1
|
Computational workflow limits need to 'guess and check' in the synthesis of complex molecules. Nature 2025:10.1038/d41586-025-00573-7. [PMID: 40011647 DOI: 10.1038/d41586-025-00573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
|
2
|
Li C, Shenvi RA. Total synthesis of 25 picrotoxanes by virtual library selection. Nature 2025; 638:980-986. [PMID: 39715626 DOI: 10.1038/s41586-024-08538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
The synthesis of a complex molecule begins from an initial design stage1-4 in which possible routes are triaged by strategy and feasibility, on the basis of analogy to similar reactions2,3. However, as molecular complexity increases, predictability decreases5; inevitably, even experienced chemists resort to trial and error to identify viable intermediates en route to the target molecule. We encountered such a problem in the synthesis of picrotoxane sesquiterpenes in which pattern-recognition methods anticipated success, but small variations in structure led to failure. Here, to solve this problem but avoid tedious guess-and-check experimentation, we built a virtual library of elusive late-stage intermediate analogues that were triaged by reactivity and altered the synthesis pathway. The efficiency of this method led to concise routes to 25 naturally occurring picrotoxanes. Costly density-functional-theory transition-state calculations were replaced with faster reactant parameterizations to increase scalability and, in this case, inform the mechanism. This approach can serve as an add-on search to human or computer-assisted synthesis planning applicable to high-complexity targets and/or steps with little representation in the literature or reaction databases.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
- Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
3
|
Jain D, Meena M, Singh D, Janmeda P. Structural characterisation of bioactive compounds of Gymnosporia senegalensis (Lam.) Loes. using advanced analytical technique like FT-IR, GC-MS and 1H-NMR spectroscopy. Nat Prod Res 2025; 39:351-361. [PMID: 37837421 DOI: 10.1080/14786419.2023.2269460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The present investigation was carried out to characterise bioactive components from G. senegalensis by using Fourier-transform infra-red (FT-IR) spectroscopy, 1H-nuclear magnetic resonance spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The FTIR analysis confirmed the presence of > CH2, -CH3, C = C-C, C-H, C-F, C = C, -C = N-, C-C = N-, and -OH functional groups. The 1H-NMR spectrum revealed the presence of structures of four bioactive compounds i.e. tetratetracontana derivative, β-carotene, amyrin, and terpineol. GC-MS revealed the presence of different types of high and low molecular weight chemical entities with varying quantities including volatile and essential oil, monoterpenoid, tetraterpenoid, carotenoid, terpenoid, triterpenes, and nortriterpenes. From the results, it could be concluded that G. senegalensis contains various bioactive compounds of biological and pharmacological importance. Overall, this study will provide insight into the characterisation and development of drugs from medicinal plants.
Collapse
Affiliation(s)
- Divya Jain
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Devendra Singh
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
4
|
Kang YC, Wetterer RT, Karimov RR, Kojima M, Surke M, Martín-Torres I, Nicolai J, Elkin M, Hartwig JF. Substitution, Elimination, and Integration of Methyl Groups in Terpenes Initiated by C-H Bond Functionalization. ACS CENTRAL SCIENCE 2024; 10:2016-2027. [PMID: 39634226 PMCID: PMC11613304 DOI: 10.1021/acscentsci.4c01108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 12/07/2024]
Abstract
Methyl groups are ubiquitous in natural products and biologically active compounds, but methods for their selective transformation in such structures are limited. For example, terpenoids contain many methyl groups, due to their biosynthetic pathways, but few reactions of these groups in such structures have been reported. We demonstrate that the combination of methyl C-H silylation and oxidation proximal to native hydroxyl or carbonyl groups occurs in a range of terpenoids and show that the installed hydroxyl group serves as a toehold to enable substitution, elimination, or integration of the methyl carbon into the terpenoid skeleton by the cleavage of C-C bonds. In one case, substitution of the entire methyl group occurs by further oxidation and decarboxylative coupling. In a second, substitution of the methyl group with hydrogen occurs by photochemical hydrodecarboxylation or epimerization by retro-Claisen condensation. In a third, photocatalytic decarboxyolefination formally eliminates methane from the starting structure to generate a terminal olefin for further transformations. Finally, a Dowd-Beckwith-type rearrangement cleaves a nearby C-C bond and integrates the methyl group into a ring, forming derivatives with unusual and difficult-to-access expanded rings. This strategy to transform a methyl group into a synthon marks a distinct approach to restructuring the skeletons of complex architectures and adding functional groups relevant to medicinal chemistry.
