1
|
Deng M, Zhang Z, Liu L, Yang H, Li C, Fan Z. Ligand-Solvent Library Design for Tailoring Interparticle Interactions in Colloidal Nanocrystals. ACS NANO 2025; 19:14299-14308. [PMID: 40064551 DOI: 10.1021/acsnano.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study explores the critical role of nonpolar ligand-solvent systems in modulating interparticle interactions in colloidal nanocrystals, profoundly affecting colloidal stability and enabling precision self-assembly. A library of 28 ligands with diverse molecular fragments─double bonds, branched chains, benzene rings, and naphthalene rings─and four solvents was developed to investigate how fragment types and positions affect ligand ordering and interparticle attraction. Explicit solvent simulations with enhanced sampling techniques reveal that fragments near the headgroup or midsection disrupt ligand ordering and weaken interparticle attraction, whereas terminal placement fosters ordered ligand packing and enhances attraction. Simulation predictions on the relationship between ligand structures and interparticle interactions were validated through self-assembly experiments using colloidal nanocrystals passivated by six representative ligands. Furthermore, the potential to control ligand ordering and interparticle interactions was demonstrated by tuning fragment types, positions, combinations, and solvent sizes. This work deepens the understanding of ligand-solvent dynamics and provides a theoretical framework for the molecular-level design of nanocrystal self-assembly.
Collapse
Affiliation(s)
- Meng Deng
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ziyan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongchao Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Chuncheng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhaochuan Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Cao X, Li J, Qian X, Li C, Peng X. Nucleation and Growth of Monodisperse and Monocrystalline Wurtzite CdSe Nanocrystals: Zinc Alkanoates as Neutral Ligands. J Am Chem Soc 2025; 147:3679-3691. [PMID: 39829123 DOI: 10.1021/jacs.4c15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Here, we demonstrate that monocrystalline (free of stacking faults) wurtzite CdSe nanocrystals with monodisperse size, shape (dots, rods, or wires), and facet structure are synthesized in both strongly confined and weakly confined size regimes. Considering the unique c-axis of wurtzite CdSe, we introduce a new type of neutral ligand (e.g., zinc-alkanoate ones) to pair with their dominating nonpolar low-index facets. Nucleation of the stacking fault-free wurtzite seeds instead of zinc-blende tetrahedrons is identified as the key step, which is optimized by a set of conditions matching the neutral zinc-alkanoate ligands. In the following growth stage, conditions are much less stringent, although the neutral zinc-alkanoate ligands are still critical in achieving nearly atomically flat facets of those monocrystalline nanocrystals. In the strongly confined size regime, the ensemble photoluminescence (PL) full-width-at-half-maximum (FWHM) of wurtzite CdSe nanocrystals reaches a record low (59 meV). In the weakly confined size regime, dual-peak PL caused by thermal population is observed. Monodisperse and monocrystalline wurtzite CdSe nanocrystals show distinctively size-dependent optical properties, in comparison with their zinc-blende counterparts. Results here suggest that the atomically precise synthesis of colloidal semiconductor nanocrystals is feasible, implying an advanced class of nanomaterials for exploring various optical and optoelectronic applications.
Collapse
Affiliation(s)
- Xu Cao
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiongzhao Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xudong Qian
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chuyue Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Kang S, Kim J, Kim S, Chun H, Heo J, Reboul CF, Meana-Pañeda R, Van CTS, Choi H, Lee Y, Rhee J, Lee M, Kang D, Kim BH, Hyeon T, Han B, Ercius P, Lee WC, Elmlund H, Park J. Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching. Nat Commun 2025; 16:1158. [PMID: 39880816 PMCID: PMC11779812 DOI: 10.1038/s41467-025-56476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution. In this study, we introduce the method of time-resolved Brownian tomography to investigate the temporal evolution of the 3D atomic structures of individual nanocrystals in solution. The methodology is applied to examine the atomic-level structural transformations of Pt nanocrystals during oxidative etching. The time-resolved 3D atomic maps reveal the structural evolution of dissolving Pt nanocrystals, transitioning from a crystalline to a disordered structure. Our study demonstrates the emergence of a phase at the nanometer length scale that has received less attention in bulk thermodynamics.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Joodeok Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Hoje Chun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Junyoung Heo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Cyril F Reboul
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Rubén Meana-Pañeda
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Cong T S Van
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA
| | - Hyesung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yunseo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jinho Rhee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byung Hyo Kim
- Department of Material Science and Engineering, Soongsil University, Seoul, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Byungchan Han
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Peter Ercius
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Republic of Korea.
| | - Hans Elmlund
- National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, USA.
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
- Hyundai Motor Group-Seoul National University (HMG-SNU) Joint Battery Research Center (JBRC), Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Unniram Parambil AR, Pokratath R, Parammal MJ, Dhaene E, Van den Eynden D, Balog S, Prescimone A, Infante I, Shahgaldian P, De Roo J. Atomically precise surface chemistry of zirconium and hafnium metal oxo clusters beyond carboxylate ligands. Chem Sci 2024:d4sc03859b. [PMID: 39386907 PMCID: PMC11457152 DOI: 10.1039/d4sc03859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The effectiveness of nanocrystals in many applications depends on their surface chemistry. Here, we leverage the atomically precise nature of zirconium and hafnium oxo clusters to gain fundamental insight into the thermodynamics of ligand binding. Through a combination of theoretical calculations and experimental spectroscopic techniques, we determine the interaction between the M6O8 8+ (M = Zr, Hf) cluster surface and various ligands: carboxylates, phosphonates, dialkylphosphinates, and monosubstituted phosphinates. We refute the common assumption that the adsorption energy of an adsorbate remains unaffected by the surrounding adsorbates. For example, dialkylphosphinic acids are too sterically hindered to yield complete ligand exchange, even though a single dialkylphosphinate has a high binding affinity. Monoalkyl or monoaryl phosphinic acids do replace carboxylates quantitatively and we obtained the crystal structure of M6O8H4(O2P(H)Ph)12 (M = Zr, Hf), giving insight into the binding mode of monosubstituted phosphinates. Phosphonic acids cause a partial structural reorganization of the metal oxo cluster into amorphous metal phosphonate as indicated by pair distribution function analysis. These results rationalize the absence of phosphonate-capped M6O8 clusters and the challenge in preparing Zr phosphonate metal-organic frameworks. We thus further reinforce the notion that monoalkylphosphinates are carboxylate mimics with superior binding affinity.
Collapse
Affiliation(s)
- Ajmal Roshan Unniram Parambil
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
- Swiss Nanoscience Institute Klingelbergstrasse 82 4056 Basel Switzerland
| | - Rohan Pokratath
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
| | | | - Evert Dhaene
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
| | - Dietger Van den Eynden
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
- Department of Chemistry, University of Ghent Krijgslaan 281 9000 Ghent Belgium
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
| | | | - Patrick Shahgaldian
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland 4132 Muttenz Switzerland
| | - Jonathan De Roo
- Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
| |
Collapse
|
5
|
Fiedler C, Calcabrini M, Liu Y, Ibáñez M. Unveiling Crucial Chemical Processing Parameters Influencing the Performance of Solution-Processed Inorganic Thermoelectric Materials. Angew Chem Int Ed Engl 2024; 63:e202402628. [PMID: 38623865 DOI: 10.1002/anie.202402628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Production of thermoelectric materials from solution-processed particles involves the synthesis of particles, their purification and densification into pelletized material. Chemical changes that occur during each one of these steps render them performance determining. Particularly the purification steps, bypassed in conventional solid-state synthesis, are the cause for large discrepancies among similar solution-processed materials. In present work, the investigation focuses on a water-based surfactant free solution synthesis of SnSe, a highly relevant thermoelectric material. We show and rationalize that the number of leaching steps, purification solvent, annealing, and annealing atmosphere have significant influence on the Sn : Se ratio and impurity content in the powder. Such compositional changes that are undetectable by conventional characterization techniques lead to distinct consolidated materials with different types and concentration of defects. Additionally, the profound effect on their transport properties is demonstrated. We emphasize that understanding the chemistry and identifying key chemical species and their role throughout the process is paramount for optimizing material performance. Furthermore, we aim to demonstrate the necessity of comprehensive reporting of these steps as a standard practice to ensure material reproducibility.
