1
|
John TS, Singh D, Maurel V, García-Serres R, Murray LJ. A Diiron(I/II) μ-1,2-Carbonyl Complex Relevant to CO Binding on Fe(111). Inorg Chem 2025. [PMID: 40389814 DOI: 10.1021/acs.inorgchem.5c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Fischer-Tropsch conversion of syngas to hydrocarbons is proposed to begin with CO binding to the iron surface of the catalyst. CO adsorption on various iron facets of relevance to the Fischer-Tropsch process suggest that the Fe(111) surface is the most active for catalysis, and that CO bound to the penultimate layer of Fe atoms or the b-state is the resting state during catalysis. Notably, a μ-1,2 mode was discarded for the b-state due to a lack of exemplar molecular species and expectation that such a mode would have a higher energy infrared (IR) absorption than observed experimentally (viz. 1735-1860 cm-1). Here, we report the synthesis of a diiron(I/II) complex in which CO binds μ-1,2: (Fe(OTf))(Fe(THF)(μ-1,2-CO))L where L2- is a bis(β-diketiminate) cyclophane (1). Surprisingly, the observed νCO at 1763 cm-1 for 1 compares well with that reported for b-state. Electron paramagnetic resonance (EPR), Mössbauer, and density functional theory (DFT) results support a weakly coupled s = 3/2 iron(I) and s = 2 iron(II) pair. Reduction of 1 results in C-O cleavage and C-C bond formation to yield a ketenylidene (CCO) complex as a major product observed spectroscopically.
Collapse
Affiliation(s)
- Titto Sunil John
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Devender Singh
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Vincent Maurel
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble 38000, France
| | - Ricardo García-Serres
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, Grenoble 38000, France
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Le LN, He T, Joyce JP, Oyala PH, DeBeer S, Agapie T. Molybdenum-Iron-Sulfur Cluster with a Bridging Carbide Ligand as a Partial FeMoco Model: CO Activation, EPR Studies, and Bonding Insight. J Am Chem Soc 2025; 147:11216-11226. [PMID: 40112093 PMCID: PMC11969536 DOI: 10.1021/jacs.4c17893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Nitrogenase enzymes catalyze the reduction of N2 to NH3 at a complex Fe-M (M = Mo, Fe, or V) cofactor (FeMco), which displays eight metal centers and sulfide and carbide bridges with a MFe7S8C composition. The role of the unusual μ6-carbide ligand and its effects on the metal centers remain unclear. Here, we describe the transfer of a carbide ligand to a MoFe3S3 cluster supported by a bisphenoxide ligand from a previously reported terminal Mo carbide complex to yield a pentametallic cluster of MoS3Fe3CMo composition, which also displays a bridging CO that resembles the lo-CO form of nitrogenase. This cluster has an S = 1/2 spin state amenable to studies by pulse EPR spectroscopy, revealing a significantly larger carbide 13C hyperfine interaction (aiso(13C) = 12.5 MHz) than any observed for various states of FeMoco studied by EPR thus far (|aiso(13C)| = 0.89 to 2.7 MHz). This report provides a strategy for the synthesis of carbide-containing iron-sulfur clusters relevant to nitrogenase cluster modeling, as well as benchmarking information for the metal-carbon interactions by EPR methods.
Collapse
Affiliation(s)
- Linh N.
