1
|
Kosar M, Perera T, Ganzoni RLZ, Sarott RC, Borrega-Roman L, Vitale RM, Ligresti A, Rufer AC, Guba W, Grether U, Carreira EM, Veprintsev DB, Sykes DA. Profiling Allosteric Modulators of CB 1R with an Allosteric Fluoroprobe. Angew Chem Int Ed Engl 2025; 64:e202421885. [PMID: 39963774 DOI: 10.1002/anie.202421885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025]
Abstract
Allosteric modulation of cannabinoid receptor type 1 (CB1R) offers a promising alternative to conventional therapeutic approaches using orthosteric ligands (OLs). Currently, CB1R allosteric modulators (AMs) are characterized based on their ability to modulate binding or functional response of OLs, preventing isolation of individual contributions by allosteric and orthosteric ligands. Herein, we develop the first allosteric fluoroprobe and attendant FRET-based assay allowing for the direct profiling of CB1R AMs without coincubation with an OL. Our allosteric tracer enables differentiation of allosteric and orthosteric ligands as well as their pharmacological profiling at CB1R. The utility of this work is highlighted by addressing ambiguities surrounding the binding of cannabidiol (CBD). CBD was found to interact with both allosteric and orthosteric sites of CB1R with comparable affinity (pKi=5.34 and 5.67, respectively).
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Themiya Perera
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Roman C Sarott
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Leire Borrega-Roman
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
| | - Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Arne C Rufer
- Roche Pharma Research & Early Development Roche Innovation Center Basel, Therapeutic Modalities, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Wolfgang Guba
- Roche Pharma Research & Early Development Roche Innovation Center Basel, Therapeutic Modalities, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development Roche Innovation Center Basel, Therapeutic Modalities, F. Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Erick M Carreira
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Dmitry B Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - David A Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
2
|
Ciaramellano F, Leuti A, Kurtz ADE, Sarott R, Westphal M, Pfaff P, Grether U, Carreira EM, Maccarrone M, Oddi S. Probing Native CB 2 Receptor Mobility in Plasma Membranes of Living Cells by Fluorescence Recovery After Photobleaching. Chembiochem 2025; 26:e202400921. [PMID: 39817417 PMCID: PMC12007070 DOI: 10.1002/cbic.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/18/2025]
Abstract
In this study, we employed a novel fluorescent probe, RO7304924 - which selectively targets cannabinoid 2 receptor (CB2R) - to assess the lateral mobility of CB2R within the plasma membrane of Chinese hamster ovary cells stably expressing a functional, untagged receptor variant. Utilizing confocal fluorescence recovery after photobleaching (FRAP), we quantified the diffusion coefficient and mobile fraction of CB2R, thereby demonstrating the efficacy of RO7304924 as an innovative tool for elucidating the dynamics of this major endocannabinoid-binding G protein-coupled receptor. Our present findings highlight the potential of combining advanced ligand-based fluorescent probes with FRAP for future investigations into the biochemical details of CB2R mobility in living cells, and its impact on receptor-dependent cellular processes.
Collapse
Affiliation(s)
- Francesca Ciaramellano
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia FoundationVia del Fosso di Fiorano 6400143RomeItaly
| | - Alessandro Leuti
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia FoundationVia del Fosso di Fiorano 6400143RomeItaly
- Department of MedicineCampus Bio-Medico University of RomeRomeItaly
| | - Alexandrine D. E. Kurtz
- Department of Bioscience and Technology for FoodAgriculture and EnvironmentUniversity of Teramo64100TeramoItaly
| | - Roman Sarott
- Laboratorium für Organische ChemieETH ZurichVladimir-Prelog-Weg 3ZurichCH-8093Switzerland
| | - Matthias Westphal
- Laboratorium für Organische ChemieETH ZurichVladimir-Prelog-Weg 3ZurichCH-8093Switzerland
| | - Patrick Pfaff
- Laboratorium für Organische ChemieETH ZurichVladimir-Prelog-Weg 3ZurichCH-8093Switzerland
| | - Uwe Grether
- Pharma Research and Early Development (pRED)Roche Innovation Center BaselF. Hoffmann-La Roche LtdGrenzacherstrasse 124BaselCH-4070Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische ChemieETH ZurichVladimir-Prelog-Weg 3ZurichCH-8093Switzerland
| | - Mauro Maccarrone
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia FoundationVia del Fosso di Fiorano 6400143RomeItaly
- Department of Biotechnological and Applied Clinical SciencesUniversity of L'AquilaVia Vetoio snc67100L'AquilaItaly
| | - Sergio Oddi
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia FoundationVia del Fosso di Fiorano 6400143RomeItaly
- Department of Veterinary MedicineUniversity of Teramovia Renato Balzarini 164100TeramoItaly
| |
Collapse
|
3
|