Collapse
Affiliation(s)
- Christine Fiedler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Mariano Calcabrini
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Yu Liu
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Maria Ibáñez
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| |
Collapse
|
6
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Moes J, Vliem JF, de Melo PMMC, Wigmans TC, Botello-Méndez AR, Mendes RG, van Brenk EF, Swart I, Maisel Licerán L, Stoof HTC, Delerue C, Zanolli Z, Vanmaekelbergh D. Characterization of the Edge States in Colloidal Bi 2Se 3 Platelets. NANO LETTERS 2024; 24:5110-5116. [PMID: 38624179 PMCID: PMC11066965 DOI: 10.1021/acs.nanolett.3c04460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
The remarkable development of colloidal nanocrystals with controlled dimensions and surface chemistry has resulted in vast optoelectronic applications. But can they also form a platform for quantum materials, in which electronic coherence is key? Here, we use colloidal, two-dimensional Bi2Se3 crystals, with precise and uniform thickness and finite lateral dimensions in the 100 nm range, to study the evolution of a topological insulator from three to two dimensions. For a thickness of 4-6 quintuple layers, scanning tunneling spectroscopy shows an 8 nm wide, nonscattering state encircling the platelet. We discuss the nature of this edge state with a low-energy continuum model and ab initio GW-Tight Binding theory. Our results also provide an indication of the maximum density of such states on a device.
Collapse
Affiliation(s)
- Jesper
R. Moes
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Jara F. Vliem
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Pedro M. M. C. de Melo
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Thomas C. Wigmans
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Andrés R. Botello-Méndez
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Rafael G. Mendes
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ella F. van Brenk
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Ingmar Swart
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Lucas Maisel Licerán
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Henk T. C. Stoof
- Institute
for Theoretical Physics and Center for Extreme Matter and Emergent
Phenomena, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Christophe Delerue
- Université
de Lille, CNRS, Université Polytechnique Hauts-de-France, Junia,
UMR 8520-IEMN, F-59000 Lille, France
| | - Zeila Zanolli
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Daniel Vanmaekelbergh
- Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
8
|
Llusar J, du Fossé I, Hens Z, Houtepen A, Infante I. Surface Reconstructions in II-VI Quantum Dots. ACS NANO 2024; 18:1563-1572. [PMID: 38169474 PMCID: PMC10795476 DOI: 10.1021/acsnano.3c09265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Although density functional theory (DFT) calculations have been crucial in our understanding of colloidal quantum dots (QDs), simulations are commonly carried out on QD models that are significantly smaller than those generally found experimentally. While smaller models allow for efficient study of local surface configurations, increasing the size of the QD model will increase the size or number of facets, which can in turn influence the energetics and characteristics of trap formation. Moreover, core-shell structures can only be studied with QD models that are large enough to accommodate the different layers with the correct thickness. Here, we use DFT calculations to study the electronic properties of QDs as a function of size, up to a diameter of ∼4.5 nm. We show that increasing the size of QD models traditionally used in DFT studies leads to a disappearance of the band gap and localization of the HOMO and LUMO levels on facet-specific regions of the QD surface. We attribute this to the lateral coupling of surface orbitals and the formation of surface bands. The introduction of surface vacancies and their a posteriori refilling with Z-type ligands leads to surface reconstructions that widen the band gap and delocalize both the HOMO and LUMO. These results show that the surface geometry of the facets plays a pivotal role in defining the electronic properties of the QD.
Collapse
Affiliation(s)
- Jordi Llusar
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Indy du Fossé
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Zeger Hens
- Physics
and Chemistry of Nanostructures, Department of Chemistry, and Center
of Nano and Biophotonics, Ghent University, B-9000 Gent, Belgium
| | - Arjan Houtepen
- Department
of Chemical Engineering, Optoelectronic Materials, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ivan Infante
- BCMaterials,
Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
9
|
Liao S, Liu H, Lu Y, Tang C, Xi B, Chen L. Structural Diversity Design, Four Nucleation Methods Growth and Mechanism of 3D Hollow Box TiO 2 Nanocrystals with a Temperature-Controlled High (001) Crystal Facets Exposure Ratio. ACS OMEGA 2024; 9:1695-1713. [PMID: 38222646 PMCID: PMC10785669 DOI: 10.1021/acsomega.3c08300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Three-dimensional (3D) hollow box TiO2 nanocrystals with structural diversity have been designed and grown by four nucleation methods, including the acid dissolution denucleation method with Fe2O3 as heterogeneous nucleation, the topological phase transition method, the sonic solvothermal method, and the air atmosphere sintering method with TiOF2 as homogeneous nucleation. Through full morphology analysis and structural characterization, reasonable growth mechanisms of 3D hollow box TiO2 nanocrystals were proposed, including nucleation dissolution, Oswald ripening, and hydrolysis reactions. It was found that the high energy (001) crystal facets exposure ratio was closely correlated with reaction temperature of four nucleation-methods, which even reached 92% for the first time. Under simulated sunlight irradiation, their hydrogen production performance and photocatalytic degradation efficiency on model dye molecules rhodamine B (RhB) and methylene blue (MB) were evaluated, and as-prepared hollow box TiO2 nanocrystals prepared by the sonic solvothermal method exhibited the best photocatalytic performance, with a hydrogen production rate of 93.88 μmol/g/h. Within 70 min, the photocatalytic degradation rates of RhB and MB reached 96.59 and 75.25%, respectively, which were 5.74 and 5.54 times that of P25. Their properties are closely connected with the orderly cubic and hierarchy configuration structure of hollow box TiO2 nanocrystals, which have a high exposure ratio of (001) facet controlled by reaction temperatures, thereby greatly improving the photocatalytic activity. This study provides a classic reference for improving the properties of hollow box TiO2 nanocrystals through structural diversity design and various methods of nanocrystal growth.
