1
|
Jia R, Ye R, Chang Z, Yu H, Wang M, Xu G, Guo Z, Zhan H. Supersaturation-Controlled Single-Crystal Growth of Covalent Organic Frameworks with Binary Solvents. Chemistry 2025; 31:e202404423. [PMID: 40024899 DOI: 10.1002/chem.202404423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The ability to rapidly produce large single crystals is crucial for advancing the applications of covalent organic frameworks (COFs). Although the modulation strategy provides a straightforward method for growing high-quality single crystals, the slow crystallization process of COFs often limits their practical use. In this study, we combined the principles of crystallization thermodynamics and kinetics with the modulation strategy to develop a binary solvent-supersaturation method, enabling the growth of single-crystal COFs in a significantly shorter time. By systematically investigating the crystal-growth kinetics across different solvent ratios, we established a diffusion-reaction growth model, highlighting the essential role of supersaturation in controlling COF crystal growth. Especially, under this crystallization guidance, elegant single crystals of COFs built with heteroatom or other functionality can also facilely obtained, which spontaneously validate the universality of the protocol. Importantly, the resulting single-crystal COFs, characterized by high structural symmetry, exhibited notable second harmonic generation (SHG) activity, which could open new avenues for future research in this field.
Collapse
Affiliation(s)
- Ruiqiang Jia
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Ronglong Ye
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhen Chang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Guohai Xu
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
2
|
Xing LB, Cheng K, Li H, Niu K, Luan TX, Kong S, Yu WW, Li PZ, Zhao Y. Integrating Two Photochromics into One Three-Dimensional Covalent Organic Framework for Synergistically Enhancing Multiple Photocatalytic Oxidations. Angew Chem Int Ed Engl 2025; 64:e202425668. [PMID: 39906940 DOI: 10.1002/anie.202425668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/06/2025]
Abstract
While photocatalytic oxidations are a category of important reactions in wide chemical synthesis, the fabrication of effective photocatalysts for broad oxidation reactions is still of a great challenge. Herein, by rationally integrating two photochromics, porphyrin and triphenylamine, a three-dimensional photoactive covalent organic framework (COF) is successfully constructed for photocatalytic oxidations. Characterization studies not only show the formation of a crystalline and three-dimensional porous framework, but also reveal its effective photochemical semiconductor properties derived from the porphyrin and triphenylamine moieties. Electron paramagnetic resonance measurements indicate that the COF is an effective photocatalyst for the generation of both singlet oxygen (1O2) and superoxide radical anions (⋅O2 -). Synergistically enhanced efficiency in all photocatalytic reactions of photocatalytic aerobic oxidation of alkylbenzenes and silanes as well as thioanisoles, and cross-dehydrogenative coupling reaction of N-phenyltetrahydroisoquinoline and indole is confirmed by both experimental and theoretical studies, demonstrating its promising potential for broad photocatalytic oxidation reactions.
Collapse
Affiliation(s)
- Ling-Bao Xing
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000, Shandong Province, P. R. China
| | - Ke Cheng
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
| | - Hailian Li
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
- Tangshan Sanyou Chemical Industries Co. Ltd. Tangshan 063305, Hebei Province, P. R. China
| | - Kaikai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255000, Shandong Province, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
| | - Shuo Kong
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
| | - William W Yu
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion, Shandong University No. 27 Shanda South Road, Ji'nan 250100, Shandong Province, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21, Nanyang Link, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21, Nanyang Link, 637371, Singapore
| |
Collapse
|
3
|
Zhou D, Chen Q, Zhang J, Wang T, Liu ZQ. Ether-Embedded Covalent Organic Frameworks Enable Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202500329. [PMID: 39920084 DOI: 10.1002/anie.202500329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 02/09/2025]
Abstract
The photocatalytic conversion of carbon dioxide (CO2) into valuable solar fuels is a promising strategy for addressing energy crises and mitigating the greenhouse effect. However, the challenge of efficiently regulating photogenerated electrons to CO2 active sites remains a key hurdle for high-performance CO2 reduction. Herein, an embedded functional group, ether group is introduced into porphyrin-triazine COFs to regulate the transfer behavior of photogenerated electrons. The ether-embedded COFs (TOT-TAPP, BOD-TAPP and QOB-TAPP) demonstrate significantly faster charge transport and higher photoactivity compared with the corresponding non-ether-embedded counterpart COFs. The theoretical calculations and in situ characterizations reveal that the ether group could not only accelerate the separation of photogenerated charge carriers, but also lead to a more substantial accumulation of electrons at the CO2 adsorption region (C=N imine bond), thus greatly promoting the efficiency of CO2 photoreduction.
