para-Aminobenzoate Synthase Chlamydia Protein Associating with Death Domains (CADD) Initiates Long-Range Radical Hole-Hopping. Biochemistry 2024; 63:3020-3029. [PMID: 39471288 DOI: 10.1021/acs.biochem.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Chlamydia protein associating with death domains (CtCADD) is involved in the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate, a critical cofactor that is required for pathogenic survival. CADD activates dioxygen and utilizes its own tyrosine and lysine as synthons to furnish the carboxylate, carbon backbone, and amine group of pABA in a complex multistep mechanism. Unlike other members of the heme oxygenase-like dimetal oxidase (HDO) superfamily that typically house an Fe2 cofactor, previous activity studies have shown that CtCADD likely uses a heterobimetallic Fe/Mn center. The structure of the Fe2+/Mn2+ cofactor and how the conserved HDO scaffold mediates metal selectivity have remained enigmatic. Adopting an in crystallo metalation approach, CtCADD was solved in the apo, Fe2+2, Mn2+2, and catalytically active Fe2+/Mn2+ forms to identify the probable site for Mn binding. The analysis of CtCADD active-site variants further reinforces the importance of the secondary coordination sphere on cofactor preference for competent pABA formation. Rapid kinetic optical and electron paramagnetic resonance (EPR) studies show that the heterobimetallic cofactor selectively reacts with dioxygen and likely initiates pABA assembly through the formation of a transient tyrosine radical intermediate and a resultant heterobimetallic Mn3+/Fe3+ cluster.
Collapse
Affiliation(s)
- Han N Phan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Paul D Swartz
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- The Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Medha Gangopadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Simke W, Walker ME, Calderone LA, Putz AT, Patteson JB, Vitro CN, Zizola CF, Redinbo MR, Pandelia ME, Grove TL, Li B. Structural Basis for Methine Excision by a Heme Oxygenase-like Enzyme. ACS CENTRAL SCIENCE 2024; 10:1524-1536. [PMID: 39220707 PMCID: PMC11363339 DOI: 10.1021/acscentsci.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
Heme oxygenase-like domain-containing oxidases (HDOs) are a rapidly expanding enzyme family that typically use dinuclear metal cofactors instead of heme. FlcD, an HDO from the opportunistic pathogen Pseudomonas aeruginosa, catalyzes the excision of an oxime carbon in the biosynthesis of the copper-containing antibiotic fluopsin C. We show that FlcD is a dioxygenase that catalyzes a four-electron oxidation. Crystal structures of FlcD reveal a mononuclear iron in the active site, which is coordinated by two histidines, one glutamate, and the oxime of the substrate. Enzyme activity, Mössbauer spectroscopy, and electron paramagnetic resonance spectroscopy analyses support the usage of a mononuclear iron cofactor. This cofactor resembles that of mononuclear non-heme iron-dependent enzymes and breaks the paradigm of dinuclear HDO cofactors. This study begins to illuminate the catalytic mechanism of methine excision and indicates convergent evolution of different lineages of mononuclear iron-dependent enzymes.
Collapse
Affiliation(s)
- William
C. Simke
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Morgan E. Walker
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Logan A. Calderone
- Department
of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Andrew T. Putz
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jon B. Patteson
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Caitlin N. Vitro
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Cynthia F. Zizola
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Matthew R. Redinbo
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Integrated
Program for Biological and Genome Sciences, Department of Biochemistry
and Biophysics, and Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maria-Eirini Pandelia
- Department
of Biochemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Tyler L. Grove
- Department
of Biochemistry, Albert Einstein College
of Medicine, Bronx, New York 10461, United States
| | - Bo Li
- Department
of Chemistry, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of chalkophomycin biosynthesis reveals N-hydroxypyrrole-forming enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577118. [PMID: 38328124 PMCID: PMC10849742 DOI: 10.1101/2024.01.24.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating an interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologs of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anika K. Chand
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Li RN, Chen SL. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin. Chemistry 2024; 30:e202303845. [PMID: 38212866 DOI: 10.1002/chem.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
13
|
Yang B, Song X, Wang B. DFT mechanistic study of biomimetic diiron complex catalyzed dehydrogenation: Unexpected Fe(III)Fe(III)-1,1-μ-hydroperoxy active species for hydride abstraction. J Inorg Biochem 2024; 251:112426. [PMID: 37980877 DOI: 10.1016/j.jinorgbio.2023.112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
The diiron active site is pivotal in catalyzing transformations in both biological and chemical systems. Recently, a range of biomimetic diiron catalysts have been synthesized, drawing inspiration from the active architecture of soluble methane monooxygenase (sMMO). These catalysts have been successfully deployed for the dehydrogenation of indolines, marking a significant advancement in the field. Using density functional theory (DFT) calculations, we have identified a novel mechanistic pathway that governs the dehydrogenation of indolines catalyzed by a biomimetic diiron complex. Specifically, this reaction is facilitated by the transfer of a hybrid atom from the C1 position of the substrate to the distal oxygen atom of the Fe(III)Fe(III)-1,1-μ-hydroperoxy active species. This transfer serves as the rate-limiting step for the heterolytic cleavage of the OO bond, ultimately generating the substrate cation. The mechanism we propose aligns well with mechanistic investigations incorporating both kinetic isotope effect (KIE) measurements and evaluations of stereochemical selectivity. This research contributes to the broader scientific understanding of catalysis involving biomimetic diiron complexes and offers valuable insights into the catalytic behaviors of non-heme diiron metalloenzymes.