Collapse
Affiliation(s)
- Shengqiang Liao
- Key
Laboratory of Catalysis and Energy Materials Chemistry of Ministry
of Education & Hubei Key Laboratory of Catalysis and Materials
Science, South-Central Minzu University, Wuhan 430074, China
| | - Huan Liu
- Key
Laboratory of Catalysis and Energy Materials Chemistry of Ministry
of Education & Hubei Key Laboratory of Catalysis and Materials
Science, South-Central Minzu University, Wuhan 430074, China
| | - Yanfei Lu
- Key
Laboratory of Catalysis and Energy Materials Chemistry of Ministry
of Education & Hubei Key Laboratory of Catalysis and Materials
Science, South-Central Minzu University, Wuhan 430074, China
| | - Chenglong Tang
- Key
Laboratory of Catalysis and Energy Materials Chemistry of Ministry
of Education & Hubei Key Laboratory of Catalysis and Materials
Science, South-Central Minzu University, Wuhan 430074, China
| | - Benjun Xi
- Hubei
Three Gorges Laboratory, Yichang 443000, China
| | - Lianqing Chen
- Key
Laboratory of Catalysis and Energy Materials Chemistry of Ministry
of Education & Hubei Key Laboratory of Catalysis and Materials
Science, South-Central Minzu University, Wuhan 430074, China
- Hubei
Three Gorges Laboratory, Yichang 443000, China
- Department
of Chemistry, University of Wisconsin-Platteville, Platteville, Wisconsin 53818, United States
| |
Collapse
|
10
|
Zhou X, Pu C. Proton Shuttle-Assisted Surface Reconstruction toward Nonpolar Facets-Terminated Zinc-Blende CdSe/CdS Core/Shell Quantum Dots. J Am Chem Soc 2023; 145:26287-26295. [PMID: 38014508 DOI: 10.1021/jacs.3c09413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Surface reconstruction can rearrange the surface atoms of a crystal without the need of growth processes and has the potential to synthesize crystals with novel morphologies and facets that cannot be obtained through regular synthesis. However, little is known about the molecular mechanisms of the surface reconstruction process. Here, utilizing surface reconstruction, we report the synthesis of nonpolar facets (110) facets)-terminated dodecahedral zinc-blende CdSe/CdS core/shell quantum dots. The morphology transformation is achieved by first fully exchanging the cadmium carboxylate ligand with oleylamine and then undergoing surface reconstruction. The surface reconstruction-induced morphology transformation is confirmed by transmission electron microscopy and absorption spectroscopy. Details of kinetic experiments and simulation results demonstrated that successful surface reconstruction must be assisted by a proton shuttle. Except for the first report on zinc-blende quantum dots terminated with (110) facets, the surface reconstruction aided by the proton shuttle offers valuable insights for devising methods to regulate the properties of nanocrystals.
Collapse
Affiliation(s)
- Xiaolan Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chaodan Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Zhou X, Li J, Qian X, Zhu J, Kong X, Peng X. Selective Formation of Monodisperse Right Trigonal-Bipyramidal and Cube-Shaped CdSe Nanocrystals: Stacking Faults and Facet-Ligand Pairing. J Am Chem Soc 2023; 145:23238-23248. [PMID: 37830933 DOI: 10.1021/jacs.3c07949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Formation of monodisperse right trigonal-bipyramidal (rTriBP) and cube-shaped CdSe nanocrystals─both being encased with six (100) facets─is found to be dictated by type of stacking faults along the (111) direction of the zinc-blende structure and an ideal facet-ligand pairing for the (100) facets. During growth with little kinetic overdriving, seeds with single twin boundary (TB) and single intrinsic stacking fault (ISF) grow into rTriBP and cube-shaped nanocrystals, respectively, through two consecutive stages. During the facet-formation stage, each seed would grow rapidly into the smallest faceted one to contain the ∼3 nm seed, with cube-shaped ones growing much faster than rTriBP ones because of the stacking-fault-dependent seed location in the final faceted nanocrystals. In the following facet-growth stage, cube-shaped nanocrystals also grow faster, presumably due to the highly reactive stacking fault edges. Consistent with this hypothesis, growth of rTriBP nanocrystals can become faster than that of cube-shaped ones by intentionally introducing additional intrinsic stacking fault(s) in the seeds. Cube-shaped and rTriBP CdSe nanocrystals exhibit distinctive optical properties, representing two classes of optical materials.
Collapse
Affiliation(s)
- Xionglin Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xudong Qian
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jie Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Hasham M, Green PB, Rahman S, Villanueva FY, Imperiale CJ, Kirshenbaum MJ, Wilson MWB. The smallest PbS nanocrystals pervasively show decreased brightness, linked to surface-mediated decay on the average particle. J Chem Phys 2023; 159:074704. [PMID: 37602803 DOI: 10.1063/5.0159681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
PbS semiconductor nanocrystals (NCs) have been heavily explored for infrared optoelectronics but can exhibit visible-wavelength quantum-confined optical gaps when sufficiently small (⌀ = 1.8-2.7 nm). However, small PbS NCs traditionally exhibited very broad ensemble absorption linewidths, attributed to poor size-heterogeneity. Here, harnessing recent synthetic advances, we report photophysical measurements on PbS ensembles that span this underexplored size range. We observe that the smallest PbS NCs pervasively exhibit lower brightness and anomalously accelerated photoluminescence decays-relative to the idealized photophysical models that successfully describe larger NCs. We find that effects of residual ensemble size-heterogeneity are insufficient to explain our observations, so we explore plausible processes that are intrinsic to individual nanocrystals. Notably, the anomalous decay kinetics unfold, surprisingly, over hundreds-of-nanosecond timescales. These are poorly matched to effects of direct carrier trapping or fine-structure thermalization but are consistent with non-radiative recombination linked to a dynamic surface. Thus, the progressive enhancement of anomalous decay in the smallest particles supports predictions that the surface plays an outsized role in exciton-phonon coupling. We corroborate this claim by showing that the anomalous decay is significantly remedied by the installation of a rigidifying shell. Intriguingly, our measurements show that the anomalous aspect of these kinetics is insensitive to temperature between T = 298 and 77 K, offering important experimental constraint on possible mechanisms involving structural fluctuations. Thus, our findings identify and map the anomalous photoluminescence kinetics that become pervasive in the smallest PbS NCs and call for targeted experiments and theory to disentangle their origin.
Collapse
Affiliation(s)
- Minhal Hasham
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Philippe B Green
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Samihat Rahman
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | | | - Maxine J Kirshenbaum
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark W B Wilson
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Mazzotti S, Mule AS, Pun AB, Held JT, Norris DJ. Growth Synchronization and Size Control in Magic-Sized Semiconductor Nanocrystals. ACS NANO 2023. [PMID: 37449816 DOI: 10.1021/acsnano.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
"Magic-sized" nanocrystals (MSNCs) grow in discrete jumps between a series of specific sizes. Consequently, MSNCs have been explored as an alternative route to uniform semiconductor particles, potentially with atomic precision. However, because the growth mechanism has been poorly understood, the best strategies to control MSNC syntheses and obtain desired sizes are unknown. Experiments have found that common parameters, such as growth time and temperature, have limited utility. Here, we theoretically and experimentally investigate reactant supersaturation as a tool to control MSNC growth. We compare direct synthesis of CdSe MSNCs with ripening of isolated MSNCs or their mixtures. Surprisingly, we find that MSNCs readily synchronize to the same growth trajectory, even starting from distinct initial conditions, explaining the robustness of MSNC growth. Further, by understanding the synchronization mechanism, we demonstrate methods to control the final MSNC size. These results deepen our knowledge of MSNCs and indicate strategies to tailor their growth.
