1
|
Huang TY, Laysandra L, Chen NCR, Prasetyo F, Chiu YC, Yeh LH, Wu KCW. MOF composites for revolutionizing blue energy harvesting and next-gen soft electronics. Adv Colloid Interface Sci 2025; 340:103444. [PMID: 39999516 DOI: 10.1016/j.cis.2025.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials with highly ordered and crystalline structures, which have earned tremendous attention in the academic community in recent years owing to their high tunability in porosity and pore structure. By integrating MOFs with soft colloids or polymers to form MOF composites, the rigidity and brittle nature of MOFs can be compensated for, thus achieving synergistic effects for a wide variety of applications. In particular, the past decade has seen the advancement of MOF composites in the budding fields of blue energy harvesting and soft electronics, which have received growing interest in the past 5 years. This review focuses on the applications of MOF composites in these two fields, and starts by examining the nanoarchitectures of MOFs, followed by the fabrication of MOF composites. Furthermore, topical advances of MOF composites in blue energy harvesting and soft electronics are reviewed and summarized, and their challenges and future opportunities are discussed as the final touch. This article provides comprehensive review and valuable insights into the development of MOF composites, which may open up new avenues for blue energy harvesting and soft electronics to solve the imminent energy crisis and to advance the wearable technology in healthcare.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Norman C-R Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| | - Fery Prasetyo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli District, Taoyuan 32003, Taiwan; Department of Chemical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
| |
Collapse
|
2
|
Sun Q, Zhang Y, Lim W, Meng D, Yu B, Du J, Hassan SU, Yao A, Cao D, Ma J, Guan J, Liu J. Oriented PolyMOFs Enabled by Bridging Coligand for CO 2 Separation. NANO LETTERS 2025; 25:2381-2387. [PMID: 39899431 DOI: 10.1021/acs.nanolett.4c05778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Despite enormous research efforts in recent years, polymer-metal-organic framework (polyMOF) development still faces several drawbacks, such as the substantial decrease in surface area, poor crystallinity, and monophyletic chemical structure of polyMOFs. Herein, we overcome the constraints of the coordination mode of conventional polyMOFs and report a bridging coligand strategy to prepare new types of polyMOFs, where the MOFs featuring accessible CuII sites are compelled to orientally regrow within the confined channels of semirigid PIM-1 in dimethyl sulfoxide. Coordination-substitution characteristics and solvent-modulated synthesis enable the Cu centers in MOFs to coordinate with the N atoms from PIM-1 by bridging coligand mode. The reduced particle size, enhanced ultramicroporosity, preferential orientation, and superior filler-matrix compatibility endow the polyMOF-based mixed matrix membrane with excellent CO2 separation performance, with a CO2 permeability of 4669 Barrer, and with a CO2/N2 selectivity of ∼30. This polyMOF design concept exploits a viable avenue for developing more inorganic-organic hybrid materials.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuting Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwang Lim
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Daijun Meng
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bizi Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong Cao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ji Ma
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Sensharma D, Cohen SM. Ligand cross-links as a design element in oligo- and polyMOFs. Chem Sci 2024; 15:20448-20456. [PMID: 39583572 PMCID: PMC11582628 DOI: 10.1039/d4sc06109h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Metal-Organic Frameworks (MOFs) constructed using cross-linked oligomeric or polymeric ligands (oligoMOFs and polyMOFs respectively) have so far relied on a handful of canonical structural blueprints, in which the cross-links have not played a significant role in determining structure. In this study, we show that cross-links between terephthalate ligands in dabco-based Zn-MOFs (DMOFs) can exert control over the overall phase landscape of resulting oligo- and polyMOFs. We find that cross-links can direct the overall topology of the resulting MOF (pcu vs. kag) based on their length or rigidity, and can influence the phase transformation behavior of the pcu network. We also show the first example of tethered ligand dimers adopting a different MOF structure to the analogous trimer and polymer. Understanding the influence of cross-links on the formation of these MOFs will help guide the design of future MOF-polymer hybrid materials.