Collapse
Affiliation(s)
- Yi Cheng Kang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard T. Wetterer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rashad R. Karimov
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masahiro Kojima
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Max Surke
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Jeremy Nicolai
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Masha Elkin
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
6
|
Tang Y, Li Z, Zeng M, Li R, Song H, Zhang D, Xue F, Qin Y. Asymmetric Synthesis of Triazole Antifungal Agents Enabled by an Upgraded Strategy for the Key Epoxide Intermediate. J Org Chem 2024; 89:4971-4978. [PMID: 38509452 DOI: 10.1021/acs.joc.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A streamlined and efficient approach to the key epoxide intermediate for the asymmetric synthesis of triazole antifungal agents is presented. This synthesis highlights a P(NMe2)3-mediated nonylidic olefination of α-keto ester, ensuring the exclusive formation of the requisite (Z)-alkene, followed by a highly enantioselective Jacobsen epoxidation to establish the two vicinal stereocenters in a single step. The versatility of this strategy is exemplified through the efficient synthesis of efinaconazole and ravuconazole.
Collapse
Affiliation(s)
- Yu Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhuo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Meiqi Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Ran Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
7
|
Shenvi RA. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS CENTRAL SCIENCE 2024; 10:519-528. [PMID: 38559299 PMCID: PMC10979479 DOI: 10.1021/acscentsci.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
Research into natural products emerged from humanity's curiosity about the nature of matter and its role in the materia medica of diverse civilizations. Plants and fungi, in particular, supplied materials that altered behavior, perception, and well-being profoundly. Many active principles remain well-known today: strychnine, morphine, psilocybin, ephedrine. The potential to circumvent the constraints of natural supply and explore the properties of these materials led to the field of natural product synthesis. This research delivered new molecules with new properties, but also led to fundamental insights into the chemistry of the nonmetal elements H, C, N, O, P, S, Se, and their combinations, i.e., organic chemistry. It also led to a potent culture focused on bigger molecules and races to the finish line, perhaps at the expense of actionable next steps. About 20 years ago, the field began to contract in the United States. Research that focused solely on chemical reaction development, especially catalysis, filled the void. After all, new reactions and mechanistic insight could be immediately implemented by the chemistry community, so it became hard to justify the lengthy procurement of a complex molecule that sat in the freezer unused. This shift coincided with a divestment of natural product portfolios by pharmaceutical companies and an emphasis in academic organic chemistry on applications-driven research, perhaps at the expense of more fundamental science. However, as bioassays and the tools of chemical biology become widespread, synthesis finds a new and powerful ally that allows us to better deliver on the premise of the field. And the hard-won insights of complex synthesis can be better encoded digitally, mined by data science, and applied to new challenges, as chemists perturb and even surpass the properties of complex natural products. The 21st century promises powerful developments, both in fundamental organic chemistry and at the interface of synthesis and biology, if the community of scientists fosters its growth. This essay tries to contextualize natural product synthesis for a broad audience, looks ahead to its transformation in the coming years, and expects the future to be bright.