Collapse
Affiliation(s)
- Desen Zhou
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Qi Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Jun Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry, South China Normal University
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Liu B, Chen X, Yang Y, Alizadeh Kiapi MR, Menon D, Zhao Q, Yuan G, Keenan LL, Fairen-Jimenez D, Xia Q. Engineering Bodipy-Based Metal-Organic Frameworks for Efficient Full-Spectrum Photocatalysis in Amide Synthesis. Angew Chem Int Ed Engl 2025:e202505405. [PMID: 40192658 DOI: 10.1002/anie.202505405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Developing photocatalysts that can efficiently utilize the full solar spectrum is a crucial step toward transforming sustainable energy solutions. Due to their light absorption limitations, most photo-responsive metal-organic frameworks (MOFs) are constrained to the ultraviolet (UV) and blue light regions. Expanding their absorption to encompass the entire solar spectrum would unlock their full potential, greatly enhancing efficiency and applicability. Here, we report the design and synthesis of a series of highly stable boron-dipyrromethene (bodipy)-based MOFs (BMOFs) by reacting dicarboxyl-functionalized bodipy ligands with Zr-oxo clusters. Leveraging the acidity of the methyl groups on the bodipy backbone, we expanded the conjugation system through a solid-state condensation reaction with various aldehydes, achieving full-color absorption, thereby extending the band edge into the near-infrared (NIR) and infrared (IR) regions. These BMOFs demonstrated exceptional reactivity and recyclability in heterogeneous photocatalytic activities, including C─H bond activation of saturated aza-heterocycles and C─N bond cleavage of N,N-dimethylanilines to produce amides under visible light. Our findings highlight the transformative potential of BMOFs in photocatalysis, marking a significant leap forward in the design of advanced photocatalytic materials with tunable properties.
Collapse
Affiliation(s)
- Binhui Liu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xu Chen
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Yuhao Yang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mohammad Reza Alizadeh Kiapi
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dhruv Menon
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Luke L Keenan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - David Fairen-Jimenez
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qingchun Xia
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Chang J, Zhang Z, Zheng H, Li H, Suo J, Ji C, Chen F, Zhang S, Wang Z, Valtchev V, Qiu S, Sun J, Fang Q. Synthesis of three-dimensional covalent organic frameworks through a symmetry reduction strategy. Nat Chem 2025; 17:571-581. [PMID: 39779972 DOI: 10.1038/s41557-024-01715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) hold significant promise for a variety of applications. However, conventional design approaches using regular building blocks limit the structural diversity of 3D COFs. Here we design and synthesize two 3D COFs, designated as JUC-644 and JUC-645, through a methodology that relies on using eight-connected building blocks with reduced symmetry. Their structures are solved using continuous rotation electron diffraction and high-resolution transmission electron microscopy, which reveal a unique linkage with a double chain structure, a rare phenomenon in COFs. We deconstruct these structures into [4 + 3(+ 2)]-c nets, which leads to six different topologies. Furthermore, JUC-644 demonstrates high adsorption capacity for C3H8 and n-C4H10 (11.28 and 10.45 mmol g-1 at 298 K and 1 bar, respectively), surpassing most known porous materials, with notable selectivity for C3H8/C2H6 and n-C4H10/C2H6. This approach opens avenues for designing intricate architectures and shows the potential of COFs in C2H6 recovery from natural gas liquids.