Collapse
Affiliation(s)
- Boxuan Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xitong Song
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, China; Key Laboratory of Ecological Environment and Information Atlas, Fujian Provincial University (Putian University), Putian 351100, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Fan C, Zhou F, Huang W, Xue Y, Xu C, Zhang R, Xian M, Feng X. Characterization of an efficient N-oxygenase from Saccharothrix sp. and its application in the synthesis of azomycin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:194. [PMID: 38104149 PMCID: PMC10724926 DOI: 10.1186/s13068-023-02446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND The nitro group constitutes a significant functional moiety within numerous valuable substances, such as nitroimidazoles, a class of antimicrobial drugs exhibiting broad spectrum activity. Conventional chemical methods for synthesizing nitro compounds suffer from harsh conditions, multiple steps, and environmental issues. Biocatalysis has emerged as a promising alternative to overcome these drawbacks, with certain enzymes capable of catalyzing nitro group formation gradually being discovered in nature. Nevertheless, the practical application is hindered by the restricted diversity and low catalytic activity exhibited by the reported nitrifying enzymes. RESULTS A novel N-oxygenase SaRohS harboring higher catalytic capability of transformation 2-aminoimidazole to azomycin was characterized from Saccharothrix sp. Phylogenetic tree analysis revealed that SaRohS belongs to the heme-oxygenase-like diiron oxygenase (HDOs) family. SaRohS exhibited optimal activity at pH 5.5 and 25 ℃, respectively. The enzyme maintained relatively stable activity within the pH range of 4.5 to 6.5 and the temperature range of 20 ℃ to 35 ℃. Following sequence alignment and structural analysis, several promising amino acid residues were meticulously chosen for catalytic performance evaluation. Site-directed mutations showed that threonine 75 was essential for the catalytic activity. The dual mutant enzyme G95A/K115T exhibited the highest catalytic efficiency, which was approximately 5.8-fold higher than that of the wild-type and 22.3-fold higher than that of the reported N-oxygenase KaRohS from Kitasatospora azatica. The underlying catalytic mechanism was investigated through molecular docking and molecular dynamics. Finally, whole-cell biocatalysis was performed and 2-aminoimidazole could be effectively converted into azomycin with a reaction conversion rate of 42% within 14 h. CONCLUSIONS An efficient N-oxygenase that catalyzes 2-aminoimidazole to azomycin was screened form Saccharothrix sp., its phylogenetics and enzymatic properties were analyzed. Through site-directed mutation, enhancements in catalytic competence were achieved, and the molecular basis underlying the enhanced enzymatic activity of the mutants was revealed via molecular docking and dynamic simulation. Furthermore, the application potential of this enzyme was assessed through whole cell biocatalysis, demonstrating it as a promising alternative method for azomycin production.
Collapse
Affiliation(s)
- Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Fang Zhou
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Wei Huang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yi Xue
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
15
|
Phan HN, Manley OM, Skirboll SS, Cha L, Hilovsky D, Chang WC, Thompson PM, Liu X, Makris TM. Excision of a Protein-Derived Amine for p-Aminobenzoate Assembly by the Self-Sacrificial Heterobimetallic Protein CADD. Biochemistry 2023; 62:3276-3282. [PMID: 37936269 DOI: 10.1021/acs.biochem.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Chlamydia protein associating with death domains (CADD), the founding member of a recently discovered class of nonheme dimetal enzymes termed hemeoxygenase-like dimetaloxidases (HDOs), plays an indispensable role in pathogen survival. CADD orchestrates the biosynthesis of p-aminobenzoic acid (pABA) for integration into folate via the self-sacrificial excision of a protein-derived tyrosine (Tyr27) and several additional processing steps, the nature and timing of which have yet to be fully clarified. Nuclear magnetic resonance (NMR) and proteomics approaches reveal the source and probable timing of amine installation by a neighboring lysine (Lys152). Turnover studies using limiting O2 have identified a para-aminobenzaldehyde (pABCHO) metabolic intermediate that is formed on the path to pABA formation. The use of pABCHO and other probe substrates shows that the heterobimetallic Fe/Mn form of the enzyme is capable of oxygen insertion to generate the pABA-carboxylate.