Collapse
Affiliation(s)
- Debobroto Sensharma
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
4
|
Petrova SP, Zheng Z, Heinze DA, Vaissier Welborn V, Bortner MJ, Schmidt-Rohr K, Edgar KJ. Gelation during Ring-Opening Reactions of Cellulosics with Cyclic Anhydrides: Phenomena and Mechanisms. Biomacromolecules 2024; 25:7777-7787. [PMID: 39571134 PMCID: PMC11632662 DOI: 10.1021/acs.biomac.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024]
Abstract
Cellulose esters are used in Food and Drug Administration-approved oral formulations, including in amorphous solid dispersions (ASDs). Some bear substituents with terminal carboxyl moieties (e.g., hydroxypropyl methyl cellulose acetate succinate (HPMCAS)); these ω-carboxy ester substituents enhance interactions with drug molecules in solid and solution phases and enable pH-responsive drug release. However, the synthesis of carboxyl-pendent cellulose esters is challenging, partly due to competing reactions between introduced carboxyl groups and residual hydroxyls on different chains, forming either physically or covalently cross-linked systems. As we explored ring-opening reactions of cyclic anhydrides with cellulose and its esters to prepare polymers designed for high ASD performance, we became concerned upon encountering gelation. Herein, we probe the complexity of such ring-opening reactions in detail, for the first time, utilizing rheometry and solid-state 13C NMR spectroscopy. Gelation in these ring-opening reactions was caused predominantly by physical interactions, progressing in some cases to covalent cross-links over time.
Collapse
Affiliation(s)
- Stella P. Petrova
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhaoxi Zheng
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Daniel Alves Heinze
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Michael J. Bortner
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Klaus Schmidt-Rohr
- Department
of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Kevin J. Edgar
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
5
|
Mondal P, Sensharma D, Cohen SM. Polymer-Metal-Organic Frameworks (polyMOFs) Based on Tailor-Made Poly(alkenamer)s. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9696-9703. [PMID: 39398369 PMCID: PMC11467828 DOI: 10.1021/acs.chemmater.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Polymeric linkers used to construct porous, crystalline polymer-metal-organic frameworks (polyMOFs) are predominantly based on macromolecules with metal-coordinating ligand units (e.g., 1,4-benzenedicarboxylic acid, H2bdc) included in the primary polymer backbone. Polymers with ligand units as pendants or dangling side chain substituents have been far less explored for the synthesis of polyMOFs, despite the fact that such systems may have distinct properties and could take advantage of a variety of chain polymerization methods. Prevailing reports are based on nonliving polymerized linkers with H2bdc pendants that generated polyMOFs with key shortcomings in controlling the polymerization, tailoring polymeric linker composition and polyMOF properties, accessing porosity, etc. Herein, polymers containing H2bdc units as pendants were designed and synthesized via controlled olefin-metathesis polymerization. These poly(alkenamer)s were subsequently assembled into porous, crystalline networks with an isoreticular MOF (IRMOF) lattice topology. These polymer architectures and polymerization methodologies provide access to the formation of polyMOFs with tailored characteristics, including controlled composition, narrow dispersity, and side chain functionalization.
Collapse
Affiliation(s)
- Prantik Mondal
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Debobroto Sensharma
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Hyun T, Park J, So J, Kim J, Koh DY. Unexpected Molecular Sieving of Xylene Isomer Using Tethered Ligand in Polymer-Metal-Organic Frameworks (polyMOFs). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402980. [PMID: 38978346 PMCID: PMC11425841 DOI: 10.1002/advs.202402980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Indexed: 07/10/2024]
Abstract
Promising advances in adsorption technology can lead to energy-efficient solutions in industrial sectors. This work presents precise molecular sieving of xylene isomers in the polymer-metal-oragnic framework (polyMOF), a hybrid porous material derived from the parent isoreticular MOF-1 (IRMOF-1). PolyMOFs are synthesized by polymeric ligands bridged by evenly spaced alkyl chains, showing reduced pore sizes and enhanced stabilities compared to its parent material due to tethered polymer bridge within the pores while maintaining the original rigid crystal lattice. However, the exact configuration of the ligands within the crystals remain unclear, posing hurdles to predicting the adsorption performances of the polyMOFs. This work reveals that the unique pore structure of polyIRMOF-1-7a can discriminate xylene isomers with sub-angstrom size differences, leading to highly selective adsorption of p-xylene over other isomers and alkylbenzenes in complex liquid mixtures (αpX/OM = 15 and αpX/OME = 9). The structural details of the polyIRMOF-1-7a are elucidated through computational studies, suggesting a plausible configuration of alkyl chains within the polyMOF crystal, which enable a record-high p-xylene selectivity and stability in liquid hydrocarbon. With this unprecedented molecular selectivity in MOFs, "polymer-MOF" hybridization is expected to meet rigorous requirements for high-standard molecular sieving through precisely tunable and highly stable pores.