Collapse
Affiliation(s)
- Sergio Mazzotti
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Aniket S Mule
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrew B Pun
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jacob T Held
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Lei H, Li J, Kong X, Wang L, Peng X. Toward Surface Chemistry of Semiconductor Nanocrystals at an Atomic-Molecular Level. Acc Chem Res 2023. [PMID: 37413974 DOI: 10.1021/acs.accounts.3c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
ConspectusProperties of colloidal semiconductor nanocrystals with a single-crystalline structure are largely dominated by their surface structure at an atomic-molecular level, which is not well understood and controlled, due to a lack of experimental tools. However, if viewing the nanocrystal surface as three relatively independent spatial zones (i.e., crystal facets, inorganic-ligands interface, and ligands monolayer), we may approach an atomic-molecular level by coupling advanced experimental techniques and theoretical calculations.Semiconductor nanocrystals of interest are mainly based on compound semiconductors and mostly in two (or related) crystal structures, namely zinc-blende and wurtzite, which results in a small group of common low-index crystal facets. These low-index facets, from a surface-chemistry perspective, can be further classified into polar and nonpolar ones. Albeit far from being successful, the controlled formation of either polar or nonpolar facets is available for cadmium chalcogenide nanocrystals. Such facet-controlled systems offer a reliable basis for studying the inorganic-ligands interface. For convenience, here facet-controlled nanocrystals refer to a special class of shape-controlled ones, in which shape control is at an atomic level, instead of those with poorly defined facets (e.g., typical spheroids, nanorods, etc).Experimental and theoretical results reveal that type and bonding mode of surface ligands on nanocrystals is facet-specific and often beyond Green's classification (X-type, Z-type, and L-type). For instance, alkylamines bond strongly to the anion-terminated (0001) wurtzite facet in the form of ammonium ions, with three hydrogens of an ammonium ion bonding to three adjacent surface anion sites. With theoretically assessable experimental data, facet-ligands pairing can be identified using density functional theory (DFT) calculations. To make the pairing meaningful, possible forms of all potential ligands in the system need to be examined systematically, revealing the advantage of simple solution systems.Unlike the other two spatial zones, the ligands monolayer is disordered and dynamic at an atomic level. Thus, an understanding of the ligands monolayer on a molecular scale is sufficient for many cases. For colloidal nanocrystals stably coordinated with surface ligands, their solution properties are dictated by the ligands monolayer. Experimental and theoretical results reveal that solubility of a nanocrystal-ligands complex is an interplay between the intramolecular entropy of the ligands monolayer and intermolecular interactions of the ligands/nanocrystals. By introducing entropic ligands, solubility of nanocrystal-ligands complexes can be universally boosted by several orders of magnitude, i.e., up to >1 g/mL in typical organic solvents. Molecular environment in the pseudophase surrounding each nanocrystal plays a critical role in its chemical, photochemical, and photophysical properties.For some cases, such as the synthesis of high-quality nanocrystals, all three spatial zones of the nanocrystal surface must be taken into account. By optimizing nanocrystal surface at an atomic-molecular level, semiconductor nanocrystals with monodisperse size and facet structure become available recently through either direct synthesis or afterward facet reconstruction, implying full realization of their size-dependent properties.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
16
|
Fenoll D, Sodupe M, Solans-Monfort X. Influence of Capping Ligands, Solvent, and Thermal Effects on CdSe Quantum Dot Optical Properties by DFT Calculations. ACS OMEGA 2023; 8:11467-11478. [PMID: 37008094 PMCID: PMC10061629 DOI: 10.1021/acsomega.3c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Cadmium selenide nanomaterials are very important materials in photonics, catalysis, and biomedical applications due to their optical properties that can be tuned through size, shape, and surface passivation. In this report, static and ab initio molecular dynamics density functional theory (DFT) simulations are used to characterize the effect of ligand adsorption on the electronic properties of the (110) surface of zinc blende and wurtzite CdSe and a (CdSe)33 nanoparticle. Adsorption energies depend on ligand surface coverage and result from a balance between chemical affinity and ligand-surface and ligand-ligand dispersive interactions. In addition, while little structural reorganization occurs upon slab formation, Cd···Cd distances become shorter and the Se-Cd-Se angles become smaller in the bare nanoparticle model. This originates mid-gap states that strongly influence the absorption optical spectra of nonpassivated (CdSe)33. Ligand passivation on both zinc blende and wurtzite surfaces does not induce a surface reorganization, and thus, the band gap remains nonaffected with respect to bare surfaces. In contrast, structural reconstruction is more apparent for the nanoparticle, which significantly increases its highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap upon passivation. Solvent effects decrease the band gap difference between the passivated and nonpassivated nanoparticles, the maximum of the absorption spectra being blue-shifted around 20 nm by the effect of the ligands. Overall, calculations show that flexible surface cadmium sites are responsible for the appearance of mid-gap states that are partially localized on the most reconstructed regions of the nanoparticle that can be controlled through appropriate ligand adsorption.
Collapse
|
17
|
Lei H, Li T, Li J, Zhu J, Zhang H, Qin H, Kong X, Wang L, Peng X. Reversible Facet Reconstruction of CdSe/CdS Core/Shell Nanocrystals by Facet-Ligand Pairing. J Am Chem Soc 2023; 145:6798-6810. [PMID: 36942751 DOI: 10.1021/jacs.2c13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Synthesis of colloidal semiconductor nanocrystals with defined facet structures is challenging, though such nanocrystals are essential for fully realizing their size-dependent optical and optoelectronic properties. Here, for the mostly developed colloidal wurtzite CdSe/CdS core/shell nanocrystals, facet reconstruction is investigated under typical synthetic conditions, excluding nucleation, growth, and interparticle ripening. Within the reaction time window, two reproducible sets of facets─each with a specific group of low-index facets─can be reversibly reconstructed by switching the ligand system, indicating thermodynamic stability of each set. With a unique <0001> axis, atomic structures of the low-index facets of wurtzite nanocrystals are diverse. Experimental and theoretical studies reveal that each facet in a given set is paired with a common ligand in the solution, namely, either fatty amine and/or cadmium alkanoate. The robust bonding modes of ligands are found to be strongly facet-dependent and often unconventional, instead of following Green's classification. Results suggest that facet-controlled nanocrystals can be synthesized by optimal facet-ligand pairing either in synthesis or after-synthesis reconstruction, implying semiconductor nanocrystal formation with size-dependent properties down to an atomic level.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tenghui Li
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haibing Zhang
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xueqian Kong
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Weatherspoon H, Peters B. Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis. J Chem Phys 2023; 158:114306. [PMID: 36948834 DOI: 10.1063/5.0132601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Magic clusters are metastable faceted nanoparticles that are thought to be important and, sometimes, observable intermediates in the nucleation of certain faceted crystallites. This work develops a broken bond model for spheres with a face-centered-cubic packing that form tetrahedral magic clusters. With just one bond strength parameter, statistical thermodynamics yield a chemical potential driving force, an interfacial free energy, and free energy vs magic cluster size. These properties exactly correspond to those from a previous model by Mule et al. [J. Am. Chem. Soc. 143, 2037 (2021)]. Interestingly, a Tolman length emerges (for both models) when the interfacial area, density, and volume are treated consistently. To describe the kinetic barriers between magic cluster sizes, Mule et al. invoked an energy parameter to penalize the two-dimensional nucleation and growth of new layers in each facet of the tetrahedra. According to the broken bond model, barriers between magic clusters are insignificant without the additional edge energy penalty. We estimate the overall nucleation rate without predicting the rates of formation for intermediate magic clusters by using the Becker-Döring equations. Our results provide a blueprint for constructing free energy models and rate theories for nucleation via magic clusters starting from only atomic-scale interactions and geometric considerations.
Collapse
Affiliation(s)
- Howard Weatherspoon
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
19
|
Havenridge S, Weerawardene KLDM, Aikens CM. Characterization of Pt-doping effects on nanoparticle emission: a theoretical look at Au 24Pt(SH) 18 and Au 24Pt(SC 3H 7) 18. Faraday Discuss 2023; 242:464-477. [PMID: 36222075 DOI: 10.1039/d2fd00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Developments in nanotechnology have made the creation of functionalized materials with atomic precision possible. Thiolate-protected gold nanoclusters, in particular, have become the focus of study in literature as they possess high stability and have tunable structure-property relationships. In addition to adjustments in properties due to differences in size and shape, heteroatom doping has become an exciting way to tune the properties of these systems by mixing different atomic d characters from transition metal atoms. Au24Pt(SR)18 clusters, notably, have shown incredible catalytic properties, but fall short in the field of photochemistry. The influence of the Pt dopant on the photoluminescence mechanism and excited state dynamics has been investigated by a few experimental groups, but the origin of the differences that arise due to doping has not been clarified thoroughly. In this paper, density functional theory methods are used to analyze the geometry, optical and photoluminescent properties of Au24Pt(SR)18 in comparison with those of [Au25(SR)18]1-. Furthermore, as these clusters have shown slightly different geometric and optical properties for different ligands, the analysis is completed with both hydrogen and propyl ligands in order to ascertain the role of the passivating ligands.