Collapse
Affiliation(s)
- Han N Phan
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Olivia M Manley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sydney S Skirboll
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lide Cha
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- The Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
16
|
Adak S, Ye N, Calderone LA, Schäfer RJB, Lukowski AL, Pandelia ME, Drennan CL, Moore BS. Oxidative rearrangement of tryptophan to indole nitrile by a single diiron enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551874. [PMID: 37577561 PMCID: PMC10418191 DOI: 10.1101/2023.08.03.551874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nitriles are uncommon in nature and are typically constructed from oximes via the oxidative decarboxylation of amino acid substrates or from the derivatization of carboxylic acids. Here we report a third strategy of nitrile biosynthesis featuring the cyanobacterial nitrile synthase AetD. During the biosynthesis of the 'eagle-killing' neurotoxin, aetokthonotoxin, AetD converts the alanyl side chain of 5,7-dibromo-L-tryptophan to a nitrile. Employing a combination of structural, biochemical, and biophysical techniques, we characterized AetD as a non-heme diiron enzyme that belongs to the emerging Heme Oxygenase-like Diiron Oxidase and Oxygenase (HDO) superfamily. High-resolution crystal structures of AetD together with the identification of catalytically relevant products provide mechanistic insights into how AetD affords this unique transformation that we propose proceeds via an aziridine intermediate. Our work presents a new paradigm for nitrile biogenesis and portrays a substrate binding and metallocofactor assembly mechanism that may be shared among other HDO enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Naike Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Logan A. Calderone
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Rebecca J. B. Schäfer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - April L. Lukowski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Maria-Eirini Pandelia
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Miller JR, Brunold TC. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase. Methods Enzymol 2023; 682:101-135. [PMID: 36948699 PMCID: PMC11230041 DOI: 10.1016/bs.mie.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
l-Cysteine (Cys) is an essential building block for the synthesis of new proteins and serves as a precursor for several biologically important sulfur-containing molecules, such as coenzyme A, taurine, glutathione, and inorganic sulfate. However, organisms must tightly regulate the concentration of free Cys, as elevated levels of this semi-essential amino acid can be extremely harmful. The non-heme iron enzyme cysteine dioxygenase (CDO) serves to maintain the proper levels of Cys by catalyzing its oxidation to cysteine sulfinic acid. Crystal structures of resting and substrate-bound mammalian CDO revealed two surprising structural motifs in the first and second coordination spheres of the Fe center. The first is the existence of a neutral three histidine (3-His) facial triad that coordinates the Fe ion, as opposed to an anionic 2-His-1-carboxylate facial triad that is typically observed in mononuclear non-heme Fe(II) dioxygenases. The second unusual structural feature exhibited by mammalian CDO is the presence of a covalent crosslink between the sulfur of a Cys residue and an ortho-carbon of a tyrosine residue. Spectroscopic studies of CDO have provided invaluable insights into the roles that these unusual features play with regards to substrate Cys and co-substrate O2 binding and activation. In this chapter, we summarize results obtained from electronic absorption, electron paramagnetic resonance, magnetic circular dichroism, resonance Raman, and Mössbauer spectroscopic studies of mammalian CDO carried out in the last two decades. Pertinent results obtained from complementary computational studies are also briefly summarized.
Collapse
Affiliation(s)
- Joshua R Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
18
|
Wooldridge R, Stone S, Pedraza A, Ray WK, Helm RF, Allen KD. The Chlamydia trachomatis p-aminobenzoate synthase CADD is a manganese-dependent oxygenase that uses its own amino acid residues as substrates. FEBS Lett 2023; 597:557-572. [PMID: 36647787 DOI: 10.1002/1873-3468.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023]
Abstract
CADD (chlamydia protein associating with death domains) is a p-aminobenzoate (pAB) synthase involved in a noncanonical route for tetrahydrofolate biosynthesis in Chlamydia trachomatis. Although previously implicated to employ a diiron cofactor, here, we show that pAB synthesis by CADD requires manganese and the physiological cofactor is most likely a heterodinuclear Mn/Fe cluster. Isotope-labeling experiments revealed that the two oxygen atoms in the carboxylic acid portion of pAB are derived from molecular oxygen. Further, mass spectrometry-based proteomic analyses of CADD-derived peptides demonstrated a glycine substitution at Tyr27, providing strong evidence that this residue is sacrificed for pAB synthesis. Additionally, Lys152 was deaminated and oxidized to aminoadipic acid, supporting its proposed role as a sacrificial amino group donor.
Collapse
Affiliation(s)
| | - Spenser Stone
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Pedraza
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - W Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Kylie D Allen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
19
|
McBride MJ, Pope SR, Nair MA, Sil D, Salas-Solá XE, Krebs C, Martin Bollinger J, Boal AK. Methods for Biophysical Characterization of SznF, a Member of the Heme-Oxygenase-Like Diiron Oxidase/Oxygenase Superfamily. Methods Mol Biol 2023; 2648:123-154. [PMID: 37039989 DOI: 10.1007/978-1-0716-3080-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Nonheme diiron enzymes harness the chemical potential of oxygen to catalyze challenging reactions in biology. In their resting state, these enzymes have a diferrous cofactor that is coordinated by histidine and carboxylate ligands. Upon exposure to oxygen, the cofactor oxidizes to its diferric state forming a peroxo- adduct, capable of catalyzing a wide range of oxidative chemistries such as desaturation and heteroatom oxidation. Despite their versatility and prowess, an emerging subset of nonheme diiron enzymes has inherent cofactor instability making them resistant to structural characterization. This feature is widespread among members of the heme-oxygenase-like diiron oxidase/oxygenase (HDO) superfamily. HDOs have a flexible core structure that remodels upon metal binding. Although ~9600 HDOs have been unearthed, few have undergone functional characterization to date. In this chapter, we describe the methods that have been used to characterize the HDO N-oxygenase, SznF. We demonstrate the overexpression and purification of apo-SznF and methodology specifically designed to aid in obtaining an X-ray structure of holo-SznF. We also describe the characterization of the transient SznF-peroxo-Fe(III)2 complex by stopped-flow absorption and Mössbauer spectroscopies. These studies provide the framework for the characterization of new members of the HDO superfamily.