Borrega-Roman L, Hoare BL, Kosar M, Sarott RC, Patej KJ, Bouma J, Scott-Dennis M, Koers EJ, Gazzi T, Mach L, Barrondo S, Sallés J, Guba W, Kusznir E, Nazaré M, Rufer AC, Grether U, Heitman LH, Carreira EM, Sykes DA, Veprintsev DB. A universal cannabinoid CB1 and CB2 receptor TR-FRET kinetic ligand-binding assay. Front Pharmacol 2025; 16:1469986. [PMID: 40271066 PMCID: PMC12015242 DOI: 10.3389/fphar.2025.1469986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/11/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The kinetics of ligand binding to G protein-coupled receptors (GPCRs) is an important optimization parameter in drug discovery. Traditional radioligand assays are labor-intensive, preventing their application at the early stages of drug discovery. Fluorescence-based assays offer several advantages, including a possibility to develop a homogeneous format, continuous data collection, and higher throughput. This study sought to develop a fluorescence-based binding assay to investigate ligand-binding kinetics at human cannabinoid type 1 and 2 receptors (CB1R and CB2R). Methods We synthesized D77, a novel tracer derived from the non-selective cannabinoid Δ8-THC. Using time-resolved Förster resonance energy transfer (TR-FRET), we developed an assay to study ligand-binding kinetics at physiological temperatures. For CB1R, we truncated the first 90 amino acids of its flexible N-terminal domain to reduce the FRET distance between the terbium cryptate (donor) and the fluorescent ligand (acceptor). The full-length CB2R construct was functional without modification due to its shorter N-terminus. The Motulsky-Mahan competition binding model was used to analyze the binding kinetics of the endocannabinoids and several other non-fluorescent ligands. Results The D77 tracer showed nanomolar-range affinity for truncated CB1R (CB1R91-472) and full-length CB2R (CB2R1-360), displaying competitive binding with orthosteric ligands. D77 exhibited rapid dissociation kinetics from both CB1R and CB2R, which were similar to the fastest dissociating reference compounds. This was critical for accurately determining the on- and off-rates of the fastest dissociating compounds. Using D77, we measured the kinetic binding properties of various CB1R and CB2R agonists and antagonists at physiological temperature and sodium ion concentration. Discussion The k on values for molecules binding to CB1R varied by three orders of magnitude, from the slowest (HU308) to the fastest (rimonabant). A strong correlation between k on and affinity was observed for compounds binding to CB1R, indicating that the association rate primarily determines their affinity for CB1R. Unlike CB1R, a stronger correlation was found between the dissociation rate constant k off and the affinity for CB2R, suggesting that both k on and k off dictate the overall affinity for CB2R. Exploring the kinetic parameters of cannabinoid drug candidates could help drug development programs targeting these receptors.
Collapse
Affiliation(s)
- Leire Borrega-Roman
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
| | - Bradley L. Hoare
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Morgan Scott-Dennis
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Eline J. Koers
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, Neurofarmacología Celular y Molecular, Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Eric Kusznir
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Campus BerlinBuch, Berlin, Germany
| | - Arne C. Rufer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Laura H. Heitman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University and Oncode Institute, Leiden, Netherlands
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - David A. Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Dmitry B. Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| |
Collapse
|
4
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
5
|
Wąsińska-Kałwa M, Omran A, Mach L, Scipioni L, Bouma J, Li X, Radetzki S, Mostinski Y, Schippers M, Gazzi T, van der Horst C, Brennecke B, Hanske A, Kolomeets Y, Guba W, Sykes D, von Kries JP, Broichhagen J, Hua T, Veprintsev D, Heitman LH, Oddi S, Maccarrone M, Grether U, Nazare M. Visualization of membrane localization and the functional state of CB 2R pools using matched agonist and inverse agonist probe pairs. Chem Sci 2024:d4sc00402g. [PMID: 39430942 PMCID: PMC11485011 DOI: 10.1039/d4sc00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The diversity of physiological roles of the endocannabinoid system has turned it into an attractive yet elusive therapeutic target. However, chemical probes with various functionalities could pave the way for a better understanding of the endocannabinoid system at the cellular level. Notably, inverse agonists of CB2R - a key receptor of the endocannabinoid system - lagged behind despite the evidence regarding the therapeutic potential of its antagonism. Herein, we report a matched fluorescent probe pair based on a common chemotype to address and visualize both the active and inactive states of CB2R, selectively. Alongside extensive cross-validation by flow cytometry, time-lapse confocal microscopy, and super-resolution microscopy, we successfully visualize the intracellular localization of CB2R pools in live cells. The synthetic simplicity, together with the high CB2R-selectivity and specificity of our probes, turns them into valuable tools in chemical biology and drug development that can benefit the clinical translatability of CB2R-based drugs.