Collapse
Affiliation(s)
- Shana Havenridge
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| | | | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
20
|
Zha J, Meng X, Fan W, You Q, Xia N, Gu W, Zhao Y, Hu L, Li J, Deng H, Wang H, Yan N, Wu Z. Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3985-3992. [PMID: 36622953 DOI: 10.1021/acsami.2c18553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface atom replacement in materials without other composition/structure changes is challenging but is important for fundamental scientific research and for practical applications. In particular, for nanoparticles including nanoclusters, surface metal site-specific replacement with atomic precision has not yet been achieved. In this study, we for the first time achieved surface site-specific antigalvanic replacement with the remaining composition/structure and surface replacement-dependent selectivity in the electrocatalytic reduction of CO2. Density functional theory (DFT) calculations describe the catalysis selectivity switch induced by replacing Ag with Cu and explain why Cu replacement facilitates C2 production. Also, CO2 electroreduction to C2 on well-defined metal nanoclusters is first reported in this study.
Collapse
Affiliation(s)
- Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Xiangfu Meng
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lin Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University,Beijing 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Hui Wang
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
21
|
Van den Eynden D, Pokratath R, Mathew JP, Goossens E, De Buysser K, De Roo J. Fatty acid capped, metal oxo clusters as the smallest conceivable nanocrystal prototypes. Chem Sci 2023; 14:573-585. [PMID: 36741516 PMCID: PMC9847641 DOI: 10.1039/d2sc05037d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Metal oxo clusters of the type M6O4(OH)4(OOCR)12 (M = Zr or Hf) are valuable building blocks for materials science. Here, we synthesize a series of zirconium and hafnium oxo clusters with ligands that are typically used to stabilize oxide nanocrystals (fatty acids with long and/or branched chains). The fatty acid capped oxo clusters have a high solubility but do not crystallize, precluding traditional purification and single-crystal XRD analysis. We thus develop alternative purification strategies and we use X-ray total scattering and Pair Distribution Function (PDF) analysis as our main method to elucidate the structure of the cluster core. We identify the correct structure from a series of possible clusters (Zr3, Zr4, Zr6, Zr12, Zr10, and Zr26). Excellent refinements are only obtained when the ligands are part of the structure model. Further evidence for the cluster composition is provided by nuclear magnetic resonance (NMR), infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), and mass spectrometry (MS). We find that hydrogen bonded carboxylic acid is an intrinsic part of the oxo cluster. Using our analytical tools, we elucidate the conversion from a Zr6 monomer to a Zr12 dimer (and vice versa), induced by carboxylate ligand exchange. Finally, we compare the catalytic performance of Zr12-oleate clusters with oleate capped, 5.5 nm zirconium oxide nanocrystals in the esterification of oleic acid with ethanol. The oxo clusters present a five times higher reaction rate, due to their higher surface area. Since the oxo clusters are the lower limit of downscaling oxide nanocrystals, we present them as appealing catalytic materials, and as atomically precise model systems. In addition, the lessons learned regarding PDF analysis are applicable to other areas of cluster science as well, from semiconductor and metal clusters, to polyoxometalates.
Collapse
Affiliation(s)
- Dietger Van den Eynden
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | - Rohan Pokratath
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| | | | - Eline Goossens
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland,Department of Chemistry, University of GhentKrijgslaan 2819000 GhentBelgium
| | | | - Jonathan De Roo
- Department of Chemistry, University of BaselMattenstrasse 24a4058 BaselSwitzerland
| |
Collapse
|
22
|
Nguyen KA, Pachter R, Day PN. Theoretical Investigation of the Electronic Spectra of Cadmium Chalcogenide 2D Nanoplatelets. J Phys Chem A 2022; 126:8818-8825. [DOI: 10.1021/acs.jpca.2c05253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kiet A. Nguyen
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
- UES, Inc., Dayton, Ohio45432, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
| | - Paul N. Day
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio45433, United States
- UES, Inc., Dayton, Ohio45432, United States
| |
Collapse
|
23
|
Fiedler C, Kleinhanns T, Garcia M, Lee S, Calcabrini M, Ibáñez M. Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8471-8489. [PMID: 36248227 PMCID: PMC9558429 DOI: 10.1021/acs.chemmater.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Indexed: 05/25/2023]
Abstract
Thermoelectric technology requires synthesizing complex materials where not only the crystal structure but also other structural features such as defects, grain size and orientation, and interfaces must be controlled. To date, conventional solid-state techniques are unable to provide this level of control. Herein, we present a synthetic approach in which dense inorganic thermoelectric materials are produced by the consolidation of well-defined nanoparticle powders. The idea is that controlling the characteristics of the powder allows the chemical transformations that take place during consolidation to be guided, ultimately yielding inorganic solids with targeted features. Different from conventional methods, syntheses in solution can produce particles with unprecedented control over their size, shape, crystal structure, composition, and surface chemistry. However, to date, most works have focused only on the low-cost benefits of this strategy. In this perspective, we first cover the opportunities that solution processing of the powder offers, emphasizing the potential structural features that can be controlled by precisely engineering the inorganic core of the particle, the surface, and the organization of the particles before consolidation. We then discuss the challenges of this synthetic approach and more practical matters related to solution processing. Finally, we suggest some good practices for adequate knowledge transfer and improving reproducibility among different laboratories.
Collapse
Affiliation(s)
- Christine Fiedler
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tobias Kleinhanns
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Garcia
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Seungho Lee
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Mariano Calcabrini
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Maria Ibáñez
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
24
|
Busatto S, Spallacci C, Meeldijk JD, Howes S, de Mello Donega C. Room-Temperature Interconversion Between Ultrathin CdTe Magic-Size Nanowires Induced by Ligand Shell Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:15280-15297. [PMID: 36147520 PMCID: PMC9483966 DOI: 10.1021/acs.jpcc.2c04113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The formation mechanisms of colloidal magic-size semiconductor nanostructures have remained obscure. Herein, we report the room temperature synthesis of three species of ultrathin CdTe magic-size nanowires (MSNWs) with diameters of 0.7 ± 0.1 nm, 0.9 ± 0.2 nm, and 1.1 ± 0.2 nm, and lowest energy exciton transitions at 373, 418, and 450 nm, respectively. The MSNWs are obtained from Cd(oleate)2 and TOP-Te, provided diphenylphosphine and a primary alkylamine (RNH2) are present at sufficiently high concentrations, and exhibit sequential, discontinuous growth. The population of each MSNW species is entirely determined by the RNH2 concentration [RNH2] so that single species are only obtained at specific concentrations, while mixtures are obtained at concentrations intermediate between the specific ones. Moreover, the MSNWs remain responsive to [RNH2], interconverting from thinner to thicker upon [RNH2] decrease and from thicker to thinner upon [RNH2] increase. Our results allow us to propose a mechanism for the formation and interconversion of CdTe MSNWs and demonstrate that primary alkylamines play crucial roles in all four elementary kinetic steps (viz., monomer formation, nucleation, growth in length, and interconversion between species), thus being the decisive element in the creation of a reaction pathway that leads exclusively to CdTe MSNWs. The insights provided by our work thus contribute toward unravelling the mechanisms behind the formation of shape-controlled and atomically precise magic-size semiconductor nanostructures.