Collapse
Affiliation(s)
- Molly J McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Sarah R Pope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mrutyunjay A Nair
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Xavier E Salas-Solá
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
20
|
Ushimaru R, Abe I. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Makris C, Carmichael JR, Zhou H, Butler A. C-Diazeniumdiolate Graminine in the Siderophore Gramibactin Is Photoreactive and Originates from Arginine. ACS Chem Biol 2022; 17:3140-3147. [PMID: 36354305 PMCID: PMC9679993 DOI: 10.1021/acschembio.2c00593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
Abstract
Siderophores are synthesized by microbes to facilitate iron acquisition required for growth. Catecholate, hydroxamate, and α-hydroxycarboxylate groups comprise well-established ligands coordinating Fe(III) in siderophores. Recently, a C-type diazeniumdiolate ligand in the newly identified amino acid graminine (Gra) was found in the siderophore gramibactin (Gbt) produced by Paraburkholderia graminis DSM 17151. The N-N bond in the diazeniumdiolate is a distinguishing feature of Gra, yet the origin and reactivity of this C-type diazeniumdiolate group has remained elusive until now. Here, we identify l-arginine as the direct precursor to l-Gra through the isotopic labeling of l-Arg, l-ornithine, and l-citrulline. Furthermore, these isotopic labeling studies establish that the N-N bond in Gra must be formed between the Nδ and Nω of the guanidinium group in l-Arg. We also show the diazeniumdiolate groups in apo-Gbt are photoreactive, with loss of nitric oxide (NO) and H+ from each d-Gra yielding E/Z oxime isomers in the photoproduct. With the loss of Gbt's ability to chelate Fe(III) upon exposure to UV light, our results hint at this siderophore playing a larger ecological role. Not only are NO and oximes important in plant biology for communication and defense, but so too are NO-releasing compounds and oximes attractive in medicinal applications.
Collapse
Affiliation(s)
| | | | - Hongjun Zhou
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Alison Butler
- Department of Chemistry &
Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
22
|
Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para-aminobenzoate in Chlamydia trachomatis. Proc Natl Acad Sci U S A 2022; 119:e2210908119. [PMID: 36122239 PMCID: PMC9522330 DOI: 10.1073/pnas.2210908119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of para-aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen Chlamydia trachomatis. The pathway used by Chlamydiae for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine. As a member of the emerging superfamily of heme oxygenase-like diiron oxidases (HDOs), CADD was proposed to use a diiron cofactor for catalysis. However, we report maximal pABA formation by CADD occurs upon the addition of both iron and manganese, which implicates a heterobimetallic Fe:Mn cluster is the catalytically active form. Isotopic labeling experiments and proteomics studies show that CADD generates pABA from a protein-derived tyrosine (Tyr27), a residue that is ∼14 Å from the dimetal site. We propose that this self-sacrificial reaction occurs through O2 activation by a probable Fe:Mn cluster through a radical relay mechanism that connects to the "substrate" Tyr, followed by amination and direct oxygen insertion. These results provide the molecular basis for pABA formation in C. trachomatis, which will inform the design of novel therapeutics.