Collapse
Affiliation(s)
- M Wąsińska-Kałwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - A Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - L Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - L Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - J Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - X Li
- iHuman Institute, ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - S Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - Y Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - M Schippers
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - T Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - C van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - B Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - A Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - Y Kolomeets
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - W Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - D Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham Nottingham NG7 2UH UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, University of Nottingham Midlands UK
| | - J P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - J Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - T Hua
- iHuman Institute, ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - D Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham Nottingham NG7 2UH UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, University of Nottingham Midlands UK
| | - L H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - S Oddi
- Department of Veterinary Medicine, University of Teramo Via R. Balzarini 1 64100 Teramo Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - M Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - U Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - M Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
6
|
Kosar M, Mach L, Carreira EM, Nazaré M, Pacher P, Grether U. Patent review of cannabinoid receptor type 2 (CB 2R) modulators (2016-present). Expert Opin Ther Pat 2024; 34:665-700. [PMID: 38886185 DOI: 10.1080/13543776.2024.2368745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cannabinoid receptor type 2 (CB2R), predominantly expressed in immune tissues, is believed to play a crucial role within the body's protective mechanisms. Its modulation holds immense therapeutic promise for addressing a wide spectrum of dysbiotic conditions, including cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, and autoimmune diseases, as well as lung disorders, cancer, and pain management. AREAS COVERED This review is an account of patents from 2016 up to 2023 which describes novel CB2R ligands, therapeutic applications, synthesis, as well as formulations of CB2R modulators. EXPERT OPINION The patents cover a vast, structurally diverse chemical space. The focus of CB2R ligand development has shifted from unselective dual-cannabinoid receptor type 1 (CB1R) and 2 agonists toward agonists with high selectivity over CB1R, particularly for indications associated with inflammation and tissue injury. Currently, there are at least eight CB2R agonists and one antagonist in active clinical development. A better understanding of the endocannabinoid system (ECS) and in particular of CB2R pharmacology is required to unlock the receptor's full therapeutic potential.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Leonard Mach
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
7
|
Intranuovo F, Majellaro M, Mastropasqua F, Delre P, Abatematteo FS, Mangiatordi GF, Stefanachi A, Brea J, Loza MI, Riganti C, Ligresti A, Kumar P, Esposito D, Cristino L, Nicois A, González L, Perrone MG, Colabufo NA, Sotelo E, Abate C, Contino M. N-Adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as Fluorescent Probes to Detect Microglia Activation through the Imaging of Cannabinoid Receptor Subtype 2 (CB2R). J Med Chem 2024; 67:11003-11023. [PMID: 38937147 DOI: 10.1021/acs.jmedchem.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Cannabinoid receptor subtype 2 (CB2R) is emerging as a pivotal biomarker to identify the first steps of inflammation-based diseases such as cancer and neurodegeneration. There is an urgent need to find specific probes that may result in green and safe alternatives to the commonly used radiative technologies, to deepen the knowledge of the CB2R pathways impacting the onset of the above-mentioned pathologies. Therefore, based on one of the CB2R pharmacophores, we developed a class of fluorescent N-adamantyl-1-alkyl-4-oxo-1,4-dihydroquinoline-3-carboxamide derivatives spanning from the green to the near-infrared (NIR) regions of the light spectrum. Among the synthesized fluorescent ligands, the green-emitting compound 55 exhibited a favorable binding profile (strong CB2R affinity and high selectivity). Notably, this ligand demonstrated versatility as its use was validated in different experimental settings such as flow cytometry saturation, competitive fluorescence assays, and in vitro microglia cells mimicking inflammation states where CB2R are overexpressed.
Collapse
Affiliation(s)
- Francesca Intranuovo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Francesco Mastropasqua
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via Amendola, 122/o, 70126 Bari, Italy
| | - Francesca Serena Abatematteo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | | | - Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Josè Brea
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Isabel Loza
- Innopharma Screening Platform, BioFarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology. School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, 10124 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Daniela Esposito
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Luigia Cristino
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Alessandro Nicois
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli (NA), Italy
| | - Lucía González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Nicola Antonio Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago, Spain
- Departamento de Quimica Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
8
|
Stockinger F, Poc P, Möhwald A, Karch S, Häfner S, Alzheimer C, Sandoz G, Huth T, Broichhagen J. Multicolor, Cell-Impermeable, and High Affinity BACE1 Inhibitor Probes Enable Superior Endogenous Staining and Imaging of Single Molecules. J Med Chem 2024; 67:10152-10167. [PMID: 38842406 PMCID: PMC11215771 DOI: 10.1021/acs.jmedchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
The prevailing but not undisputed amyloid cascade hypothesis places the β-site of APP cleaving enzyme 1 (BACE1) center stage in Alzheimer's Disease pathogenesis. Here, we investigated functional properties of BACE1 with novel tag- and antibody-free labeling tools, which are conjugates of the BACE1-inhibitor IV (also referred to as C3) linked to different impermeable Alexa Fluor dyes. We show that these fluorescent small molecules bind specifically to BACE1, with a 1:1 labeling stoichiometry at their orthosteric site. This is a crucial property especially for single-molecule and super-resolution microscopy approaches, allowing characterization of the dyes' labeling capabilities in overexpressing cell systems and in native neuronal tissue. With multiple colors at hand, we evaluated BACE1-multimerization by Förster resonance energy transfer (FRET) acceptor-photobleaching and single-particle imaging of native BACE1. In summary, our novel fluorescent inhibitors, termed Alexa-C3, offer unprecedented insights into protein-protein interactions and diffusion behavior of BACE1 down to the single molecule level.