Collapse
Affiliation(s)
- Serena Busatto
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Claudia Spallacci
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Johannes D. Meeldijk
- Materials
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Stuart Howes
- Structural
Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
25
|
Busatto S, de Mello Donega C. Magic-Size Semiconductor Nanostructures: Where Does the Magic Come from? ACS MATERIALS AU 2022; 2:237-249. [PMID: 35578704 PMCID: PMC9100663 DOI: 10.1021/acsmaterialsau.1c00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
The quest for atomically precise synthesis of colloidal semiconductor nanostructures has attracted increasing attention in recent years and remains a formidable challenge. Nevertheless, atomically precise clusters of semiconductors, known as magic-size clusters (MSCs), are readily accessible. Ultrathin one-dimensional nanowires and two-dimensional nanoplatelets and nanosheets can also be categorized as magic-size nanocrystals (MSNCs). Further, the magic-size growth regime has been recently extended into the size range of colloidal QDs (up to 3.5 nm). Nevertheless, the underlying reasons for the enhanced stability of magic-size nanostructures and their formation mechanisms remain obscure. In this Perspective, we address these intriguing questions by critically analyzing the currently available knowledge on the formation and stability of both MSCs and MSNCs (0D, 1D, and 2D). We conclude that research on magic-size colloidal nanostructures is still in its infancy, and many fundamental questions remain unanswered. Nonetheless, we identify several correlations between the formation of MSCs and 0D, 1D and 2D MSNSs. From our analysis, it appears that the "magic" originates from the complexity of a dynamic and multivariate system running under reaction control. Under conditions that impose a prohibitively high energy barrier for classical nucleation and growth, the reaction proceeds through a complex and dynamic potential landscape, searching for the pathway with the lowest energy barrier, thereby sequentially forming metastable products as it jumps from one local minimum to the next until it eventually becomes trapped into a minimum that is too deep with respect to the available thermal energy. The intricacies of this complex interplay between several synergistic and antagonistic processes are, however, not yet understood and should be further investigated by carefully designed experiments combining multiple complementary in situ characterization techniques.
Collapse
|
26
|
Juelsholt M, Anker AS, Christiansen TL, Jørgensen MRV, Kantor I, Sørensen DR, Jensen KMØ. Size-induced amorphous structure in tungsten oxide nanoparticles. NANOSCALE 2021; 13:20144-20156. [PMID: 34846442 DOI: 10.1039/d1nr05991b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The properties of functional materials are intrinsically linked to their atomic structure. When going to the nanoscale, size-induced structural changes in atomic structure often occur, however these are rarely well-understood. Here, we systematically investigate the atomic structure of tungsten oxide nanoparticles as a function of the nanoparticle size and observe drastic changes when the particles are smaller than 5 nm, where the particles are amorphous. The tungsten oxide nanoparticles are synthesized by thermal decomposition of ammonium metatungstate hydrate in oleylamine and by varying the ammonium metatungstate hydrate concentration, the nanoparticle size, shape and structure can be controlled. At low concentrations, nanoparticles with a diameter of 2-4 nm form and adopt an amorphous structure that locally resembles the structure of polyoxometalate clusters. When the concentration is increased the nanoparticles become elongated and form nanocrystalline rods up to 50 nm in length. The study thus reveals a size-dependent amorphous structure when going to the nanoscale and provides further knowledge on how metal oxide crystal structures change at extreme length scales.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Andy S Anker
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | | | - Mads Ry Vogel Jørgensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Innokenty Kantor
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- Department of Physics, The Technical University of Denmark, 2880 Lyngby, Denmark
| | - Daniel Risskov Sørensen
- Department of Chemistry & iNANO, Aarhus University, 8000 Aarhus C, Denmark
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
27
|
Bürgin T, Wenger OS. Recent Advances and Perspectives in Photodriven Charge Accumulation in Molecular Compounds: A Mini Review. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2021; 35:18848-18856. [PMID: 35873109 PMCID: PMC9302442 DOI: 10.1021/acs.energyfuels.1c02073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The formation of so-called solar fuels from abundant low-energetic compounds, such as carbon dioxide or water, relies on the chemical elementary steps of photoinduced electron transfer and accumulation of multiple redox equivalents. The majority of molecular systems explored to date require sacrificial electron donors to accumulate multiple electrons on a single acceptor unit, but the use of high-energetic sacrificial redox reagents is unsustainable. In recent years, an increasing number of molecular compounds for reversible light-driven accumulation of redox equivalents that do not need sacrificial electron donors has been reported. Those compounds are the focus of this mini review. Different concepts, such as redox potential compression (achieved by proton-coupled electron transfer, Lewis acid-base interactions, or structural rearrangements), hybrids with inorganic nanoparticles, and diffusion-controlled multi-component systems, will be discussed. Newly developed strategies to outcompete unproductive reaction pathways in favor of desired photoproduct formation will be compared, and the importance of identifying reaction intermediates in the course of multiphotonic excitation by different time-resolved spectroscopic techniques will be discussed. The mechanistic insights gained from molecular donor-photosensitizer-acceptor compounds inform the design of next-generation charge accumulation systems for solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Liu Y, Calcabrini M, Yu Y, Genç A, Chang C, Costanzo T, Kleinhanns T, Lee S, Llorca J, Cojocaru‐Mirédin O, Ibáñez M. The Importance of Surface Adsorbates in Solution-Processed Thermoelectric Materials: The Case of SnSe. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106858. [PMID: 34626034 PMCID: PMC11468704 DOI: 10.1002/adma.202106858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Solution synthesis of particles emerges as an alternative to prepare thermoelectric materials with less demanding processing conditions than conventional solid-state synthetic methods. However, solution synthesis generally involves the presence of additional molecules or ions belonging to the precursors or added to enable solubility and/or regulate nucleation and growth. These molecules or ions can end up in the particles as surface adsorbates and interfere in the material properties. This work demonstrates that ionic adsorbates, in particular Na+ ions, are electrostatically adsorbed in SnSe particles synthesized in water and play a crucial role not only in directing the material nano/microstructure but also in determining the transport properties of the consolidated material. In dense pellets prepared by sintering SnSe particles, Na remains within the crystal lattice as dopant, in dislocations, precipitates, and forming grain boundary complexions. These results highlight the importance of considering all the possible unintentional impurities to establish proper structure-property relationships and control material properties in solution-processed thermoelectric materials.
Collapse
Affiliation(s)
- Yu Liu
- IST AustriaAm Campus 1Klosterneuburg3400Austria
| | | | - Yuan Yu
- RWTH AachenI. Physikalisches Institut (IA)Sommerfeldstraße 1452074AachenGermany
| | - Aziz Genç
- Department of Materials Science and EngineeringFaculty of Engineeringİzmir Institute of Technologyİzmir35430Turkey
| | - Cheng Chang
- IST AustriaAm Campus 1Klosterneuburg3400Austria
| | | | | | - Seungho Lee
- IST AustriaAm Campus 1Klosterneuburg3400Austria
| | - Jordi Llorca
- Institute of Energy TechnologiesDepartment of Chemical Engineering and Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de CatalunyaBarcelona08019Spain
| | | | | |
Collapse
|
29
|
Parvizian M, De Roo J. Precursor chemistry of metal nitride nanocrystals. NANOSCALE 2021; 13:18865-18882. [PMID: 34779811 PMCID: PMC8615547 DOI: 10.1039/d1nr05092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Metal nitride nanocrystals are a versatile class of nanomaterials. Depending on their chemical composition, the optical properties vary from those of traditional semiconductor nanocrystals (called quantum dots) to more metallic character (featuring a plasmon resonance). However, the synthesis of colloidal metal nitride nanocrystals is challenging since the underlying precursor chemistry is much less developed compared to the chemistry of metal, metal chalcogenide or metal phosphide nanocrystals. Here, we review chemical approaches that lead (or could lead) to the formation of colloidally stable metal nitride nanocrystals. By systematically comparing different synthetic approaches, we uncover trends and gain insight into the chemistry of these challenging materials. We also discuss and critically evaluate the plausibility of certain suggested mechanisms. This review is meant as a guide for the further development of colloidal nitride nanocrystals.