Collapse
|
23
|
Wang Y, Dong L, Su H, Liu Y. Dioxygen Activation and N δ,N ε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorg Chem 2022; 61:15721-15734. [PMID: 36148800 DOI: 10.1021/acs.inorgchem.2c02814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SznF is a nonheme diiron-dependent enzyme that catalyzes the critical N-nitrosation involved in the formation of the N-nitrosourea moiety in the pancreatic cancer drug streptozotocin. The N-nitrosation contains two successive N-hydroxylation and N-nitrosation steps, which are carried out by two separate active sites, namely, the central domain and cupin domain. Recently, the crystal structure of SznF was obtained, and the central domain was proved to contain a diiron cofactor to catalyze the N-hydroxylation. In this work, to gain insights into the O2 activation and the successive N-hydroxylation mechanism, on the basis of the high-resolution crystal structure, the enzyme-substrate complex models were constructed, and a series of combined QM/MM calculations were performed. Based on our calculations, the activation of O2 starts from the diiron(II,III)-superoxo (S) to generate the diiron(IV)-oxo species (Q) via a diiron(III,III)-peroxo (P)-like transition state or unstable intermediate (P'), and species P' can be described as a hybridization of diiron(IV)-oxo species and diiron(III,III)-peroxo (P) owing to the long distances of Fe1-Fe2 (4.22 Å) and O1-O2 (1.89 Å), which is different from those of other nonheme diiron enzymes. In the following hydroxylation of Nδ and Nε, the Nδ-hydroxylation was confirmed to occur first, agreeing with the experimental observations. Because the diiron(IV)-oxo species (Q) is responsible for hydroxylation, the reaction follows the H-abstraction/OH rebound mechanism, and the first abstraction occurs on the Nδ-H rather than Nε-H, which may be attributed to the different orientation of Fe(IV)-oxo relative to N-H as well as the bond dissociation enthalpies of two N-H bonds. The hydroxylation of N-methyl-L-arginine does not employ the diiron(III,III)-hydroperoxo (P″) to trigger the electrophilic attack of the guanidine to directly form the N-O bond, as previously suggested. In addition, our calculations also revealed that the direct attack of the Fe(IV)═O unit to the Nδ of the substrate corresponds to a higher barrier than that in the H-abstraction/OH rebound mechanism. These results may provide useful information for understanding the formation of the di-hydroxylation intermediate involved in the biosynthesis of N-nitrosation.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
24
|
McBride MJ, Nair MA, Sil D, Slater JW, Neugebauer M, Chang MCY, Boal AK, Krebs C, Bollinger JM. Substrate-Triggered μ-Peroxodiiron(III) Intermediate in the 4-Chloro-l-Lysine-Fragmenting Heme-Oxygenase-like Diiron Oxidase (HDO) BesC: Substrate Dissociation from, and C4 Targeting by, the Intermediate. Biochemistry 2022; 61:689-702. [PMID: 35380785 PMCID: PMC9047515 DOI: 10.1021/acs.biochem.1c00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme BesC from the β-ethynyl-l-serine biosynthetic pathway in Streptomyces cattleya fragments 4-chloro-l-lysine (produced from l-Lysine by BesD) to ammonia, formaldehyde, and 4-chloro-l-allylglycine and can analogously fragment l-Lys itself. BesC belongs to the emerging family of O2-activating non-heme-diiron enzymes with the "heme-oxygenase-like" protein fold (HDOs). Here, we show that the binding of l-Lys or an analogue triggers capture of O2 by the protein's diiron(II) cofactor to form a blue μ-peroxodiiron(III) intermediate analogous to those previously characterized in two other HDOs, the olefin-installing fatty acid decarboxylase, UndA, and the guanidino-N-oxygenase domain of SznF. The ∼5- and ∼30-fold faster decay of the intermediate in reactions with 4-thia-l-Lys and (4RS)-chloro-dl-lysine than in the reaction with l-Lys itself and the primary deuterium kinetic isotope effects (D-KIEs) on decay of the intermediate and production of l-allylglycine in the reaction with 4,4,5,5-[2H4]-l-Lys suggest that the peroxide intermediate or a reversibly connected successor complex abstracts a hydrogen atom from C4 to enable olefin formation. Surprisingly, the sluggish substrate l-Lys can dissociate after triggering intermediate formation, thereby allowing one of the better substrates to bind and react. The structure of apo BesC and the demonstrated linkage between Fe(II) and substrate binding suggest that the triggering event involves an induced ordering of ligand-providing helix 3 (α3) of the conditionally stable HDO core. As previously suggested for SznF, the dynamic α3 also likely initiates the spontaneous degradation of the diiron(III) product cluster after decay of the peroxide intermediate, a trait emerging as characteristic of the nascent HDO family.
Collapse
Affiliation(s)
- Molly J. McBride
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mrutyunjay A. Nair
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jeffrey W. Slater
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Monica Neugebauer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michelle C. Y. Chang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Departments of Chemistry and of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
25
|
Iqbal T, Chakraborty S, Murugan S, Das D. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chem Asian J 2022; 17:e202200105. [PMID: 35319822 DOI: 10.1002/asia.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Waning resources, massive energy consumption, everdeepening global warming crisis, and climate change have raised grave concerns regarding continued dependence on fossil fuels as the predominant source of energy and generated tremendous interest for developing biofuels, which are renewable. Hydrocarbon-based 'drop-in' biofuels can be a proper substitute for fossil fuels such as gasoline or jet fuel. In Nature, hydrocarbons are produced by diverse organisms such as insects, plants, bacteria, and cyanobacteria. Metalloenzymes play a crucial role in hydrocarbons biosynthesis, and the past decade has witnessed discoveries of a number of metalloenzymes catalyzing hydrocarbon biosynthesis from fatty acids and their derivatives employing unprecedented mechanisms. These discoveries elucidated the enigma related to the divergent chemistries involved in the catalytic mechanisms of these metalloenzymes. There is substantial diversity in the structure, mode of action, cofactor requirement, and substrate scope among these metalloenzymes. Detailed structural analysis along with mutational studies of some of these enzymes have contributed significantly to identifying the key amino acid residues that dictate substrate specificity and catalytic intricacy. In this Review, we discuss the metalloenzymes that catalyze fatty acid-derived hydrocarbon biosynthesis in various organisms, emphasizing the active site architecture, catalytic mechanism, cofactor requirements, and substrate specificity of these enzymes. Understanding such details is essential for successfully implementing these enzymes in emergent biofuel research through protein engineering and synthetic biology approaches.