Collapse
Affiliation(s)
- Florian Stockinger
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Pascal Poc
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Berlin 13125, Germany
| | - Alexander Möhwald
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Sandra Karch
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stephanie Häfner
- Université
Côte d’Azur, CNRS, INSERM,
iBV, Nice 06108, Cedex 2, France
- Laboratories
of Excellence, Ion Channel Science and Therapeutics, Nice 06108, Cedex 2, France
| | - Christian Alzheimer
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Guillaume Sandoz
- Université
Côte d’Azur, CNRS, INSERM,
iBV, Nice 06108, Cedex 2, France
- Laboratories
of Excellence, Ion Channel Science and Therapeutics, Nice 06108, Cedex 2, France
| | - Tobias Huth
- Institut
für Physiologie und Pathophysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Johannes Broichhagen
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Berlin 13125, Germany
| |
Collapse
|
9
|
Kosar M, Sarott RC, Sykes DA, Viray AEG, Vitale RM, Tomašević N, Li X, Ganzoni RLZ, Kicin B, Reichert L, Patej KJ, Gómez-Bouzó U, Guba W, McCormick PJ, Hua T, Gruber CW, Veprintsev DB, Frank JA, Grether U, Carreira EM. Flipping the GPCR Switch: Structure-Based Development of Selective Cannabinoid Receptor 2 Inverse Agonists. ACS CENTRAL SCIENCE 2024; 10:956-968. [PMID: 38799662 PMCID: PMC11117691 DOI: 10.1021/acscentsci.3c01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024]
Abstract
We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger β-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - David A. Sykes
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - Alexander E. G. Viray
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Rosa Maria Vitale
- Institute
of Biomolecular Chemistry, National Research
Council, Via Campi Flegrei
34, 80078 Pozzuoli, Italy
| | - Nataša Tomašević
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Xiaoting Li
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Rudolf L. Z. Ganzoni
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bilal Kicin
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lisa Reichert
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uxía Gómez-Bouzó
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Guba
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Peter J. McCormick
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Ashton
Street, Liverpool L69 3GE, U.K.
| | - Tian Hua
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Christian W. Gruber
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Dmitry B. Veprintsev
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - James A. Frank
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
- Vollum
Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Uwe Grether
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erick M. Carreira
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
De Paus LV, An Y, Janssen APA, van den Berg RJBHN, Heitman LH, van der Stelt M. Discovery of a Photoaffinity Probe that Captures the Active Conformation of the Cannabinoid CB 2 Receptor. Chembiochem 2024; 25:e202300785. [PMID: 38372466 DOI: 10.1002/cbic.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The cannabinoid receptor type 2 (CB2R) is a G protein-coupled receptor with therapeutic potential for the treatment of inflammatory disorders. Fluorescent probes are desirable to study its receptor localization, expression and occupancy. Previously, we have reported a photoaffinity probe LEI-121 that stabilized the inactive conformation of the CB2R. Here, we report the structure-based design of a novel bifunctional probe that captures the active conformation of the CB2R upon irradiation with light. An alkyne handle was incorporated to visualize the receptor using click-chemistry with fluorophore-azides. These probes may hold promise to study different receptor conformations in relation to their cellular localization and function.
Collapse
Affiliation(s)
- Laura V De Paus
- Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Yu An
- Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Antonius P A Janssen
- Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | | | - Laura H Heitman
- Molecular Pharmacology, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| | - Mario van der Stelt
- Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, The Netherlands
| |
Collapse
|
11
|
Butini S, Grether U, Jung KM, Ligresti A, Allarà M, Postmus AGJ, Maramai S, Brogi S, Papa A, Carullo G, Sykes D, Veprintsev D, Federico S, Grillo A, Di Guglielmo B, Ramunno A, Stevens AF, Heer D, Lamponi S, Gemma S, Benz J, Di Marzo V, van der Stelt M, Piomelli D, Campiani G. Development of Potent and Selective Monoacylglycerol Lipase Inhibitors. SARs, Structural Analysis, and Biological Characterization. J Med Chem 2024; 67:1758-1782. [PMID: 38241614 DOI: 10.1021/acs.jmedchem.3c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.