Collapse
Affiliation(s)
- Ryan A. Shenvi
- Department
of Chemistry, Scripps Research, La Jolla, California 92037, United States
- Graduate
School of Chemical and Biological Sciences, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Tong G, Griffin S, Sader A, Crowell AB, Beavers K, Watson J, Buchan Z, Chen S, Shenvi RA. C5 methylation confers accessibility, stability and selectivity to picrotoxinin. Nat Commun 2023; 14:8308. [PMID: 38097583 PMCID: PMC10721898 DOI: 10.1038/s41467-023-44030-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Minor changes to complex structures can exert major influences on synthesis strategy and functional properties. Here we explore two parallel series of picrotoxinin (PXN, 1) analogs and identify leads with selectivity between mammalian and insect ion channels. These are the first SAR studies of PXN despite its >100-year history and are made possible by advances in total synthesis. We observe a remarkable stabilizing effect of a C5 methyl, which completely blocks C15 alcoholysis via destabilization of an intermediate twist-boat conformer; suppression of this secondary hydrolysis pathway increases half-life in plasma. C5 methylation also decreases potency against vertebrate ion channels (γ-Aminobutyric acid type A (GABAA) receptors) but maintains or increases antagonism of homologous invertebrate GABA-gated chloride channels (resistance to dieldrin (RDL) receptors). Optimal 5MePXN analogs appear to change the PXN binding pose within GABAARs by disruption of a hydrogen bond network. These discoveries were made possible by the lower synthetic burden of 5MePXN (2) and were illuminated by the parallel analog series, which allowed characterization of the role of the synthetically simplifying C5 methyl in channel selectivity. These are the first SAR studies to identify changes to PXN that increase the GABAA-RDL selectivity index.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Samantha Griffin
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, USA
| | - Avery Sader
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, USA
| | - Anna B Crowell
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio, 44074, USA
| | - Ken Beavers
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, USA
| | - Jerry Watson
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, USA
| | - Zachary Buchan
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana, 46268, USA
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland Street, Oberlin, Ohio, 44074, USA.
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA.
| |
Collapse
|
9
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Krzyzanowski A, Pahl A, Grigalunas M, Waldmann H. Spacial Score─A Comprehensive Topological Indicator for Small-Molecule Complexity. J Med Chem 2023; 66:12739-12750. [PMID: 37651653 PMCID: PMC10544027 DOI: 10.1021/acs.jmedchem.3c00689] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 09/02/2023]
Abstract
The fraction of sp3-hybridized carbons (Fsp3) and the fraction of stereogenic carbons (FCstereo) are two widely employed scores of molecular complexity with strong links to biologically relevant features. However, they do not comprehensively express molecular topology, and they often do not match the chemical intuition of complexity. We propose the spacial score (SPS) as an empirical scoring system that builds upon the principle underlying Fsp3 and FCstereo and expresses the spacial complexity of a compound in a uniform manner on a highly granular scale. The size-normalized SPS (nSPS) can differentiate distributions of natural products and synthetic compounds and is applicable in the analysis of biological activity data. Analysis of the ChEMBL database revealed general trends of increasing selectivity and potency with increasing nSPS. SPS can also be used advantageously in planning and analysis of synthesis programs for direct comparison of chemical transformations and intermediates in reaction sequences.
Collapse
Affiliation(s)
- Adrian Krzyzanowski
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Faculty
of Chemistry, Chemical Biology Technical
University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| | - Axel Pahl
- Compound
Management and Screening Center, Max Planck
Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Michael Grigalunas
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Faculty
of Chemistry, Chemical Biology Technical
University Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
| |
Collapse
|
11
|
Ikeuchi K, Haraguchi S, Fujii R, Yamada H, Suzuki T, Tanino K. Total Synthesis of (+)-Coriamyrtin via a Desymmetrizing Strategy Involving a 1,3-Cyclopentanedione Moiety. Org Lett 2023; 25:2751-2755. [PMID: 36853202 DOI: 10.1021/acs.orglett.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We describe the total synthesis of (+)-coriamyrtin, which bears a highly functionalized cis-hydrindane skeleton and is a widely known neurotoxin of the Coriariaceae family. Our synthetic strategy involves the highly stereoselective construction of the cis-hydrindane skeleton via a desymmetrizing strategy involving a 1,3-cyclopentanedione moiety using an intramolecular aldol reaction and the formation of the 1,3-diepoxide moiety of coriamyrtin through the elaborate functionalization of the cyclopentane ring in the bicyclic structure.