Collapse
Affiliation(s)
- Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Chunqing Ji
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Fenqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Shipeng Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China
| | - Zitao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
6
|
Sun T, Wang Z, Wang Y, Xu Q, Wang K, Jiang J. Porphyrin-Based Covalent Organic Frameworks for CO 2 Photo/Electro-Reduction. Angew Chem Int Ed Engl 2025; 64:e202422814. [PMID: 39924727 DOI: 10.1002/anie.202422814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 02/11/2025]
Abstract
Photo/electro-catalytic CO2 reduction into high-value products are promising strategies for addressing both environmental problems and energy crisis. Duo to their advantageous visible light absorption ability, adjustable optic/electronic properties, definite active center, post-modification capability, and excellent stability, porphyrin-based covalent organic frameworks (COFs) have emerged as attractive photo/electro-catalysts towards CO2 reduction. In this review, the research progress of the porphyrin-based COFs for photo/electro-catalytic CO2 reduction is summarized including the design principles, catalytic performance, and reaction mechanism. In addition, this review also presents some challenges and prospects for the application of porphyrin-based COFs in photo/electro-catalytic CO2 reduction, laying the base for both fundamental research and application efforts.
Collapse
Affiliation(s)
- Tingting Sun
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhi Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuhui Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingmei Xu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
7
|
Aslam AA, Amjad S, Irshad A, Kokab O, Ullah MS, Farid A, Mehmood RA, Hassan SU, Nazir MS, Ahmed M. From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO 2 Adsorption. Top Curr Chem (Cham) 2025; 383:10. [PMID: 39987291 DOI: 10.1007/s41061-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO2, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO2 collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.
Collapse
Affiliation(s)
- Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan.
| | - Sania Amjad
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Adnan Irshad
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
- Department of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Osama Kokab
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | - Mudassar Sana Ullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan
| | - Awais Farid
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Rana Adeel Mehmood
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan.
| |
Collapse
|
8
|
Wu X, Wang H, Huang N. Three-Dimensional Covalent Organic Frameworks with lil Topology. J Am Chem Soc 2025; 147:6016-6022. [PMID: 39921914 DOI: 10.1021/jacs.4c16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
The diversity of covalent organic frameworks (COFs) is continuously expanding, providing various materials with tailor-made structures and properties. However, the development of crystalline three-dimensional (3D) COFs with new topologies is an essential but arduous challenge. In this study, we first developed one kind of 3D COFs with the lil topological structure, which were assembled by D4h- and C2h-symmetric building blocks. The 3D COFs were determined in a space group of Imma, in which each D4h-symmetric unit is connected with four C2h-symmetric units, forming a noninterpenetrated network. The densely packed copper phthalocyanine and stable polyimide linkage render these COFs as a polymeric material with high dielectric constant and low dielectric loss at high frequencies (>1 kHz). Significantly, the dielectric constant was determined as high as 63, which constitutes a new record value among phthalocyanine-based and polyimide polymers. Therefore, this study not only provides important guidance for the design of 3D lil-net COFs but also supplies promising materials for application in high-energy-density and pulsed capacitors.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hanwen Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Wang WZ, Tian PJ, Fu Y, Wan X, Lei X, Jia C, Liu C, Qi QY, Xu SQ, Zhao X. Orthorhombic Covalent Organic Frameworks with fmj Topology as Photocatalyst for Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202418086. [PMID: 39760144 DOI: 10.1002/anie.202418086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Three-dimensional covalent organic frameworks (3D COFs), a class of highly porous crystalline polymers, have exhibited great potentials in many applications. However, the reported topologies of 3D COFs have been limited to high-symmetry crystal systems, which significantly hindered the development of such functional materials. Herein, we demonstrate the first construction of four highly crystalline orthorhombic 3D COFs with an unprecedented fmj topology, based on judiciously choosing rotatable monomers. Notably, the square monomers in the unit cell of the fmj topological network adopt three different conformations, resulting in a highly complicated 3D network. Moreover, an isomeric pair (3DCOF-CN and 3DCOF-NC), differing only in the orientations of -C=N-bonds, exhibit distinct optoelectronic properties, protonation abilities, and photocatalytic activities, which is the first time to reveal such isomeric effects in 3D COFs. Particularly, a difference of 32-fold in photocatalytic hydrogen evolution rate was observed for the two isomers, with one achieving a superb rate up to ~31.1 mmol h-1 g-1. This work achieves the first construction of complex orthorhombic 3D COFs, and offers new insights for the development of 3D COF-based high-performance photocatalysts.