V. Le
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Tianyi He
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Justin P. Joyce
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Department
of Inorganic Spectroscopy, Max Planck Institute
for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Yerbulekova A, Moshood Y, Griego L, Shafaat HS, Mirica LM. Spectroscopic and Computational Interrogation of a High-Valent Nickel-Dialkyl Complex Indicates Electronic Structure Asymmetry Drives C-C Bond Formation Reactivity. J Am Chem Soc 2025; 147:7317-7324. [PMID: 39991977 DOI: 10.1021/jacs.4c14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The study of high-valent organometallic nickel compounds has gained considerable interest recently, primarily driven by the development of nickel-catalyzed alkyl-alkyl cross-coupling reactions that are proposed to employ such high-valent intermediates. In that regard, we have recently reported a formal Ni(III)-dimethyl intermediate supported by the ligand N,N',N″-triisopropyl-1,4,7-triazacyclononane (iPr3tacn) that can undergo rapid C-C reductive elimination and catalyze alkyl-alkyl Kumada cross-coupling reactions. The bulky nature of this tridentate ligand was suggested to lead to two geometrically and electronically inequivalent alkyl groups bound to the five-coordinate Ni center. Herein, we have employed pulsed electron paramagnetic resonance techniques such as electron nuclear double resonance, hyperfine sublevel correlation, and electron spin echo envelope modulation to provide strong experimental evidence for the geometrically and electronically inequivalent nature of the two methyl groups in which one methyl ligand can be better described as a methyl radical. These experimental results were supported by density functional theory computational methods used to probe the covalent nature of the Ni-C bonds and the formal Ni oxidation state assignment for this catalytically relevant, high-valent Ni intermediate. Moreover, computational investigation of a series of related methyl/alkyl analogs reveals that the radical character of an alkyl group increases for a tertiary vs a secondary vs a primary alkyl group, with direct relevance for alkyl-alkyl cross-coupling catalysis. Overall, this study provides valuable insights into the nature of organometallic Ni-dialkyl species that undergo efficient reductive elimination, likely through an SH2-type mechanism.
Collapse
Affiliation(s)
- Alina Yerbulekova
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yusuff Moshood
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Leonel Griego
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Fraker A, Linn BN, McSkimming A. Low-Coordinate Iron Hydride Chemistry at an N,N,C-Heteroscorpionate Platform. Inorg Chem 2024; 63:14449-14458. [PMID: 39037731 PMCID: PMC11304392 DOI: 10.1021/acs.inorgchem.4c01596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
Locally high-spin iron hydrides are proposed to play a critical role as intermediates in iron-molybdenum cofactor (FeMoco)-catalyzed N2 fixation. Inspired by these biological systems, we report herein our initial investigations into low-coordinate iron hydride chemistry supported by our N,N,C-heteroscorpionate ligands. Those ligands with smaller steric profiles are unable to completely suppress the formation of a binuclear [Fe(μ2-H)]2 complex; however, the incorporation of more substantial steric bulk allows for the isolation of a rare example of a terminal, high-spin (S = 2) Fe2+ hydride. Fourier transform infrared spectroscopy suggests an unusually weak Fe-H bond in the latter molecule. Mössbauer spectroscopies, coupled with density functional theory calculations, highlights the substantial influence of the terminal hydride ligand on 57Fe isomer shift.
Collapse
Affiliation(s)
- Addison Fraker
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Brittany N. Linn
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Alex McSkimming
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
5
|
Drena A, Fraker A, Thompson NB, Doan PE, Hoffman BM, McSkimming A. Terminal Hydride Complex of High-Spin Mn. J Am Chem Soc 2024; 146:18370-18378. [PMID: 38940813 PMCID: PMC11240256 DOI: 10.1021/jacs.4c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
The iron-molybdenum cofactor of nitrogenase (FeMoco) catalyzes fixation of N2 via Fe hydride intermediates. Our understanding of these species has relied heavily on the characterization of well-defined 3d metal hydride complexes, which serve as putative spectroscopic models. Although the Fe ions in FeMoco, a weak-field cluster, are expected to adopt locally high-spin Fe2+/3+ configurations, synthetically accessible hydride complexes featuring d5 or d6 electron counts are almost exclusively low-spin. We report herein the isolation of a terminal hydride complex of four-coordinate, high-spin (d5; S = 5/2) Mn2+. Electron paramagnetic resonance and electron-nuclear double resonance studies reveal an unusually large degree of spin density on the hydrido ligand. In light of the isoelectronic relationship between Mn2+ and Fe3+, our results are expected to inform our understanding of the valence electronic structures of reactive hydride intermediates derived from FeMoco.