Collapse
Affiliation(s)
- Mahsa Parvizian
- Department of Chemistry, University of Basel, Basel, Switzerland.
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Baek W, Chang H, Bootharaju MS, Kim JH, Park S, Hyeon T. Recent Advances and Prospects in Colloidal Nanomaterials. JACS AU 2021; 1:1849-1859. [PMID: 34841404 PMCID: PMC8611664 DOI: 10.1021/jacsau.1c00339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/13/2023]
Abstract
Colloidal nanomaterials of metals, metal oxides, and metal chalcogenides have attracted great attention in the past decade owing to their potential applications in optoelectronics, catalysis, and energy conversion. Introduction of various synthetic routes has resulted in diverse colloidal nanostructured materials with well-controlled size, shape, and composition, enabling the systematic study of their intriguing physicochemical, optoelectronic, and chemical properties. Furthermore, developments in the instrumentation have offered valuable insights into the nucleation and growth mechanism of these nanomaterials, which are crucial in designing prospective materials with desired properties. In this perspective, recent advances in the colloidal synthesis and mechanism studies of nanomaterials of metal chalcogenides, metals, and metal oxides are discussed. In addition, challenges in the characterization and future direction of the colloidal nanomaterials are provided.
Collapse
Affiliation(s)
- Woonhyuk Baek
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hogeun Chang
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Megalamane S. Bootharaju
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjun Park
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, and Institute of Chemical
Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
31
|
Giansante C. Surface Chemistry Impact on the Light Absorption by Colloidal Quantum Dots. Chemistry 2021; 27:14359-14369. [PMID: 34351015 PMCID: PMC8596982 DOI: 10.1002/chem.202102168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/10/2022]
Abstract
At the size scale at which quantum confinement effects arise in inorganic semiconductors, the materials' surface-to-volume ratio is intrinsically high. This consideration sets surface chemistry as a powerful tool to exert further control on the electronic structure of the inorganic semiconductors. Among the materials that experience the quantum confinement regime, those prepared via colloidal synthetic procedures (the colloidal quantum dots - and wires and wells, too -) are prone to undergo surface reactions in the solution phase and thus represent an ideal framework to study the ensemble impact of surface chemistry on the materials' electronic structure. It is here discussed such an impact at the ground state by using the absorption spectrum of the colloidal quantum dots as a descriptor. The experiments show that the chemical species (the ligands) at the colloidal quantum dot surface induce changes to the optical band gap, the absorption coefficient at all wavelengths, and the ionization potential. These evidences point to a description of the colloidal quantum dot (the ligand/core adduct) as an indecomposable species, in which the orbitals localized on the ligands and the core mix in each other's electric field. This description goes beyond conventional models that conceive the ligands on the basis of pure electrostatic arguments (i. e., either as a dielectric shell or as electric dipoles) or as a mere potential energy barrier at the core boundaries.
Collapse
Affiliation(s)
- Carlo Giansante
- Carlo Giansante CNR NANOTEC, Istituto di NanotecnologiaVia Monteroni73100LecceItaly
| |
Collapse
|
32
|
Pun AB, Mule AS, Held JT, Norris DJ. Core/Shell Magic-Sized CdSe Nanocrystals. NANO LETTERS 2021; 21:7651-7658. [PMID: 34464529 DOI: 10.1021/acs.nanolett.1c02412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magic-sized semiconductor nanocrystals (MSNCs) grow via discrete jumps between specific sizes. Despite their potential to offer atomically precise structures, their use has been limited by poor stability and trap-dominated photoluminescence. Recently, CdSe MSNCs have been grown to larger sizes. We exploit such particles and demonstrate a method to grow shells on CdSe MSNC cores via high-temperature synthesis. Thin CdS shells lead to dramatic improvements in the emissive properties of the MSNCs, narrowing their fluorescence line widths, enhancing photoluminescence quantum yields, and eliminating trap emission. Although thicker CdS shells lead to decreased performance, CdxZn1-xS alloyed shells maintain efficient and narrow emission lines. These alloyed core/shell crystallites exhibit a tetrahedral shape, in agreement with a recent model for MSNC growth. Our results indicate that MSNCs can compete with other state-of-the-art semiconductor nanocrystals. Furthermore, these core/shell structures will allow further study of MSNCs and their potential for atomically precise growth.
Collapse
Affiliation(s)
- Andrew B Pun
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Aniket S Mule
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Jacob T Held
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - David J Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
33
|
Nguyen KA, Pachter R, Day PN. Theoretical analysis of structures and electronic spectra of molecular colloidal cadmium sulfide clusters and nanoplatelets. J Chem Phys 2021; 155:094302. [PMID: 34496584 DOI: 10.1063/5.0057089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the present study, we systematically examine structures and absorption spectra for CdS nanoplatelets (NPLs) with thicknesses of two and three monolayers (2 MLs and 3 MLs) and extended lateral dimensions. These nanoplatelet model systems, passivated with formate and acetate ligands, are used to analyze the effects of quantum confinement in the lateral dimension within an extended monolayer and the effects of thickness when changing from two to three monolayers. Based on the computed cubic structures using density functional theory (DFT), we found good agreement between observed and time-dependent DFT-calculated spectra, revealing little ligand participation to influence the color and intensity of low-energy absorption bands as the structures are laterally extended to eight and seven monolayers for 2-ML and 3-ML systems, respectively. The spectral redshift for 3-ML CdS NPLs is attributed to the electron delocalization due to expansion of the nanoplatelet in the lateral and vertical directions.
Collapse
Affiliation(s)
- Kiet A Nguyen
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Paul N Day
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, USA
| |
Collapse
|
34
|
Ma MX, Ma XL, Liang GM, Shen XT, Ni QL, Gui LC, Wang XJ, Huang SY, Li SM. A Nanocluster [Ag 307Cl 62(SPh tBu) 110]: Chloride Intercalation, Specific Electronic State, and Superstability. J Am Chem Soc 2021; 143:13731-13737. [PMID: 34410122 DOI: 10.1021/jacs.1c05618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The controlling synthesis of novel nanoclusters of noble metals (Au, Ag) and the determination of their atomically precise structures provide opportunities for investigating their specific properties and applications. Here we report a novel silver nanocluster [Ag307Cl62(SPhtBu)110] (Ag307) whose structure is determined by X-ray single crystal diffraction. The structure analysis shows that nanocluster Ag307 contains a Ag167 core, a surface shell of [Ag140Cl2S110], and a Cl60 intermediate layer located between Ag167 and [Ag140Cl2S110]. It is a first example that such many chlorides are intercalated into a Ag nanocluster. Chlorides are released in situ from solvent CHCl3. Nanocluster Ag307 exhibits superstability. Differential pulse voltammetry experiment reveals that Ag307 has continuous charging/discharging behavior with a capacitance value of 1.39 aF, while the Ag307 has a surface plasmonic feature. These characteristics show that Ag307 is of metallic behavior. However, its electron paramagnetic resonance (EPR) spectra display a spin magnetic behavior which could be originated from the unpassivated dangling bonds of surface atoms. The direct capture of EPR signals can be attributed to the Cl- intercalating layer which partly suppresses the electronic interactions between core and surface atoms, resulting in the relatively independent electronic states for core and surface atoms.