Collapse
Affiliation(s)
- Wen-Zhuang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng-Ju Tian
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xiaolong Wan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoling Lei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Jia
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qiao-Yan Qi
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shun-Qi Xu
- School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, China
| | - Xin Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
10
|
Chi X, Zhang Z, Li M, Jiao Y, Li X, Meng F, Xue B, Wu D, Zhang F. Vinylene-Linking of Polycyclic Aromatic Hydrocarbons to π-Extended Two-Dimensional Covalent Organic Framework Photocatalyst for H 2O 2 Synthesis. Angew Chem Int Ed Engl 2025; 64:e202418895. [PMID: 39406685 DOI: 10.1002/anie.202418895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) hold the predominant role either as individual molecules or building blocks in the field of organic semiconductors or nanocarbons. Connecting PAHs via sp2-carbon bridges to form high-crystalline π-extended structures is highly desired not only for enlarging the regimes of two-dimensional materials but also for achieving exceptional properties/functions. In this work, we developed 5,10-dimethyl-4,9-diazapyrene as a key monomer, whose two methyl groups at the positions adjacent to nitrogen atoms, can helpfully increase the solubility, and serve as the active connection sites. In the presence of organic acids, this monomer enables smoothly conducting Knoevenagel condensation to form two vinylene-linked PAH-cored COFs, which show high-crystalline honeycomb structures with large surface areas up to 1238 m2 g-1. Owing to the direct connection mode of PAH building blocks with vinylene, the as-prepared COFs possess spatially extended π-conjugation and substantial semiconducting properties. Consequently, their visible-light photocatalysis with exceptional activity and durability was manifested to generate H2O2 up to 3820 μmol g-1 h-1 in pure water, and even 17080 μmol g-1 h-1 using benzyl alcohol as a hole sacrificial agent.
Collapse
Affiliation(s)
- Xu Chi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
11
|
Chen Y, Shen Z, Hu Y, Zhang H, Yin L, Zhao G, Hai G, Huang X. Photocatalytic detoxification of a sulfur mustard simulant using donor-enhanced porphyrin-based covalent-organic frameworks. NANOSCALE 2025; 17:2904-2911. [PMID: 39840940 DOI: 10.1039/d4nr05302h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Photocatalytic detoxification of sulfur mustards (e.g., bis (2-chloroethyl) sulfide, SM) is an effective approach for protecting the ecological environment and human health. In order to fabricate COFs with high performance for the selective transformation of the SM simulant 2-chloroethyl ethyl sulfide (CEES) to nontoxic 2-chloroethyl ethyl sulfoxide (CEESO), three porphyrin-based COFs with different donor groups (R = H, OH, and OMe) were synthesized. Among these COFs, COF-OMe, which possesses the strongest electron-donating ability, demonstrated a faster and higher detoxification rate of CEES at various concentrations, achieving selective oxidation of CEES to non-toxic CEESO with 99.2% conversion and 100% selectivity using white LED light irradiation within three hours. The facilitated charge transfer and separation as well as efficaciously produced reactive oxygen species (ROS), including singlet oxygen (1O2) and superoxide radical anions (O2˙-) are supposed to contribute to the excellent performance. The results demonstrated that the donor-enhanced porphyrin-based COFs could act as heterogeneous photocatalysts for visible light driven organic transformation and detoxification of sulfur mustards.