Collapse
Affiliation(s)
- Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annemarieke G J Postmus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 56126 Pisa, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, United Kingdom
| | - Dmitry Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Bruno Di Guglielmo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy/DIFARMA, University of Salerno, via Giovanni Paolo II 132, Salerno 84084, Fisciano, Italy
| | - Anna Floor Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition Et Les Aliments Fonctionnels (INAF), École de Nutrition, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, PO Box 2325, Quebec G1V 0A6, Canada
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, PO Box 2725, Québec G1V 4G5, Canada
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et Son Impact Sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu), Université Laval, PO Box 2325, Quebec G1V 0A6, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
12
|
Navarro G, Sotelo E, Raïch I, Loza MI, Brea J, Majellaro M. A Robust and Efficient FRET-Based Assay for Cannabinoid Receptor Ligands Discovery. Molecules 2023; 28:8107. [PMID: 38138600 PMCID: PMC10745346 DOI: 10.3390/molecules28248107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The identification of new modulators for Cannabinoid Receptors (CBRs) has garnered significant attention in drug discovery over recent years, owing to their manifold pathophysiological implications. In the context of hit identification, the availability of robust and sensitive high-throughput screening assays is essential to enhance the likelihood of success. In this study, we present the development and validation of a Tag-lite® binding assay designed for screening hCB1/hCB2 binding, employing a dual fluorescent ligand, CELT-335. Representative ligands for CBRs, exhibiting diverse affinity and functional profiles, were utilized as reference compounds to validate the robustness and efficiency of the newly developed Tag-lite® binding assay protocol. The homogeneous format, coupled with the sensitivity and optimal performance of the fluorescent ligand CELT-335, establishes this assay as a viable and reliable method for screening in hit and lead identification campaigns.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, 08035 Barcelona, Spain
| | - Eddy Sotelo
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- Institute of Neuroscience of the University of Barcelona, 08035 Barcelona, Spain
| | - María Isabel Loza
- Research Center in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Jose Brea
- Research Center in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Maria Majellaro
- Celtarys Research SL, Avda. Mestre Mateo, 2, 15706 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Lindner H, Amberg WM, Carreira EM. Iron-Mediated Photochemical Anti-Markovnikov Hydroazidation of Unactivated Olefins. J Am Chem Soc 2023; 145:22347-22353. [PMID: 37811819 PMCID: PMC10591317 DOI: 10.1021/jacs.3c09122] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/10/2023]
Abstract
Unactivated olefins are converted to alkyl azides with bench-stable NaN3 in the presence of FeCl3·6H2O under blue-light irradiation. The products are obtained with anti-Markovnikov selectivity, and the reaction can be performed under mild ambient conditions in the presence of air and moisture. The transformation displays broad functional group tolerance, which renders it suitable for functionalization of complex molecules. Mechanistic investigations are conducted to provide insight into the hydroazidation reaction and reveal the role of water from the iron hydrate as the H atom source.
Collapse
Affiliation(s)
- Henry Lindner
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Willi M. Amberg
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| | - Erick M. Carreira
- Department of Chemistry and
Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
15
|
Bhattacharjee P, Iyer MR. Rational Design, Synthesis, and Evaluation of Fluorescent CB 2 Receptor Ligands for Live-Cell Imaging: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1235. [PMID: 37765043 PMCID: PMC10534640 DOI: 10.3390/ph16091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies.
Collapse
Affiliation(s)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
16
|
Zimmerberg J, Soubias O, Pastor RW. Special issue for Klaus Gawrisch. Biophys J 2023; 122:E1-E8. [PMID: 36921597 PMCID: PMC10111273 DOI: 10.1016/j.bpj.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Olivier Soubias
- Macromolecular NMR Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Zöldi M, Katona I. STORM Super-Resolution Imaging of CB 1 Receptors in Tissue Preparations. Methods Mol Biol 2023; 2576:437-451. [PMID: 36152208 DOI: 10.1007/978-1-0716-2728-0_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) opened new possibilities to study the spatial arrangement of molecular distribution and disease-associated redistribution at a previously unprecedented resolution that was not achievable with optical microscopy approaches. Recent discoveries based on SMLM techniques uncovered specific nanoscale organizational principles of signaling proteins in several biological systems including the chemical synapses in the brain. Emerging data suggest that the spatial arrangement of the molecular players of the endocannabinoid system is also precisely regulated at the nanoscale level in synapses and in other neuronal and glial subcellular compartments. The precise nanoscale distribution pattern is likely to be important to subserve several specific signaling functions of this important messenger system in a cell-type- and subcellular domain-specific manner.STochastic Optical Reconstruction Microscopy (STORM) is an especially suitable SMLM modality for cell-type-specific nanoscale molecular imaging due to its compatibility with traditional diffraction-limited microscopy approaches and classical staining methods. Here, we describe a detailed protocol for STORM imaging in mouse brain tissue samples with a focus on the CB1 cannabinoid receptor, one of the most abundant synaptic receptors in the brain. We also summarize important conceptual and methodical details that are essential for the valid interpretation of single-molecule localization microscopy data.
Collapse
Affiliation(s)
- Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University, IN, USA
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University, IN, USA.