Collapse
Affiliation(s)
- Tabish Iqbal
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | | | - Subhashini Murugan
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | - Debasis Das
- Indian Institute of Science, Inorganic and Physical Chemistry, CV Raman Rd, 560012, Bangalore, INDIA
| |
Collapse
|
26
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
27
|
Walleck S, Zimmermann TP, Hachmeister H, Pilger C, Huser T, Katz S, Hildebrandt P, Stammler A, Bögge H, Bill E, Glaser T. Generation of a μ-1,2-hydroperoxo Fe IIIFe III and a μ-1,2-peroxo Fe IVFe III Complex. Nat Commun 2022; 13:1376. [PMID: 35296656 PMCID: PMC8927127 DOI: 10.1038/s41467-022-28894-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/17/2022] [Indexed: 12/05/2022] Open
Abstract
μ-1,2-Peroxo-diferric intermediates (P) of non-heme diiron enzymes are proposed to convert upon protonation either to high-valent active species or to activated P′ intermediates via hydroperoxo-diferric intermediates. Protonation of synthetic μ-1,2-peroxo model complexes occurred at the μ-oxo and not at the μ-1,2-peroxo bridge. Here we report a stable μ-1,2-peroxo complex {FeIII(μ-O)(μ-1,2-O2)FeIII} using a dinucleating ligand and study its reactivity. The reversible oxidation and protonation of the μ-1,2-peroxo-diferric complex provide μ-1,2-peroxo FeIVFeIII and μ-1,2-hydroperoxo-diferric species, respectively. Neither the oxidation nor the protonation induces a strong electrophilic reactivity. Hence, the observed intramolecular C-H hydroxylation of preorganized methyl groups of the parent μ-1,2-peroxo-diferric complex should occur via conversion to a more electrophilic high-valent species. The thorough characterization of these species provides structure-spectroscopy correlations allowing insights into the formation and reactivities of hydroperoxo intermediates in diiron enzymes and their conversion to activated P′ or high-valent intermediates. Iron coordination complexes can be used to gain insight on biologically relevant iron-oxygen compounds generated in iron metalloenzymes. Here, the authors characterise a μ-1,2-hydroperoxo FeIIIFeIII and a μ-1,2-peroxo FeIVFeIII, and study their reactivity in C-H activation.
Collapse
Affiliation(s)
- Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Thomas Philipp Zimmermann
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Henning Hachmeister
- Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Christian Pilger
- Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Thomas Huser
- Biomolekulare Photonik, Fakultät für Physik, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470, Mülheim an der Ruhr, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615, Bielefeld, Germany.
| |
Collapse
|
28
|
Pang L, Niu W, Duan Y, Huo L, Li A, Wu J, Zhang Y, Bian X, Zhong G. In vitro characterization of a nitro-forming oxygenase involved in 3-( trans-2'-aminocyclopropyl)alanine biosynthesis. ENGINEERING MICROBIOLOGY 2022; 2:100007. [PMID: 39628616 PMCID: PMC11611017 DOI: 10.1016/j.engmic.2021.100007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/06/2024]
Abstract
In vitro characterization experiments revealed the formations of 3-(trans-2'-aminocyclopropyl)alanine ((3-Acp)Ala) and 3-(trans-2'-nitrocyclopropyl)alanine ((3-Ncp)Ala) are originated via two homologous proteins, BelK and HrmI, which regioselectively catalyze the Nε-oxygenation of l-lysine. The two enzymes belong to the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily and the catalytic center of BelK is validated by homology modeling and site-directed mutations. Based on the in vitro characterization, the biosynthetic pathways of (3-Acp)Ala and (3-Ncp)Ala are proposed.
Collapse
Affiliation(s)
- Linlin Pang
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weijing Niu
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuwei Duan
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Liujie Huo
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Aiying Li
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Youming Zhang
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for AntiInfectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
29
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
30
|
Manley OM, Tang H, Xue S, Guo Y, Chang WC, Makris TM. BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate. J Am Chem Soc 2021; 143:21416-21424. [PMID: 34898198 PMCID: PMC8876372 DOI: 10.1021/jacs.1c11109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BesC catalyzes the iron- and O2-dependent cleavage of 4-chloro-l-lysine to form 4-chloro-l-allylglycine, formaldehyde, and ammonia. This process is a critical step for a biosynthetic pathway that generates a terminal alkyne amino acid which can be leveraged as a useful bio-orthogonal handle for protein labeling. As a member of an emerging family of diiron enzymes that are typified by their heme oxygenase-like fold and a very similar set of coordinating ligands, recently termed HDOs, BesC performs an unusual type of carbon-carbon cleavage reaction that is a significant departure from reactions catalyzed by canonical dinuclear-iron enzymes. Here, we show that BesC activates O2 in a substrate-gated manner to generate a diferric-peroxo intermediate. Examination of the reactivity of the peroxo intermediate with a series of lysine derivatives demonstrates that BesC initiates this unique reaction trajectory via cleavage of the C4-H bond; this process represents the rate-limiting step in a single turnover reaction. The observed reactivity of BesC represents the first example of a dinuclear-iron enzyme that utilizes a diferric-peroxo intermediate to capably cleave a C-H bond as part of its native function, thus circumventing the formation of a high-valent intermediate more commonly associated with substrate monooxygenations.