Collapse
Affiliation(s)
- Taehoon Hyun
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Junkil Park
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jungseob So
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Saudi Aramco-KAIST CO2 Management Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| |
Collapse
|
7
|
Lee TH, Lee BK, Yoo SY, Lee H, Wu WN, Smith ZP, Park HB. PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO 2 separation. Nat Commun 2023; 14:8330. [PMID: 38097615 PMCID: PMC10721836 DOI: 10.1038/s41467-023-44027-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Integrating different modification strategies into a single step to achieve the desired properties of metal-organic frameworks (MOFs) has been very synthetically challenging, especially in developing advanced MOF/polymer mixed matrix membranes (MMMs). Herein, we report a polymer-MOF (polyMOF) system constructed from a carboxylated polymer with intrinsic microporosity (cPIM-1) ligand. This intrinsically microporous ligand could coordinate with metals, leading to ~100 nm-sized polyMOF nanoparticles. Compared to control MOFs, these polyMOFs exhibit enhanced ultramicroporosity for efficient molecular sieving, and they have better dispersion properties in casting solutions to prepare MMMs. Ultimately, integrating coordination chemistries through the cPIM-1 and polymer-based functionality into porous materials results in polyMOF/PIM-1 MMMs that display excellent CO2 separation performance (surpassing the CO2/N2 and CO2/CH4 upper bounds). In addition to exploring the physicochemical and transport properties of this polyMOF system, scalability has been demonstrated by converting the developed MMM material into large-area (400 cm2) thin-film nanocomposite (TFN) membranes.
Collapse
Affiliation(s)
- Tae Hoon Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Byung Kwan Lee
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Yeon Yoo
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyunhee Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wan-Ni Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Bindra AK, Wang D, Zhao Y. Metal-Organic Frameworks Meet Polymers: From Synthesis Strategies to Healthcare Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300700. [PMID: 36848594 DOI: 10.1002/adma.202300700] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have been at the forefront of nanotechnological research for the past decade owing to their high porosity, high surface area, diverse configurations, and controllable chemical structures. They are a rapidly developing class of nanomaterials that are predominantly applied in batteries, supercapacitors, electrocatalysis, photocatalysis, sensors, drug delivery, gas separation, adsorption, and storage. However, the limited functions and unsatisfactory performance of MOFs resulting from their low chemical and mechanical stability hamper further development. Hybridizing MOFs with polymers is an excellent solution to these problems, because polymers-which are soft, flexible, malleable, and processable-can induce unique properties in the hybrids based on those of the two disparate components while retaining their individuality. This review highlights recent advances in the preparation of MOF-polymer nanomaterials. Furthermore, several applications wherein the incorporation of polymers enhances the MOF performance are discussed, such as anticancer therapy, bacterial elimination, imaging, therapeutics, protection from oxidative stress and inflammation, and environmental remediation. Finally, insights from the focus of existing research and design principles for mitigating future challenges are presented.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
9
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
10
|
Pander M, Gil-San-Millan R, Delgado P, Perona-Bermejo C, Kostrzewa U, Kaczkowski K, Kubicki DJ, Navarro JAR, Bury W. MOF/polymer hybrids through in situ free radical polymerization in metal-organic frameworks. MATERIALS HORIZONS 2023; 10:1301-1308. [PMID: 36655792 PMCID: PMC10068906 DOI: 10.1039/d2mh01202b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 06/15/2023]
Abstract
We use the free radical polymerization initiator 4,4'-azobis(cyanovaleric acid) coordinated to the open metal sites of metal-organic frameworks (MOFs) to give rise to highly uniform MOF/polymer hybrids. We demonstrate this strategy on two robust zirconium MOFs (NU-1000 and MOF-808), which are the most effective catalysts for degradation of chemical warfare nerve agents. The resulting hybrid materials maintain their hydrolytic catalytic activity and have substantially improved adhesion to polypropylene and activated carbon textile fibers, yielding highly robust MOF/polymer/textile hybrid systems. These composites are suitable for the green production of active protective clothing and filters capable of detoxifying organophosphorus warfare agents.