Collapse
Affiliation(s)
- Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Haraguchi
- School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Ryo Fujii
- School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hidetoshi Yamada
- School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
12
|
Sennari G, Gardner KE, Wiesler S, Haider M, Eggert A, Sarpong R. Unified Total Syntheses of Benzenoid Cephalotane-Type Norditerpenoids: Cephanolides and Ceforalides. J Am Chem Soc 2022; 144:19173-19185. [PMID: 36198090 PMCID: PMC11620759 DOI: 10.1021/jacs.2c08803] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Detailed herein are our synthetic studies toward the preparation of the C18- and C19-benzenoid cephalotane-type norditerpenoids. Guided by chemical network analysis, the core structure of this natural product family was constructed in a concise manner using an iterative cross-coupling, followed by a formal inverse-electron-demand [4 + 2] cycloaddition. Initial efforts to functionalize an alkene group in the [4 + 2] cycloadduct using a Mukaiyama hydration and a subsequent olefination led to the complete C18-carbon framework. While effective, this approach proved lengthy and prompted the development of a direct alkene difunctionalization that relies on borocupration to advance the cycloadduct to the natural products. Late-stage peripheral C-H functionalization facilitated access to all of the known cephanolides in 6-10 steps as well as five recently isolated ceforalides in 8-13 steps.
Collapse
Affiliation(s)
- Goh Sennari
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Kristen E Gardner
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Stefan Wiesler
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Maximilian Haider
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Alina Eggert
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California─Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
14
|
Shi QQ, Tang JJ, Gao JM. Picrotoxane sesquiterpenoids: chemistry, chemo- and bio-syntheses and biological activities. Nat Prod Rep 2022; 39:2096-2131. [PMID: 36106498 DOI: 10.1039/d2np00049k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to December 2021Picrotoxane sesquiterpenoids are a special category of natural products known to have a picrotoxane skeleton and are characterised by a highly oxidised cis-hydrindene core, lactone rings, and epoxide functionalities. Ever since the first picrotoxane was isolated from Menispermum cocculus in the early 19th century, these compounds have long attracted the attention of natural product chemists, synthetic chemists, and pharmacologists for their particular structures and powerful biological activities. This review extensively summarizes a total of 132 naturally occurring picrotoxane sesquiterpenoids, taking into account their distributions, structural classifications, chemical and bio-synthetic researches, and bioactivities. It provides a comprehensive and in-depth perspective for further investigation on picrotoxane sesquiterpenoids.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Ohtawa M, Shenvi RA. Concise Syntheses of (−)-11-O-Debenzoyltashironin and (−)-Bilobalide. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Xiao S, Ai L, Liu Q, Yang B, Huang J, Xue W, Chen Y. Total Synthesis of Natural Terpenoids Enabled by Cobalt Catalysis. Front Chem 2022; 10:941184. [PMID: 35783212 PMCID: PMC9241582 DOI: 10.3389/fchem.2022.941184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
Transition metal catalysis plays an essential role in the total synthesis of natural products. Cobalt-mediated asymmetric catalysis has successfully been used as a primary or a secondary step in the total synthesis of natural products, especially terpenoids. Terpenoids represent one of the most prominent families among various categories of natural products, attracting immense attention due to their promising physiological activities. This review summarizes the recent advances toward the total synthesis of terpenoids by cobalt-mediated asymmetric catalysis, which may shed some light on their future synthetic efforts toward natural pesticides such as celanguline, azadirachtin, etc.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Xue
- *Correspondence: Yang Chen, ; Wei Xue,
| | - Yang Chen
- *Correspondence: Yang Chen, ; Wei Xue,
| |
Collapse
|
17
|