Collapse
Affiliation(s)
- Alex Drena
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Addison Fraker
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Niklas B. Thompson
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Peter E. Doan
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alex McSkimming
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
6
|
Le LN, Joyce JP, Oyala PH, DeBeer S, Agapie T. Highly Activated Terminal Carbon Monoxide Ligand in an Iron-Sulfur Cluster Model of FeMco with Intermediate Local Spin State at Fe. J Am Chem Soc 2024; 146:5045-5050. [PMID: 38358932 PMCID: PMC10910499 DOI: 10.1021/jacs.3c12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Nitrogenases, the enzymes that convert N2 to NH3, also catalyze the reductive coupling of CO to yield hydrocarbons. CO-coordinated species of nitrogenase clusters have been isolated and used to infer mechanistic information. However, synthetic FeS clusters displaying CO ligands remain rare, which limits benchmarking. Starting from a synthetic cluster that models a cubane portion of the FeMo cofactor (FeMoco), including a bridging carbyne ligand, we report a heterometallic tungsten-iron-sulfur cluster with a single terminal CO coordination in two oxidation states with a high level of CO activation (νCO = 1851 and 1751 cm-1). The local Fe coordination environment (2S, 1C, 1CO) is identical to that in the protein making this system a suitable benchmark. Computational studies find an unusual intermediate spin electronic configuration at the Fe sites promoted by the presence the carbyne ligand. This electronic feature is partly responsible for the high degree of CO activation in the reduced cluster.
Collapse
Affiliation(s)
- Linh N.
V. Le
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Justin P. Joyce
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Paul H. Oyala
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Fataftah MS, Mercado BQ, Holland PL. Valence Delocalization and Metal-Metal Bonding in Carbon-Bridged Mixed-Valence Iron Complexes. Chemistry 2023; 29:e202301962. [PMID: 37574453 PMCID: PMC10843690 DOI: 10.1002/chem.202301962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The carbide ligand in the iron-molybdenum cofactor (FeMoco) in nitrogenase bridges iron atoms in different oxidation states, yet it is difficult to discern its ability to mediate magnetic exchange interactions due to the structural complexity of the cofactor. Here, we describe two mixed-valent diiron complexes with C-based ketenylidene bridging ligands, and compare the carbon bridges with the more familiar sulfur bridges. The ground state of the [Fe2 (μ-CCO)2 ]+ complex with two carbon bridges (4) is S=1 / 2 ${{ 1/2 }}$ , and it is valence delocalized on the Mössbauer timescale with a small thermal barrier for electron hopping that stems from the low Fe-C force constant. In contrast, one-electron reduction of the [Fe2 (μ-CCO)] complex with one carbon bridge (2) affords a mixed-valence species with a high-spin ground state (S=7 / 2 ${ 7/2 }$ ), and the Fe-Fe distance contracts by 1 Å. Spectroscopic, magnetic, and computational studies of the latter reveal an Fe-Fe bonding interaction that leads to complete valence delocalization. Analysis of near-IR intervalence charge transfer transitions in 5 indicates a very large double exchange constant (B) in the range of 780-965 cm-1 . These results show that carbon bridges are extremely effective at stabilizing valence delocalized ground states in mixed-valent iron dimers.
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT-06511, USA
| |
Collapse
|
8
|
Scott AG, Agapie T. Synthesis of a Fe 3-Carbyne Motif by Oxidation of an Alkyl Ligated Iron-Sulfur (WFe 3S 3) Cluster. J Am Chem Soc 2023; 145:2-6. [PMID: 36537723 PMCID: PMC10575540 DOI: 10.1021/jacs.2c04826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of a carbide ligand in the active site of nitrogenases remains an unusual example of organometallic chemistry employed by a protein. Carbide incorporation into the MFe7S9C cluster involves complex biosynthesis, but analogous synthetic methodologies are limited. Herein, we present a new synthetic strategy for incorporating carbon based bridging ligands into iron-sulfur clusters. Starting from a halide precursor, a WFe3S3 cluster displaying three terminal alkyl ligands and an open Fe3 face was prepared. Oxidation results in loss of alkane and formation of a μ3-carbyne. Characterization of these clusters and mechanistic studies are presented.