Collapse
Affiliation(s)
- Olivia M. Manley
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Haoyu Tang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas M. Makris
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
31
|
Shimo S, Ushimaru R, Engelbrecht A, Harada M, Miyamoto K, Kulik A, Uchiyama M, Kaysser L, Abe I. Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. J Am Chem Soc 2021; 143:18413-18418. [PMID: 34710328 DOI: 10.1021/jacs.1c10201] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Belactosins and hormaomycins are peptide natural products containing 3-(2-aminocyclopropyl)alanine and 3-(2-nitrocyclopropyl)alanine residues, respectively, with opposite stereoconfigurations of the cyclopropane ring. Herein we demonstrate that the heme oxygenase-like enzymes BelK and HrmI catalyze the N-oxygenation of l-lysine to generate 6-nitronorleucine. The nonheme iron enzymes BelL and HrmJ then cyclize the nitroalkane moiety to the nitrocyclopropane ring with the desired stereochemistry found in the corresponding natural products. We also show that both cyclopropanases remove the 4-proS-H of 6-nitronorleucine during the cyclization, establishing the inversion and retention of the configuration at C4 during the BelL and HrmJ reactions, respectively. This study reveals the unique strategy for stereocontrolled cyclopropane synthesis in nature.
Collapse
Affiliation(s)
- Shotaro Shimo
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Alicia Engelbrecht
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andreas Kulik
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan
| | - Leonard Kaysser
- Institute for Drug Discovery, Department of Pharmaceutical Biology, University of Leipzig, Eilenburger Str. 14, 04317 Leipzig, Germany
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Naughton KJ, Treviño RE, Moore PJ, Wertz AE, Dickson JA, Shafaat HS. In Vivo Assembly of a Genetically Encoded Artificial Metalloenzyme for Hydrogen Production. ACS Synth Biol 2021; 10:2116-2120. [PMID: 34370434 DOI: 10.1021/acssynbio.1c00177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The genetic encoding of artificial enzymes represents a substantial advantage relative to traditional molecular catalyst optimization, as laboratory-based directed evolution coupled with high-throughput screening methods can provide rapid development and functional characterization of enzyme libraries. However, these techniques have been of limited utility in the field of artificial metalloenzymes due to the need for in vitro cofactor metalation. Here, we report the development of methodology for in vivo production of nickel-substituted rubredoxin, an artificial metalloenzyme that is a structural, functional, and mechanistic mimic of the [NiFe] hydrogenases. Direct voltammetry on cell lysate establishes precedent for the development of an electrochemical screen. This technique will be broadly applicable to the in vivo generation of artificial metalloenzymes that require a non-native metal cofactor, offering a route for rapid enzyme optimization and setting the stage for integration of artificial metalloenzymes into biochemical pathways within diverse hosts.
Collapse
Affiliation(s)
- Kassandra J. Naughton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Regina E. Treviño
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Peter J. Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ashlee E. Wertz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - J. Alex Dickson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Wang J, Wang X, Ouyang Q, Liu W, Shan J, Tan H, Li X, Chen G. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement. Inorg Chem 2021; 60:7719-7731. [PMID: 34004115 DOI: 10.1021/acs.inorgchem.1c00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The non-heme iron-dependent enzyme SznF catalyzes a critical N-nitrosation step during the N-nitrosourea pharmacophore biosynthesis in streptozotocin. The intramolecular oxidative rearrangement process is known to proceed at the FeII-containing active site in the cupin domain of SznF, but its mechanism has not been elucidated to date. In this study, based on the density functional theory calculations, a unique mechanism was proposed for the N-nitrosation reaction catalyzed by SznF in which a four-electron oxidation process is accomplished through a series of complicated electron transferring between the iron center and substrate to bypass the high-valent FeIV═O species. In the catalytic reaction pathway, the O2 binds to the iron center and attacks on the substrate to form the peroxo bridge intermediate by obtaining two electrons from the substrate exclusively. Then, instead of cleaving the peroxo bridge, the Cε-Nω bond of the substrate is homolytically cleaved first to form a carbocation intermediate, which polarizes the peroxo bridge and promotes its heterolysis. After O-O bond cleavage, the following reaction steps proceed effortlessly so that the N-nitrosation is accomplished without NO exchange among reaction species.