Collapse
Affiliation(s)
- Marzena Pander
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Rodrigo Gil-San-Millan
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Pedro Delgado
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Cristina Perona-Bermejo
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Urszula Kostrzewa
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | - Karol Kaczkowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| | | | - Jorge A R Navarro
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Wojciech Bury
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
11
|
|
12
|
Dodson RA, Park J, Kim J, Cliffe MJ, Cohen SM. Tethering Effects in Oligomer-Based Metal-Organic Frameworks. Inorg Chem 2022; 61:12284-12292. [PMID: 35881551 DOI: 10.1021/acs.inorgchem.2c01567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) can be constructed using conventional molecular linkers or polymeric linkers (polyMOFs), but the relationship and relative properties of these related materials remain understudied. As an intermediate between these two extremes, a library of oligomeric ligand precursors (dimers, trimers) was used to prepare a series of oligomeric-linker MOFs (oligoMOFs) based on the prototypical IRMOF-1 system. IRMOF-1 was found to be remarkably tolerant to a wide variety of oligomeric linkers, the use of which greatly enhanced the MOF yield and prevented framework interpenetration. Tether length-dependent ordering of ligand and metal cluster orientations was also observed in these oligoMOFs. Improved low-humidity stability was found in oligoIRMOF-1 samples, with surface area preservation varying as a function of tether length and a complete suppression of crystalline hydrolysis products for all oligoIRMOF-1 materials. These findings pave the way toward a better understanding of the structure-function relationships between monomeric, oligomeric, and polymeric MOFs and highlight an underutilized strategy for tuning MOF properties.
Collapse
Affiliation(s)
- Ryan A Dodson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Junkil Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Wang D, Zhang N, Yang T, Zhang Y, Jing X, Zhou Y, Long J, Meng L. Amino acids and doxorubicin as building blocks for metal ions-driven self-assembly of biodegradable polyprodrugs for tumor theranostics. Acta Biomater 2022; 147:245-257. [PMID: 35487428 DOI: 10.1016/j.actbio.2022.04.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/20/2022]
Abstract
On-demand designed theranostics nanoagents show promising applications for next-generation precision-and-personalized oncotherapy. Researchers have since aimed to develop nanoplatforms that can efficiently deliver drugs and contrast medium to tumor and release active ingredients in response to tumor microenvironment (TME) conditions. Herein, we propose a modular strategy, and develop a series of nanoplatforms based on metal-coordinated-polyprodrugs for cancer theranostics. The polyprodrugs were synthesized through a click-reaction between amino acid and doxorubicin (DOX) with dipropiolate. The backbones of the polyprodrugs had intrinsic sensitivities to pH and/or GSH, and provided abundant -COOH, -NH2, or -S-S- to chelate with functional metal ions and further self-assembled to form different morphologies. Dicysteine, which contains disulfide bond (-S-S-), was chosen to copolymerize with DOX and triethylene glycol dipropiolate (TEP) to prepare the pH/GSH dual-responsive polyprodrug poly(dicysteine-co-TEP-co-DOX) (pDTD), then separately coordinated with Gd3+, Fe3+, and Mn2+ to construct nanoplatforms pDTD@M (M representing the metal ions). In vitro and in vivo investigations suggest the metal-coordinated-polyprodrug nanoplatforms have good magnetic resonance imaging (MRI) ability and efficient tumor-growth inhibition with high safety. The design strategy of nanoplatforms based on metal-coordinated-polyprodrugs provides a new idea for on-demand construction of promising theranostics agents. STATEMENT OF SIGNIFICANCE: Compared to small molecule antitumor drugs, polymeric drugs have high drug loading ratio and are easily enriched at the tumor site to achieve improved therapy efficacy. This work utilizes click reactions to link amino acids with anticancer drugs to produce polymeric drugs that are degraded in response to tumor microenvironment and released small molecule antitumor drugs mainly in tumor sites, and subtly utilizes the coordination of amino acid to chelate MRI functional metal ion to realize enhanced MRI imaging mediated tumor therapy. This strategy provides a new idea for the convenient construction of polymeric drugs for tumor theranostics.