Collapse
Affiliation(s)
- Yana Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
| | - Haotian Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
| | - Lisha Yin
- Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, P. R. China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
| | - Guangtong Hai
- Institute of Zhejiang University-Quzhou, Zhejiang University, Quzhou 324000, P. R. China.
| | - Xiubing Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
12
|
Li N, Zhang J, Xie X, Wang K, Qi D, Liu J, Lan YQ, Jiang J. 3D N-heterocyclic covalent organic frameworks for urea photosynthesis from NH 3 and CO 2. Nat Commun 2025; 16:1106. [PMID: 39875391 PMCID: PMC11775333 DOI: 10.1038/s41467-025-56307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Artificial photosynthesis of urea from NH3 and CO2 seems to remain still essentially unexplored. Herein, three isomorphic three-dimensional covalent organic frameworks with twofold interpenetrated ffc topology are functionalized by benzene, pyrazine, and tetrazine active moieties, respectively. A series of experiment results disclose the gradually enhanced conductivity, light-harvesting capacity, photogenerated carrier separation efficiency, and co-adsorption capacity towards NH3 and CO2 in the order of benzene-, pyrazine-, and tetrazine-containing framework. This in turn endows tetrazine-containing framework with superior photocatalytic activity towards urea production from NH3 and CO2 with the yield of 523 μmol g-1 h-1, 40 and 4 times higher than that for benzene- and pyrazine-containing framework, respectively, indicating the heterocyclic N microenvironment-dependent catalytic performance for these three photocatalysts. This is further confirmed by in-situ spectroscopic characterization and density functional theory calculations. This work lays a way towards sustainable photosynthesis of urea.
Collapse
Affiliation(s)
- Ning Li
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiale Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiangdong Xie
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Kang Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
13
|
Chen F, Zheng H, Yusran Y, Li H, Qiu S, Fang Q. Exploring high-connectivity three-dimensional covalent organic frameworks: topologies, structures, and emerging applications. Chem Soc Rev 2025; 54:484-514. [PMID: 39585733 DOI: 10.1039/d4cs00703d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) represent a highly versatile class of crystalline porous materials, formed by the deliberate assembly of organic building units into ordered two-dimensional (2D) and three-dimensional (3D) structures. Their unique combination of topological precision and tunable micro- or mesoporous architectures offers unmatched flexibility in material design. By selecting specific building units, reactive sites, and functional groups, COFs can be engineered to achieve customized skeletal, porous, and interfacial properties, opening the door to materials with optimized performance for diverse applications. Among recent advances, high-connectivity 3D COFs have emerged as a particularly exciting development, with their intricate network structures enabling unprecedented levels of structural complexity, stability, and functionality. This review provides a comprehensive overview of the synthesis strategies, topological design principles, structural characterization techniques, and emerging applications of high-connectivity 3D COFs. We explore their potential across a broad range of cutting-edge applications, including gas adsorption and separation, macromolecule adsorption, dye removal, photocatalysis, electrocatalysis, lithium-sulfur batteries, and charge transport. By examining these key areas, we aim to deepen the understanding of the intricate relationship between structure and function, guiding the rational design of next-generation COF materials. The continued advancements in this field hold immense promise for revolutionizing sectors such as energy storage, catalysis, and molecular separation, making high-connectivity 3D COFs a cornerstone for future technological innovations.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
14
|
Zhu RM, Liu Y, Han WK, Feng JD, Zhang J, Pang H, Zhang J, Gu ZG. Three-Dimensional Covalent Organic Frameworks Based on Linear and Trigonal Linkers for High-Performance H 2O 2 Photosynthesis. Angew Chem Int Ed Engl 2025; 64:e202412890. [PMID: 39148428 DOI: 10.1002/anie.202412890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
The design of three-dimensional covalent organic frameworks (3D COFs) using linear and trigonal linkers remains challenging due to the difficulty in achieving a specific non-planar spatial arrangement with low-connectivity building units. Here, we report the novel 3D COFs with linear and trigonal linkers, termed TMB-COFs, exhibiting srs topology. The steric hindrance provides an additional force to alter the torsion angles of peripheral triangular units, guiding the linear unit to connect with the trigonal unit into 3D srs frameworks, rather than the more commonly observed two-dimensional (2D) hcb structures. Furthermore, we comprehensively examined the hydrogen peroxide photocatalytic production capacity of the TMB-COFs in comparison with analogous 2D COFs. The experimental results and DFT calculations demonstrate a significant enhancement in photocatalytic hydrogen peroxide production efficacy through framework regulation. This work emphasizes the steric configuration using low connectivity building units, offering a fresh perspective on the design and application of 3D COFs.