Ikeuchi K, Haraguchi S, Yamada H, Tanino K. Model Synthetic Study of Tutin, a Picrotoxane-Type Sesquiterpene: Stereoselective Construction of a cis-Fused 5,6-Ring Skeleton. Chem Pharm Bull (Tokyo) 2022; 70:435-442. [PMID: 35650040 DOI: 10.1248/cpb.c22-00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Picrotoxinin, coriamyrtin, and tutin are representative natural products classified as picrotoxane-type sesquiterpenes and they function as strong neurotoxins. Because they possess a cis-fused 5,6-ring skeleton with a highly congested functionalization, organic chemistry researchers have pursued the development of a stereoselective synthesis method for such skeleton. This study aims to stereoselectively synthesize the cis-fused 5,6-ring skeleton with two tetrasubstituted carbons at both angular positions using a model compound. The results revealed that the desymmetrization of the 2-methyl-1,3-cyclopentanedione moiety via the DL-proline-mediated intramolecular aldol reaction of a pentanal derivative bearing an isopropenyl group and the five-membered ring at the 3- and 5-position, respectively, provided the desired cis-fused skeleton. This reaction can construct four contiguous stereogenic centers of the bicyclic skeleton with the two angular positions in good yield with high stereoselectivity. Further, this reaction was applied to the kinetic resolution of the racemate using L-proline, providing the enantiomeric pure aldol product with the desired skeleton. This method can be utilized for total synthesis of picrotoxane-type sesquiterpenes.
Collapse
|
18
|
Chan HSS, Yang JM, Yu JQ. Catalyst-controlled site-selective methylene C-H lactonization of dicarboxylic acids. Science 2022; 376:1481-1487. [PMID: 35617373 DOI: 10.1126/science.abq3048] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Catalyst-controlled site-selective activation of β- and γ-methylene C-H bonds of free carboxylic acids is a long-standing challenge. Here we show that with a pair of palladium catalysts assembled with quinoline-pyridone ligands of different chelate ring sizes, it is possible to perform highly site-selective monolactonization reactions with a wide range of dicarboxylic acids, generating structurally diverse and synthetically useful γ- and δ-lactones via site-selective β- or γ-methylene C-H activation. The remaining carboxyl group serves as a versatile linchpin for further synthetic applications as demonstrated by the total synthesis of two natural products, myrotheciumone A and pedicellosine, from abundant dicarboxylic acids.
Collapse
Affiliation(s)
- Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ji-Min Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
19
|
Sharma D, Chatterjee R, Dhayalan V, Dandela R. Recent Advances in Enantioselective Organocatalytic Reactions Enabled by NHCs Containing Triazolium Motifs. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1856-5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
N-Heterocyclic carbenes (NHCs) containing triazolium motifs have emerged as a powerful tool in organocatalysis. Recently, various NHC pre-catalyst mediated organic transformations have been developed successfully. This article aims to compile the current state of knowledge on NHC-triazolium catalysed enantioselective name reactions and introduce newly developed catalytic methods. Furthermore, this review article framework provides an excellent opportunity to highlight some of the unique applications of these catalytic procedures in the natural product synthesis of biologically active compounds, notably the wide range of preparation of substituted chiral alcohols, and their derivatives. This article provides an overview of chiral NHC triazolium-catalyst libraries synthesis and their catalytic application in enantioselective reactions.
Collapse
Affiliation(s)
- Deepika Sharma
- Dept. of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Bhubaneswar-, Bhubaneswar, India
| | - Rana Chatterjee
- Chemistry, Institute of Chemical Technology, Indian oil Odisha Campus, Bhubaneswar, Bhubaneswar, India
| | | | - Rambabu Dandela
- Dept. of Industrial and Engineering Chemistry, Institute of Chemical Technology- IOC Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
20
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Shuming Chen
- Department of Chemistry and Biochemistry Oberlin College 119 Woodland Street Oberlin OH 44074 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry UCLA: University of California Los Angeles 619 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
21
|
Huffman BJ, Chu T, Hanaki Y, Wong JJ, Chen S, Houk KN, Shenvi RA. Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angew Chem Int Ed Engl 2022; 61:e202114514. [PMID: 34820990 PMCID: PMC8748398 DOI: 10.1002/anie.202114514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/19/2023]
Abstract
A strategy to control the diastereoselectivity of bond formation at a prochiral attached-ring bridgehead is reported. An unusual stereodivergent Michael reaction relies on basic vs. Lewis acidic conditions and non-covalent interactions to control re- vs. si- facial selectivity en route to fully substituted attached-rings. This divergency reflects differential engagement of one rotational isomer of the attached-ring system. The successful synthesis of an erythro subtarget diastereomer ultimately leads to a short formal synthesis of merrilactone A.