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
19
|
Atz K, Guba W, Grether U, Schneider G. Machine Learning and Computational Chemistry for the Endocannabinoid System. Methods Mol Biol 2023; 2576:477-493. [PMID: 36152211 DOI: 10.1007/978-1-0716-2728-0_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
- ETH Singapore SEC Ltd, Singapore, Singapore
| |
Collapse
|
20
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
21
|
Roy P, Dennis DG, Eschbach MD, Anand SD, Xu F, Maturano J, Hellman J, Sarlah D, Das A. Metabolites of Cannabigerol Generated by Human Cytochrome P450s Are Bioactive. Biochemistry 2022; 61:2398-2408. [PMID: 36223199 DOI: 10.1021/acs.biochem.2c00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The phytocannabinoid cannabigerol (CBG) is the central biosynthetic precursor to many cannabinoids, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Though the use of CBG has recently witnessed a widespread surge because of its beneficial health effects and lack of psychoactivity, its metabolism by human cytochrome P450s is largely unknown. Herein, we describe comprehensive in vitro and in vivo cytochrome P450 (CYP)-mediated metabolic studies of CBG, ranging from liquid chromatography tandem mass spectrometry-based primary metabolic site determination, synthetic validation, and kinetic behavior using targeted mass spectrometry. These investigations revealed that cyclo-CBG, a recently isolated phytocannabinoid, is the major metabolite that is rapidly formed by selected human cytochrome P450s (CYP2J2, CYP3A4, CYP2D6, CYP2C8, and CYP2C9). Additionally, in vivo studies with mice administered with CBG supported these studies, where cyclo-CBG is the major metabolite as well. Spectroscopic binding studies along with docking and modeling of the CBG molecule near the heme in the active site of P450s confirmed these observations, pointing at the preferred site selectivity of CBG metabolism at the prenyl chain over other positions. Importantly, we found out that CBG and its oxidized CBG metabolites reduced inflammation in BV2 microglial cells stimulated with LPS. Overall, combining enzymological studies, mass spectrometry, and chemical synthesis, we showcase that CBG is rapidly metabolized by human P450s to form oxidized metabolites that are bioactive.
Collapse
Affiliation(s)
- Pritam Roy
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G Dennis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Mark D Eschbach
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shravanthi D Anand
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, United States
| | - Jonathan Maturano
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California 94143, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, Center for Biophysics and Quantitative Biology, Beckman Institute for Advanced Science and Technology, Department of Bioengineering, Neuroscience program, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Cancer Center at Illinois, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
23
|
Ni R, Müller Herde A, Haider A, Keller C, Louloudis G, Vaas M, Schibli R, Ametamey SM, Klohs J, Mu L. In vivo Imaging of Cannabinoid Type 2 Receptors: Functional and Structural Alterations in Mouse Model of Cerebral Ischemia by PET and MRI. Mol Imaging Biol 2022; 24:700-709. [PMID: 34642898 PMCID: PMC9581861 DOI: 10.1007/s11307-021-01655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and follow alterations of receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptor (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6 and structural imaging by magnetic resonance imaging (MRI). PROCEDURES Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. [18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were performed for anatomical reference and delineating the lesion in tMCAO mice. RESULTS mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased to 1.3-2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 50 %. Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex vivo biodistribution studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to contralateral striatum in tMCAO mice, the in vivo specificity of [18F]RoSMA-18-d6 was confirmed only in the CB2R-rich spleen. CONCLUSIONS This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a reduced [18F]FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage. [18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal models of neuroinflammation without neuronal loss.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Adrienne Müller Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Claudia Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Whiting ZM, Yin J, de la Harpe SM, Vernall AJ, Grimsey NL. Developing the Cannabinoid Receptor 2 (CB2) pharmacopoeia: past, present, and future. Trends Pharmacol Sci 2022; 43:754-771. [PMID: 35906103 DOI: 10.1016/j.tips.2022.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Cannabinoid Receptor 2 (CB2) is a G protein-coupled receptor (GPCR) with considerable, though as yet unrealised, therapeutic potential. Promising preclinical data supports the applicability of CB2 activation in autoimmune and inflammatory diseases, pain, neurodegeneration, and osteoporosis. A diverse pharmacopoeia of cannabinoid ligands is available, which has led to considerable advancements in the understanding of CB2 function and extensive preclinical evaluation. However, until recently, most CB2 ligands were highly lipophilic and as such not optimal for clinical application due to unfavourable physicochemical properties. A number of strategies have been applied to develop CB2 ligands to achieve closer to 'drug-like' properties and a few such compounds have now undergone clinical trial. We review the current state of CB2 ligand development and progress in optimising physicochemical properties, understanding advanced molecular pharmacology such as functional selectivity, and clinical evaluation of CB2-targeting compounds.
Collapse
Affiliation(s)
- Zak M Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jiazhen Yin
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Sara M de la Harpe
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand
| | - Andrea J Vernall
- Department of Chemistry, Division of Sciences, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
25
|
Ruiz de Martín Esteban S, Benito-Cuesta I, Terradillos I, Martínez-Relimpio AM, Arnanz MA, Ruiz-Pérez G, Korn C, Raposo C, Sarott RC, Westphal MV, Elezgarai I, Carreira EM, Hillard CJ, Grether U, Grandes P, Grande MT, Romero J. Cannabinoid CB 2 Receptors Modulate Microglia Function and Amyloid Dynamics in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:841766. [PMID: 35645832 PMCID: PMC9136843 DOI: 10.3389/fphar.2022.841766] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
The distribution and roles of the cannabinoid CB2 receptor in the CNS are still a matter of debate. Recent data suggest that, in addition to its presence in microglial cells, the CB2 receptor may be also expressed at low levels, yet biologically relevant, in other cell types such as neurons. It is accepted that the expression of CB2 receptors in the CNS is low under physiological conditions and is significantly elevated in chronic neuroinflammatory states associated with neurodegenerative diseases such as Alzheimer's disease. By using a novel mouse model (CB2 EGFP/f/f), we studied the distribution of cannabinoid CB2 receptors in the 5xFAD mouse model of Alzheimer's disease (by generating 5xFAD/CB2 EGFP/f/f mice) and explored the roles of CB2 receptors in microglial function. We used a novel selective and brain penetrant CB2 receptor agonist (RO6866945) as well as mice lacking the CB2 receptor (5xFAD/CB2 -/-) for these studies. We found that CB2 receptors are expressed in dystrophic neurite-associated microglia and that their modulation modifies the number and activity of microglial cells as well as the metabolism of the insoluble form of the amyloid peptide. These results support microglial CB2 receptors as potential targets for the development of amyloid-modulating therapies.