Collapse
Affiliation(s)
- Junkai Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xixi Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qingwen Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiankai Shan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
34
|
Liu J, Wu P, Yan S, Li Y, Cao Z, Wang B. Spin-Regulated Inner-Sphere Electron Transfer Enables Efficient O—O Bond Activation in Nonheme Diiron Monooxygenase MIOX. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jia Liu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Peng Wu
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shengheng Yan
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Zexing Cao
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Structural Chemistry of Solid Surface and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
35
|
Chen L, Deng Z, Zhao C. Nitrogen-Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chem Biol 2021; 16:559-570. [PMID: 33721494 DOI: 10.1021/acschembio.1c00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Construction of nitrogen-nitrogen bonds involves sophisticated biosynthetic mechanisms to overcome the difficulties inherent to the nucleophilic nitrogen atom of amine. Over the past decade, a multitude of reactions responsible for nitrogen-nitrogen bond formation in natural product biosynthesis have been uncovered. On the basis of the intrinsic properties of these reactions, this Review classifies these reactions into three categories: comproportionation, rearrangement, and radical recombination reactions. To expound the metallobiochemistry underlying nitrogen-nitrogen bond formation reactions, we discuss the enzymatic mechanisms in comparison to well characterized canonical heme-dependent enzymes, mononuclear nonheme iron-dependent enzymes, and nonheme di-iron enzymes. We also illuminate the intermediary properties of nitrogen oxide species NO2-, NO+, and N2O3 in nitrogen-nitrogen bond formation reactions with clues derived from inorganic nitrogen metabolism driven by anammox bacteria and nitrifying bacteria. These multidimentional discussions will provide further insights into the mechanistic proposals of nitrogen-nitrogen bond formation in natural product biosynthesis.
Collapse
Affiliation(s)
- Linyue Chen
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| | - Changming Zhao
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Hubei 430072, People’s Republic of China
| |
Collapse
|
36
|
Nóbile ML, Stricker AM, Marchesano L, Iribarren AM, Lewkowicz ES. N-oxygenation of amino compounds: Early stages in its application to the biocatalyzed preparation of bioactive compounds. Biotechnol Adv 2021; 51:107726. [PMID: 33675955 DOI: 10.1016/j.biotechadv.2021.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Among the compounds that contain unusual functional groups, nitro is perhaps one of the most interesting due to the valuable properties it confers on pharmaceuticals and explosives. Traditional chemistry has for many years used environmentally unfriendly strategies; in contrast, the biocatalyzed production of this type of products offers a promising alternative. The small family of enzymes formed by N-oxygenases allows the conversion of an amino group to a nitro through the sequential addition of oxygen. These enzymes also make it possible to obtain other less oxidized N-O functions, such as hydroxylamine or nitroso, present in intermediate or final products. The current substrates on which these enzymes are reported to work encompass a few aromatic molecules and sugars. The unique characteristics of N-oxygenases and the great economic value of the products that they could generate, place them in a position of very high scientific and industrial interest. The most important and best studied N-oxygenases will be presented here.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Lucas Marchesano
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| |
Collapse
|
37
|
McBride MJ, Pope SR, Hu K, Okafor CD, Balskus EP, Bollinger JM, Boal AK. Structure and assembly of the diiron cofactor in the heme-oxygenase-like domain of the N-nitrosourea-producing enzyme SznF. Proc Natl Acad Sci U S A 2021; 118:e2015931118. [PMID: 33468680 PMCID: PMC7848743 DOI: 10.1073/pnas.2015931118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In biosynthesis of the pancreatic cancer drug streptozotocin, the tridomain nonheme-iron oxygenase SznF hydroxylates Nδ and Nω' of Nω-methyl-l-arginine before oxidatively rearranging the triply modified guanidine to the N-methyl-N-nitrosourea pharmacophore. A previously published structure visualized the monoiron cofactor in the enzyme's C-terminal cupin domain, which promotes the final rearrangement, but exhibited disorder and minimal metal occupancy in the site of the proposed diiron cofactor in the N-hydroxylating heme-oxygenase-like (HO-like) central domain. We leveraged our recent observation that the N-oxygenating µ-peroxodiiron(III/III) intermediate can form in the HO-like domain after the apo protein self-assembles its diiron(II/II) cofactor to solve structures of SznF with both of its iron cofactors bound. These structures of a biochemically validated member of the emerging heme-oxygenase-like diiron oxidase and oxygenase (HDO) superfamily with intact diiron cofactor reveal both the large-scale conformational change required to assemble the O2-reactive Fe2(II/II) complex and the structural basis for cofactor instability-a trait shared by the other validated HDOs. During cofactor (dis)assembly, a ligand-harboring core helix dynamically (un)folds. The diiron cofactor also coordinates an unanticipated Glu ligand contributed by an auxiliary helix implicated in substrate binding by docking and molecular dynamics simulations. The additional carboxylate ligand is conserved in another N-oxygenating HDO but not in two HDOs that cleave carbon-hydrogen and carbon-carbon bonds to install olefins. Among ∼9,600 sequences identified bioinformatically as members of the emerging HDO superfamily, ∼25% conserve this additional carboxylate residue and are thus tentatively assigned as N-oxygenases.
Collapse
Affiliation(s)
- Molly J McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Sarah R Pope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Kai Hu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - J Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802;
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|