Collapse
Affiliation(s)
- Benjamin J. Huffman
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tiffany Chu
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yusuke Hanaki
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jonathan J. Wong
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry 119 Woodland Street, Oberlin, Ohio 44074, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry 619 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Mondal A, Satpathi B, Ramasastry SSV. Phosphine-Catalyzed Intramolecular Vinylogous Aldol Reaction of α-Substituted Enones. Org Lett 2021; 24:256-261. [PMID: 34908421 DOI: 10.1021/acs.orglett.1c03913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We demonstrate the first phosphine-catalyzed intramolecular vinylogous aldol reaction (IVAR) of α-substituted enones. This strategy provides access to various pentannulated (hetero)arenes and dibenzocycloheptanones incorporated with two contiguous stereocenters, one of which is an all-carbon quaternary center. The scope of this work is further broadened through elaborations of the IVAR adducts to (i) benzannulated nine-membered carbocyclic systems, (ii) interesting classes of 1,3-dienes, 1,3,5-trienes, and 1-yn-3,5-dienes, and (iii) the analogs of echinolactone D and russujaponol F.
Collapse
Affiliation(s)
- Atanu Mondal
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Bishnupada Satpathi
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
23
|
Tong G, Shenvi RA. Revision of the Unstable Picrotoxinin Hydrolysis Product. Angew Chem Int Ed Engl 2021; 60:19113-19116. [PMID: 34236745 PMCID: PMC8373721 DOI: 10.1002/anie.202107785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/10/2022]
Abstract
The plant metabolite picrotoxinin (PXN) is a widely used tool in neuroscience for the identification of GABAergic signaling. Its hydrolysis in weakly alkaline media has been observed for over a century and the structure of the unstable hydrolysis intermediate was assigned by analogy to the degradation product picrotoxic acid. Here we show this assignment to be in error and we revise the structure of the hydrolysis product by spectroscopic characterization in situ. Counterintuitively, hydrolysis occurs at a lactone that remains closed in the major isolable degradation product, which accounts for the longstanding mistake in the literature.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
24
|
Tong G, Shenvi RA. Revision of the Unstable Picrotoxinin Hydrolysis Product. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guanghu Tong
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ryan A. Shenvi
- Department of Chemistry Scripps Research 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
25
|
Ghit A, Assal D, Al-Shami AS, Hussein DEE. GABA A receptors: structure, function, pharmacology, and related disorders. J Genet Eng Biotechnol 2021; 19:123. [PMID: 34417930 PMCID: PMC8380214 DOI: 10.1186/s43141-021-00224-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/08/2021] [Indexed: 02/03/2023]
Abstract
Background γ-Aminobutyric acid sub-type A receptors (GABAARs) are the most prominent inhibitory neurotransmitter receptors in the CNS. They are a family of ligand-gated ion channel with significant physiological and therapeutic implications. Main body GABAARs are heteropentamers formed from a selection of 19 subunits: six α (alpha1-6), three β (beta1-3), three γ (gamma1-3), three ρ (rho1-3), and one each of the δ (delta), ε (epsilon), π (pi), and θ (theta) which result in the production of a considerable number of receptor isoforms. Each isoform exhibits distinct pharmacological and physiological properties. However, the majority of GABAARs are composed of two α subunits, two β subunits, and one γ subunit arranged as γ2β2α1β2α1 counterclockwise around the center. The mature receptor has a central chloride ion channel gated by GABA neurotransmitter and modulated by a variety of different drugs. Changes in GABA synthesis or release may have a significant effect on normal brain function. Furthermore, The molecular interactions and pharmacological effects caused by drugs are extremely complex. This is due to the structural heterogeneity of the receptors, and the existence of multiple allosteric binding sites as well as a wide range of ligands that can bind to them. Notably, dysfunction of the GABAergic system contributes to the development of several diseases. Therefore, understanding the relationship between GABAA receptor deficits and CNS disorders thus has a significant impact on the discovery of disease pathogenesis and drug development. Conclusion To date, few reviews have discussed GABAA receptors in detail. Accordingly, this review aims to summarize the current understanding of the structural, physiological, and pharmacological properties of GABAARs, as well as shedding light on the most common associated disorders.