Collapse
Affiliation(s)
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Itziar Terradillos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ana M Martínez-Relimpio
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - M Andrea Arnanz
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Gonzalo Ruiz-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Claudia Korn
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Catarina Raposo
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Roman C Sarott
- Laboratorium Für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Matthias V Westphal
- Laboratorium Für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - Erick M Carreira
- Laboratorium Für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain
| | - M Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| |
Collapse
|
26
|
Liddle I, Glass M, Tyndall JDA, Vernall AJ. Covalent cannabinoid receptor ligands - structural insight and selectivity challenges. RSC Med Chem 2022; 13:497-510. [PMID: 35694688 PMCID: PMC9132230 DOI: 10.1039/d2md00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
X-ray crystallography and cryogenic electronic microscopy have provided significant advancement in the knowledge of GPCR structure and have allowed the rational design of GPCR ligands. The class A GPCRs cannabinoid receptor type 1 and type 2 are implicated in many pathophysiological processes and thus rational design of drug and tool compounds is of great interest. Recent structural insight into cannabinoid receptors has already led to a greater understanding of ligand binding sites and receptor residues that likely contribute to ligand selectivity. Herein, classes of heterocyclic covalent cannabinoid receptor ligands are reviewed in light of the recent advances in structural knowledge of cannabinoid receptors, with particular discussion regarding covalent ligand selectivity and rationale design.
Collapse
Affiliation(s)
- Ian Liddle
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago Dunedin New Zealand
| | | | - Andrea J Vernall
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| |
Collapse
|
27
|
Gazzi T, Brennecke B, Atz K, Korn C, Sykes D, Forn-Cuni G, Pfaff P, Sarott RC, Westphal MV, Mostinski Y, Mach L, Wasinska-Kalwa M, Weise M, Hoare BL, Miljuš T, Mexi M, Roth N, Koers EJ, Guba W, Alker A, Rufer AC, Kusznir EA, Huber S, Raposo C, Zirwes EA, Osterwald A, Pavlovic A, Moes S, Beck J, Nettekoven M, Benito-Cuesta I, Grande T, Drawnel F, Widmer G, Holzer D, van der Wel T, Mandhair H, Honer M, Fingerle J, Scheffel J, Broichhagen J, Gawrisch K, Romero J, Hillard CJ, Varga ZV, van der Stelt M, Pacher P, Gertsch J, Ullmer C, McCormick PJ, Oddi S, Spaink HP, Maccarrone M, Veprintsev DB, Carreira EM, Grether U, Nazaré M. Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chem Sci 2022; 13:5539-5545. [PMID: 35694350 PMCID: PMC9116301 DOI: 10.1039/d1sc06659e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Benjamin Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Kenneth Atz
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Claudia Korn
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | | | - Patrick Pfaff
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Roman C Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias V Westphal
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Malgorzata Wasinska-Kalwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Marie Weise
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Bradley L Hoare
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Tamara Miljuš
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Maira Mexi
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Nicolas Roth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Eline J Koers
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - André Alker
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Arne C Rufer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Eric A Kusznir
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Sylwia Huber
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Catarina Raposo
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Elisabeth A Zirwes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anja Osterwald
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anto Pavlovic
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Svenja Moes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jennifer Beck
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Matthias Nettekoven
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Faye Drawnel
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Gabriella Widmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Daniela Holzer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Harpreet Mandhair
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Michael Honer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Germany
- Allergology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Zoltan V Varga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
- HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University 1085 Budapest Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Christoph Ullmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo 64100 Teramo European Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
| | - Herman P Spaink
- Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
| | - Dmitry B Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK
- United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
28
|
Prokop S, Ábrányi-Balogh P, Barti B, Vámosi M, Zöldi M, Barna L, Urbán GM, Tóth AD, Dudok B, Egyed A, Deng H, Leggio GM, Hunyady L, van der Stelt M, Keserű GM, Katona I. PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nat Commun 2021; 12:6505. [PMID: 34764251 PMCID: PMC8586358 DOI: 10.1038/s41467-021-26757-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Immunolabeling and autoradiography have traditionally been applied as the methods-of-choice to visualize and collect molecular information about physiological and pathological processes. Here, we introduce PharmacoSTORM super-resolution imaging that combines the complementary advantages of these approaches and enables cell-type- and compartment-specific nanoscale molecular measurements. We exploited rational chemical design for fluorophore-tagged high-affinity receptor ligands and an enzyme inhibitor; and demonstrated broad PharmacoSTORM applicability for three protein classes and for cariprazine, a clinically approved antipsychotic and antidepressant drug. Because the neurobiological substrate of cariprazine has remained elusive, we took advantage of PharmacoSTORM to provide in vivo evidence that cariprazine predominantly binds to D3 dopamine receptors on Islands of Calleja granule cell axons but avoids dopaminergic terminals. These findings show that PharmacoSTORM helps to quantify drug-target interaction sites at the nanoscale level in a cell-type- and subcellular context-dependent manner and within complex tissue preparations. Moreover, the results highlight the underappreciated neuropsychiatric significance of the Islands of Calleja in the ventral forebrain.