Collapse
Affiliation(s)
- Anna G Scott
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Arnett CH, Oyala PH, Agapie T. Probing Redox Non‐Innocence in Iron–Carbene Complexes {Fe=C(H)Ar}
10–11
by
1,2
H and
13
C Pulse Electron Paramagnetic Resonance. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charles H. Arnett
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 USA
| | - Paul H. Oyala
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena California 91125 USA
| |
Collapse
|
10
|
Arnett CH, Oyala PH, Agapie T. Probing Redox Non-Innocence in Iron-Carbene Complexes {Fe=C(H)Ar} 10-11 by 1,2 H and 13 C Pulse Electron Paramagnetic Resonance. Angew Chem Int Ed Engl 2021; 60:27220-27224. [PMID: 34695278 DOI: 10.1002/anie.202110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 11/06/2022]
Abstract
We report the synthesis and spectroscopic characterization of a series of iron-carbene complexes in redox states {Fe=C(H)Ar}10-11 . Pulse EPR studies of the 1,2 H and 13 C isotopologues of {Fe=C(H)Ar}11 reveal the high covalency of the Fe-carbene bonding, leading to a more even spin distribution than commonly observed for reduced Fischer carbenes.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
11
|
Partial synthetic models of FeMoco with sulfide and carbyne ligands: Effect of interstitial atom in nitrogenase active site. Proc Natl Acad Sci U S A 2021; 118:2109241118. [PMID: 34857636 DOI: 10.1073/pnas.2109241118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M'Fe3S3X]n-, where M' = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M' results in minor changes, the chelating, μ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.
Collapse
|
12
|
Bailey GA, Buss JA, Oyala PH, Agapie T. Terminal, Open-Shell Mo Carbide and Carbyne Complexes: Spin Delocalization and Ligand Noninnocence. J Am Chem Soc 2021; 143:13091-13102. [PMID: 34379389 DOI: 10.1021/jacs.1c03806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Open-shell compounds bearing metal-carbon triple bonds, such as carbides and carbynes, are of significant interest as plausible intermediates in the reductive catenation of C1 oxygenates. Despite the abundance of closed-shell carbynes reported, open-shell variants are very limited, and an open-shell carbide has yet to be reported. Herein, we report the synthesis of the first terminal, open-shell carbide complexes, [K][1] and [1][BArF4] (1 = P2Mo(≡C:)(CO), P2 = a terphenyl diphosphine ligand), which differ by two redox states, as well as a series of related open-shell carbyne complexes. The complexes are characterized by single-crystal X-ray diffraction and NMR, EPR, and IR spectroscopies, while the electronic structures are probed by EPR studies and DFT calculations to assess spin delocalization. In the d1 complexes, the spin is primarily localized on the metal (∼55-77% Mo dxy) with delocalization on the triply bonded carbon of ∼0.05-0.09 e-. In the reduced carbide [K][1], a direct metal-arene interaction enables ancillary ligand reduction, resulting in reduced radical character on the terminal carbide (⩽0.02 e-). Reactivity studies with [K][1] reveal the formation of mixed-valent C-C coupled products at -40 °C, illustrating how productive reactivity manifolds can be engendered through the manipulation of redox states. Combined, the results inform on the electronic structure and reactivity of a new and underrepresented class of compounds with potential significance to a wide array of reactions involving open-shell species.
Collapse
Affiliation(s)
- Gwendolyn A Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joshua A Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Wang CH, DeBeer S. Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Chem Soc Rev 2021; 50:8743-8761. [PMID: 34159992 DOI: 10.1039/d1cs00381j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reduction of dinitrogen (N2) is essential for its incorporation into nucleic acids and amino acids, which are vital to life on earth. Nitrogenases convert atmospheric dinitrogen to two ammonia molecules (NH3) under ambient conditions. The catalytic active sites of these enzymes (known as FeM-cofactor clusters, where M = Mo, V, Fe) are the sites of N2 binding and activation and have been a source of great interest for chemists for decades. In this review, recent studies on nitrogenase-related synthetic molecular complexes and biological clusters are discussed, with a focus on their reactivity and spectroscopic characterization. The molecular models that are discussed span from simple mononuclear iron complexes to multinuclear iron complexes and heterometallic iron complexes. In addition, recent work on the extracted biological cofactors is discussed. An emphasis is placed on how these studies have contributed towards our understanding of the electronic structure and mechanism of nitrogenases.
Collapse
Affiliation(s)
- Chen-Hao Wang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|