Collapse
Affiliation(s)
- Amr Ghit
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. .,Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.
| | - Dina Assal
- Department of Biotechnology, American University in Cairo (AUC), Cairo, Egypt
| | - Ahmed S Al-Shami
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Diaa Eldin E Hussein
- Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Port of Alexandria, Alexandria, Egypt
| |
Collapse
|
26
|
Tong G, Baker MA, Shenvi RA. Change the channel: CysLoop receptor antagonists from nature. PEST MANAGEMENT SCIENCE 2021; 77:3650-3662. [PMID: 33135373 PMCID: PMC8087819 DOI: 10.1002/ps.6166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 05/04/2023]
Abstract
Vertebrate and invertebrate ligand-gated ion channels (LGICs) exhibit significant structural homology and often share ligands. As a result, ligands with activity against one class can be brought to bear against another, including for development as insecticides. Receptor selectivity, metabolism and distribution must then be optimized using chemical synthesis. Here we review natural products (NPs) that ligate and inhibit the Cys-loop family of LGICs, which benefit from the unique physicochemical properties of natural product space but often present a high synthetic burden. Recent advances in chemical synthesis, however, have opened practical entries into these complex structures, several of which are highlighted. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanghu Tong
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Meghan A Baker
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
27
|
Abstract
Retrosynthetic analysis emerged in the 1960s as a teaching tool with profound implications. Its educational value can be appreciated by a glance at total synthesis manuscripts over 50 years later, most of which contain a retrosynthesis on page one. Its vision extended to computer language-a pioneering idea in the 20th century that continues to expand the frontiers today. The same principles that guide a student to evaluate, expand, and refine a series of bond dissections can be programmed, so that computer assistance can perform the same tasks but at faster speeds.The slow step in the synthesis of complex structures, however, is seldom route design. Compression of molecular information into close proximity (Cm/Å3) requires exploration and empiricism, a close connection between theory and experiment. Here, retrosynthetic analysis guides the choice of experiment, so that the most simplifying-but often least assured-disconnection is prioritized: a high-risk, high reward strategy. The reimagining of total synthesis in a future era of retrosynthetic software may involve, counterintuitively, target design, as discussed here.Compared to the 1960s, retrosynthetic analysis in the 21st century finds itself among computers of unimaginable power and a biology that is increasingly molecular. Put together, the logic of retrosynthesis, the insight of structural biology, and the predictions of computation have inspired us to imagine an integration of the three. The synthetic target is treated as dynamic-a constellation of related structures-in order to find the nearest congener with the closest affinity but the shortest synthetic route. Such an approach merges synthetic design with structural design toward the goal of improved access for improved function.In this Account, we detail the evolution of our program from its inception in traditional natural product (NP) total synthesis to its current expression through the lens of chemical informatics: a view of NPs as aggregates of molecular parameters that define single points in a chemical space. Early work on synthesis and biological annotation of apparent metal pool binders and nonselective covalent electrophiles (asmarine alkaloids, isocyanoterpenes, Nuphar dimers) gave way to NPs with well-defined protein targets. The plant metabolite salvinorin A (SalA) potently and selectively agonizes the κ-opioid receptor (KOR), rapidly penetrates the brain, and represents an important lead for next-generation analgesics and antipruritics. To synthesize and diversify this lead, we adopted what we now call a dynamic approach. Deletion of a central methyl group stabilized the SalA scaffold, opened quick synthetic access, and retained high potency and selectivity. The generality