Collapse
Affiliation(s)
- Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Ning Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Tingting Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Yun Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Xunan Jing
- Talent Highland, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiangang Long
- School of Life Science and Technology; Ministry of Education Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, China; Instrumental analysis center, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
14
|
Li J, Wang J, Li Q, Zhang M, Li J, Sun C, Yuan S, Feng X, Wang B. Coordination Polymer Glasses with Lava and Healing Ability for High‐Performance Gas Sieving. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Li
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jiaming Wang
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Qingqing Li
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Mengxi Zhang
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jiani Li
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Chao Sun
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Shuai Yuan
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material Advanced Technology Research Institute (Jinan) Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
15
|
Li J, Wang J, Li Q, Zhang M, Li J, Sun C, Yuan S, Feng X, Wang B. Coordination Polymer Glasses with Lava and Healing Ability for High-Performance Gas Sieving. Angew Chem Int Ed Engl 2021; 60:21304-21309. [PMID: 34041828 DOI: 10.1002/anie.202102047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Coordination polymer (CP) glasses offer a way to tackle the fabrication challenges encountered by inorganic porous membranes and show great potentials for size-exclusive gas separation. However, their processability and performance still cannot simultaneously meet the requirements for high-performance membrane separation. Herein, we have developed a series of CP glasses (M-P-dmbIm, M=Zn, Cd, Cu, and Mn), which possess low vitrification temperature as well as low viscosity (η) and lave capability above the transition temperatures. The derived glass (ag M-P-dmbIm) membranes show outstanding performances for H2 /CO2 , H2 /N2 , and H2 /CH4 separation, which all far surpass the Robeson upper bound and even rival against the best of the state-of-the-art gas separation membranes. The low viscosities not only allow us to hot-cast or hot-press the CP glasses into thin membranes within 5 min without sacrificing their selectivity and permeability, but also endow the resulted glass membranes with healing ability.
Collapse
Affiliation(s)
- Jie Li
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiaming Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qingqing Li
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mengxi Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiani Li
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chao Sun
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuai Yuan
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
16
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Jin F, Liu J, Chen Y, Zhang Z. Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angew Chem Int Ed Engl 2021; 60:14222-14235. [DOI: 10.1002/anie.202011213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Fazheng Jin
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Jinjin Liu
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
| | - Zhenjie Zhang
- Renewable energy conversion and storage center College of Chemistry Nankai University Tianjin 300071 China
- State Key Laboratory of Medicinal Chemical biology Nankai University Tianjin 300071 China
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Signal Deconvolution and Generative Topographic Mapping Regression for Solid-State NMR of Multi-Component Materials. Int J Mol Sci 2021; 22:ijms22031086. [PMID: 33499371 PMCID: PMC7865946 DOI: 10.3390/ijms22031086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 01/19/2023] Open
Abstract
Solid-state nuclear magnetic resonance (ssNMR) spectroscopy provides information on native structures and the dynamics for predicting and designing the physical properties of multi-component solid materials. However, such an analysis is difficult because of the broad and overlapping spectra of these materials. Therefore, signal deconvolution and prediction are great challenges for their ssNMR analysis. We examined signal deconvolution methods using a short-time Fourier transform (STFT) and a non-negative tensor/matrix factorization (NTF, NMF), and methods for predicting NMR signals and physical properties using generative topographic mapping regression (GTMR). We demonstrated the applications for macromolecular samples involved in cellulose degradation, plastics, and microalgae such as Euglena gracilis. During cellulose degradation, 13C cross-polarization (CP)-magic angle spinning spectra were separated into signals of cellulose, proteins, and lipids by STFT and NTF. GTMR accurately predicted cellulose degradation for catabolic products such as acetate and CO2. Using these methods, the 1H anisotropic spectrum of poly-ε-caprolactone was separated into the signals of crystalline and amorphous solids. Forward prediction and inverse prediction of GTMR were used to compute STFT-processed NMR signals from the physical properties of polylactic acid. These signal deconvolution and prediction methods for ssNMR spectra of macromolecules can resolve the problem of overlapping spectra and support macromolecular characterization and material design.