Collapse
|
35
|
Hao X, Zhang S, Xu Y, Tang L, Inoue K, Saito M, Ma S, Chen C, Xu B, Adschiri T, Ikuhara Y. Surfactant-mediated morphology evolution and self-assembly of cerium oxide nanocrystals for catalytic and supercapacitor applications. NANOSCALE 2021; 13:10393-10401. [PMID: 34076010 DOI: 10.1039/d1nr01746b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surfactant plays a remarkable role in determining the growth process (facet exposition) of colloidal nanocrystals (NCs) and the formation of self-assembled NC superstructures, the underlying mechanism of which, however, still requires elucidation. In this work, the mechanism of surfactant-mediated morphology evolution and self-assembly of CeO2 nanocrystals is elucidated by exploring the effect that surfactant modification has on the shape, size, exposed facets, and arrangement of the CeO2 NCs. It is directly proved that surfactant molecules determine the morphologies of the CeO2 NCs by preferentially bonding onto Ce-terminated {100} facets, changing from large truncated octahedra (mostly {111} and {100} exposed), to cubes (mostly {100} exposed) and small cuboctahedra (mostly {100} and {111} exposed) by increasing the amount of surfactant. The exposure degree of the {100} facets largely affects the concentration of Ce3+ in the CeO2 NCs, thus the cubic CeO2 NCs exhibit superior oxygen storage capacity and excellent supercapacitor performance due to a high fraction of exposed active {100} facets with great superstructure stability.
Collapse
Affiliation(s)
- Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China. and WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China. and School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China. and School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Liangyu Tang
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Kazutoshi Inoue
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Mitsuhiro Saito
- Institute of Engineering Innovation, the University of Tokyo, Tokyo 116-0013, Japan.
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chunlin Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Liaoning, 110016, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Tadafumi Adschiri
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
| | - Yuichi Ikuhara
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan. and Institute of Engineering Innovation, the University of Tokyo, Tokyo 116-0013, Japan.
| |
Collapse
|
36
|
Straus DB, Cava RJ. Generalizing the Chiral Self-Assembly of Spheres and Tetrahedra to Non-Spherical and Polydisperse Molecules in (C 70) x(C 60) 1-x(SnI 4) 2. NANO LETTERS 2021; 21:4753-4756. [PMID: 34014669 DOI: 10.1021/acs.nanolett.1c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the spontaneous chiral self-assembly of C70 with SnI4 as well as a mixture of C60 and C70 with SnI4. Macroscopic single crystals with the formula (C70)x(C60)1-x(SnI4)2 (x = 0-1) are reported. C60, which is spherical, and C70, which is ellipsoidal, form a solid solution in these crystals, and the cubic lattice parameter of the chiral phase linearly increases as x grows from 0 to 1 in accordance with Vegard's law. Our results demonstrate that nonspherical particles and polydispersity are not an impediment to the growth of chiral crystals from high-symmetry achiral precursors, providing a route to assemble achiral particles including colloidal nanocrystals and engineered nanostructures into chiral materials without the need to use external templates or forces.
Collapse
Affiliation(s)
- Daniel B Straus
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert J Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
37
|
Abstract
In our review we consider the results on the development and exploration of heterostructured photoactive materials with major attention focused on what are the better ways to form this type of materials and how to explore them correctly. Regardless of what type of heterostructure, metal–semiconductor or semiconductor–semiconductor, is formed, its functionality strongly depends on the quality of heterojunction. In turn, it depends on the selection of the heterostructure components (their chemical and physical properties) and on the proper choice of the synthesis method. Several examples of the different approaches such as in situ and ex situ, bottom-up and top-down, are reviewed. At the same time, even if the synthesis of heterostructured photoactive materials seems to be successful, strong experimental physical evidence demonstrating true heterojunction formation are required. A possibility for obtaining such evidence using different physical techniques is discussed. Particularly, it is demonstrated that the ability of optical spectroscopy to study heterostructured materials is in fact very limited. At the same time, such experimental techniques as high-resolution transmission electron microscopy (HRTEM) and electrophysical methods (work function measurements and impedance spectroscopy) present a true signature of heterojunction formation. Therefore, whatever the purpose of heterostructure formation and studies is, the application of HRTEM and electrophysical methods is necessary to confirm that formation of the heterojunction was successful.
Collapse
|
38
|
Mule AS, Mazzotti S, Rossinelli AA, Aellen M, Prins PT, van der Bok JC, Solari SF, Glauser YM, Kumar PV, Riedinger A, Norris DJ. Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals. J Am Chem Soc 2021; 143:2037-2048. [DOI: 10.1021/jacs.0c12185] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aniket S. Mule
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Sergio Mazzotti
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Aurelio A. Rossinelli
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Marianne Aellen
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - P. Tim Prins
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Johanna C. van der Bok
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Simon F. Solari
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Yannik M. Glauser
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Priyank V. Kumar
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Andreas Riedinger
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David J. Norris
- Optical Materials Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
39
|
Hartley CL, Kessler ML, Dempsey JL. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021; 143:1251-1266. [PMID: 33442974 DOI: 10.1021/jacs.0c10658] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Semiconductor nanocrystals exhibit attractive photophysical properties for use in a variety of applications. Advancing the efficiency of nanocrystal-based devices requires a deep understanding of the physical defects and electronic states that trap charge carriers. Many of these states reside at the nanocrystal surface, which acts as an interface between the semiconductor lattice and the molecular capping ligands. While a detailed structural and electronic understanding of the surface is required to optimize nanocrystal properties, these materials are at a technical disadvantage: unlike molecular structures, semiconductor nanocrystals lack a specific chemical formula and generally must be characterized as heterogeneous ensembles. Therefore, in order for the field to improve current nanocrystal-based technologies, a creative approach to gaining a "molecular-level" picture of nanocrystal surfaces is required. To this end, an expansive toolbox of experimental and computational techniques has emerged in recent years. In this Perspective, we critically evaluate the insight into surface structure and reactivity that can be gained from each of these techniques and demonstrate how their strategic combination is already advancing our molecular-level understanding of nanocrystal surface chemistry.
Collapse
Affiliation(s)
- Carolyn L Hartley
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Melody L Kessler
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
40
|
Cortés E, Besteiro LV, Alabastri A, Baldi A, Tagliabue G, Demetriadou A, Narang P. Challenges in Plasmonic Catalysis. ACS NANO 2020; 14:16202-16219. [PMID: 33314905 DOI: 10.1021/acsnano.0c08773] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanoplasmonics to control light and heat close to the thermodynamic limit enables exciting opportunities in the field of plasmonic catalysis. The decay of plasmonic excitations creates highly nonequilibrium distributions of hot carriers that can initiate or catalyze reactions through both thermal and nonthermal pathways. In this Perspective, we present the current understanding in the field of plasmonic catalysis, capturing vibrant debates in the literature, and discuss future avenues of exploration to overcome critical bottlenecks. Our Perspective spans first-principles theory and computation of correlated and far-from-equilibrium light-matter interactions, synthesis of new nanoplasmonic hybrids, and new steady-state and ultrafast spectroscopic probes of interactions in plasmonic catalysis, recognizing the key contributions of each discipline in realizing the promise of plasmonic catalysis. We conclude with our vision for fundamental and technological advances in the field of plasmon-driven chemical reactions in the coming years.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | | | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street MS-378, Houston, Texas 77005, United States
| | - Andrea Baldi
- DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, The Netherlands
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Giulia Tagliabue
- Laboratory of Nanoscience for Energy Technologies (LNET), EPFL, 1015 Lausanne, Switzerland
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
41
|
Kim BH, Heo J, Park J. Determination of the 3D Atomic Structures of Nanoparticles. SMALL SCIENCE 2020. [DOI: 10.1002/smsc.202000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Byung Hyo Kim
- Department of Fiber Engineering and Organic Materials Soongsil University Seoul 06978 Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Process Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|