of this idea was then tested against another neuroactive class. As an alternative hypothesis to TrkB channels, we proposed that the so-called "neurotrophic" Illicium terpenes may bind to γ-aminobutyric acid (GABA)-gated ion channels to cause weak, chronic excitation. Syntheses of (-)-jiadifenolide, 3,6-dideoxy-10-hydroxypseudoanisatin, (-)-11-O-debenzoyltashironin, (-)-bilobalide, and (-)-picrotoxinin (PXN) allowed this hypothesis to be probed more broadly. Feedback from protein structure and synthetic reconnaissance led to a dynamic retrosynthesis of PXN and the identification of 5MePXN, a moderate GABAAR antagonist with greater aqueous stability available in eight steps from dimethylcarvone. We expect this dynamic approach to synthetic target analysis to become more feasible in the coming years and hope the next generation of scientists finds this approach helpful to address problems at the frontier of chemistry and biology.
Collapse
Affiliation(s)
- Stone Woo
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| | - Ryan A Shenvi
- Department of Chemistry, Scripps Research, 10550 North Torrey Lines Road, La Jolla, California 92037, United States
| |
Collapse
|
28
|
Kha TK, Doan BND. Evolution of synthetic strategies and design for synthesis of (−)-picrotoxinin. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Wu J, Ma Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo01139a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Functionalization of olefins has been an important transformation in synthetic chemistry. This review will focus on the natural product synthesis employing the MHAT reaction as the key strategy.
Collapse
Affiliation(s)
- Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| |
Collapse
|
30
|
Demoret RM, Baker MA, Ohtawa M, Chen S, Lam CC, Khom S, Roberto M, Forli S, Houk KN, Shenvi RA. Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (-)-Bilobalide. J Am Chem Soc 2020; 142:18599-18618. [PMID: 32991152 PMCID: PMC7727090 DOI: 10.1021/jacs.0c08231] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (-)-bilobalide and the nonconvulsive sesquiterpene (-)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.
Collapse
Affiliation(s)
- Robert M. Demoret
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Meghan A. Baker
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Masaki Ohtawa
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ching Ching Lam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, La Jolla, California 92037, United States
| | - Stefano Forli
- DISCoBio, Scripps Research, La Jolla, California 92037, United States
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan A. Shenvi
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Wang B, Perea MA, Sarpong R. Transition Metal-Mediated C-C Single Bond Cleavage: Making the Cut in Total Synthesis. Angew Chem Int Ed Engl 2020; 59:18898-18919. [PMID: 31984640 PMCID: PMC7772057 DOI: 10.1002/anie.201915657] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Transition-metal-mediated cleavage of C-C single bonds can enable entirely new retrosynthetic disconnections in the total synthesis of natural products. Given that C-C bond cleavage inherently alters the carbon framework of a compound, and that, under transition-metal catalysis, the generated organometallic or radical intermediate is primed for further complexity-building reactivity, C-C bond-cleavage events have the potential to drastically and rapidly remodel skeletal frameworks. The recent acceleration of the use of transition-metal-mediated cleavage of C-C single bonds in total synthesis can be ascribed to a communal recognition of this fact. In this Review, we highlight ten selected total syntheses from 2014 to 2019 that illustrate how transition-metal-mediated cleavage of C-C single bonds at either the core or the periphery of synthetic intermediates can streamline synthetic efforts.
Collapse
Affiliation(s)
| | | | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley Berkeley, CA 94720 (USA)
| |
Collapse
|
32
|
Wang B, Perea MA, Sarpong R. Übergangsmetallvermittelte Spaltung von C‐C‐Einfachbindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brian Wang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Melecio A. Perea
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Richmond Sarpong
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|