Collapse
Affiliation(s)
- Susanne Prokop
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Benjámin Barti
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Márton Vámosi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Miklós Zöldi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - László Barna
- Nikon Center of Excellence for Neuronal Imaging, Institute of Experimental Medicine, Budapest, Hungary
| | - Gabriella M Urbán
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Barna Dudok
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Attila Egyed
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Hui Deng
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Leiden, the Netherlands
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University & Oncode Institute, Leiden, the Netherlands
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
29
|
Oyagawa CRM, Grimsey NL. Cannabinoid receptor CB 1 and CB 2 interacting proteins: Techniques, progress and perspectives. Methods Cell Biol 2021; 166:83-132. [PMID: 34752341 DOI: 10.1016/bs.mcb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cannabinoid receptors 1 and 2 (CB1 and CB2) are implicated in a range of physiological processes and have gained attention as promising therapeutic targets for a number of diseases. Protein-protein interactions play an integral role in modulating G protein-coupled receptor (GPCR) expression, subcellular distribution and signaling, and the identification and characterization of these will not only improve our understanding of GPCR function and biology, but may provide a novel avenue for therapeutic intervention. A variety of techniques are currently being used to investigate GPCR protein-protein interactions, including Förster/fluorescence and bioluminescence resonance energy transfer (FRET and BRET), proximity ligation assay (PLA), and bimolecular fluorescence complementation (BiFC). However, the reliable application of these methodologies is dependent on the use of appropriate controls and the consideration of the physiological context. Though not as extensively characterized as some other GPCRs, the investigation of CB1 and CB2 interacting proteins is a growing area of interest, and a range of interacting partners have been identified to date. This review summarizes the current state of the literature regarding the cannabinoid receptor interactome, provides commentary on the methodologies and techniques utilized, and discusses future perspectives.
Collapse
Affiliation(s)
- Caitlin R M Oyagawa
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
30
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
31
|
Khiar‐Fernández N, Macicior J, Marcos‐Ramiro B, Ortega‐Gutiérrez S. Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nora Khiar‐Fernández
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Jon Macicior
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Beatriz Marcos‐Ramiro
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Silvia Ortega‐Gutiérrez
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| |
Collapse
|
32
|
Sarott RC, Viray AEG, Pfaff P, Sadybekov A, Rajic G, Katritch V, Carreira EM, Frank JA. Optical Control of Cannabinoid Receptor 2-Mediated Ca2+ Release Enabled by Synthesis of Photoswitchable Probes. J Am Chem Soc 2021; 143:736-743. [DOI: 10.1021/jacs.0c08926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roman C. Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Alexander E. G. Viray
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Patrick Pfaff
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Anastasiia Sadybekov
- Department of Quantitative and Computational Biology and Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology and Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Erick M. Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - James A. Frank
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| |
Collapse
|
33
|
Hamilton AJ, Payne AD, Mocerino M, Gunosewoyo H. Imaging Cannabinoid Receptors: A Brief Collection of Covalent and Fluorescent Probes for CB1 and CB2 Receptors. Aust J Chem 2021. [DOI: 10.1071/ch21007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There has been an expanding public interest towards the notion that modulation of the sophisticated endocannabinoid system can lead to various therapeutic benefits that are yet to be fully explored. In recent years, the drug discovery paradigm in this field has been largely based on the development of selective CB2 receptor agonists, avoiding the unwanted CB1 receptor-mediated psychoactive side effects. Mechanistically, target engagement studies are crucial for confirming the ligand–receptor interaction and the subsequent biological cascades that lead to the observed therapeutic effects. Concurrently, imaging techniques for visualisation of cannabinoid receptors are increasingly reported in the literature. Small molecule imaging tools ranging from phytocannabinoids such as tetrahydrocannabinol (THC) and cannabidiol (CBD) to the endocannabinoids as well as the purely synthetic cannabimimetics, have been explored to date with varying degrees of success. This Review will cover currently known photoactivatable, electrophilic, and fluorescent ligands for both the CB1 and CB2 receptors. Structural insights from techniques such as ligand-assisted protein structure (LAPS) and the discovery of novel allosteric modulators are significant additions for better understanding of the endocannabinoid system. There has also been a plethora of fluorescent conjugates that have been assessed for their binding to cannabinoid receptors as well as their potential for cellular imaging. More recently, bifunctional probes containing either fluorophores or electrophilic tags are becoming more prevalent in the literature. Collectively, these molecular tools are invaluable in demonstrating target engagement within the human endocannabinoid system.
Collapse
|