Collapse
|
19
|
Kang Z, Guo H, Fan L, Yang G, Feng Y, Sun D, Mintova S. Scalable crystalline porous membranes: current state and perspectives. Chem Soc Rev 2021; 50:1913-1944. [PMID: 33319885 DOI: 10.1039/d0cs00786b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystalline porous materials (CPMs) with uniform and regular pore systems show great potential for separation applications using membrane technology. Along with the research on the synthesis of precisely engineered porous structures, significant attention has been paid to the practical application of these materials for preparation of crystalline porous membranes (CPMBs). In this review, the progress made in the preparation of thin, large area and defect-free CPMBs using classical and novel porous materials and processing is presented. The current state-of-the-art of scalable CPMBs with different nodes (inorganic, organic and hybrid) and various linking bonds (covalent, coordination, and hydrogen bonds) is revealed. The advances made in the scalable production of high-performance crystalline porous membranes are categorized according to the strategies adapted from polymer membranes (interfacial assembly, solution-casting, melt extrusion and polymerization of CPMs) and tailored based on CPM properties (seeding-secondary growth, conversion of precursors, electrodeposition and chemical vapor deposition). The strategies are compared and ranked based on their scalability and cost. The potential applications of CPMBs have been concisely summarized. Finally, the performance and challenges in the preparation of scalable CPMBs with emphasis on their sustainability are presented.
Collapse
Affiliation(s)
- Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Lili Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Ge Yang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Yang Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China and Laboratoire Catalyse et Spectrochimie (LCS), Normandie University, ENSICAEN, CNRS, 6 boulevard du Marechal Juin, 14050 Caen, France.
| |
Collapse
|
20
|
Bentz KC, Gnanasekaran K, Bailey JB, Ayala S, Tezcan FA, Gianneschi NC, Cohen SM. Inside polyMOFs: layered structures in polymer-based metal-organic frameworks. Chem Sci 2020; 11:10523-10528. [PMID: 34123187 PMCID: PMC8162296 DOI: 10.1039/d0sc03651j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks. The studies reveal alternating lamellae of metal-rich, crystalline regions and metal-deficient non-crystalline polymer, which span the length of hundreds of nanometers. Polymers consisting of random PEG blocks, PEG end-blocks, or non-coordinating poly(cyclooctadiene) (COD) show similar alternation of metal-rich and metal-deficient regions, indicating a universal self-assembly mechanism. A variety of techniques were employed to interrogate the internal structure of the polyMOFs, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and small-angle synchrotron X-ray scattering (SAXS). Independent of the copolymer architecture or composition, the internal structure of the polyMOF crystals showed similar lamellar self-assembly at single-nanometer length scales. In this report, we explore the internal structural features of polyMOFs consisting of equal mass ratios of metal-coordinating poly(benzenedicarboxylic acid) blocks and non-coordinating poly(ethylene glycol) (PEG) blocks.![]()
Collapse
Affiliation(s)
- Kyle C Bentz
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093-0358 USA
| | - Karthikeyan Gnanasekaran
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University Evanston Illinois 60208 USA
| | - Jake B Bailey
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093-0358 USA
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093-0358 USA
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093-0358 USA
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University Evanston Illinois 60208 USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093-0358 USA
| |
Collapse
|