Collapse
Affiliation(s)
- Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Jinfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jiangwei Zhang
- College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
15
|
Jin Y, Zhi Q, Wang H, Zhan X, Qi D, Yu B, Ding X, Wang T, Liu H, Tang M, Liu J, Jiang J. Robust dioxin-linked metallophthalocyanine tbo topology covalent organic frameworks and their photocatalytic properties. Natl Sci Rev 2025; 12:nwae396. [PMID: 39831002 PMCID: PMC11740510 DOI: 10.1093/nsr/nwae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 01/22/2025] Open
Abstract
Constructing 3D functional covalent organic frameworks (COFs) with both robust linkage and planar macrocycle building blocks still remains a challenge due to the difficulty in adjusting both the crystallinity and the dominant 2D structures. In addition, it is also challenging to selectively convert inert C(sp3)-H bonds into value-added chemicals. Herein, robust 3D COFs, USTB-28-M (M=Co, Ni, Cu), have been polymerized from the nucleophilic aromatic substitution reaction of D 3h-symmetric 2,3,6,7,14,15-hexahydroxyltriptycene with D 4h-symmetric hexadecafluorophthalocyanine (MPcF16) under solvothermal conditions. These chemically stable dioxin-linked COFs show isostructural tbo topology made up of three kinds of polyhedron subunits, exhibiting high Brunauer-Emmett-Teller surface areas of ≤1477 m2 g-1. In particular, the multiple polyhedron subunits in USTB-28-M could trap N-hydroxyphthalimide at their corners for easily forming stable phthalimide-N-oxyl radicals under visible-light irradiation. The generated radicals efficiently promote the aerobic oxidation of alkyl benzenes with an inert C(sp3)-H bond into various ketones. Among the three investigated COFs, the USTB-28-Co radical initiator exhibits the best photocatalytic oxidation activity, converting ethylbenzene into acetophenone with a turnover frequency of 63 h-1, which is much higher than those of the monomer CoPcF16 (8 h-1) and 2D dioxin-linked counterparts (13 h-1). This is due to the much prolonged lifetime of the excited state for USTB-28-Co based on the femtosecond transient absorption result. The present work not only presents 3D functional COFs with robust connection and permanent porosity, but also illustrates the uniqueness of porous structures of 3D COFs for high-performance photocatalysis.
Collapse
Affiliation(s)
- Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianjun Zhi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianying Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Heyuan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Jie Liu
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
16
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
17
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
18
|
Zhu M, Wang QL, Huang H, Mao G, Deng GJ. General Defluoroalkylation of Trifluoromethylarenes with Both Electron-Donating and -Withdrawing Alkenes. J Org Chem 2024; 89:12591-12609. [PMID: 39141011 DOI: 10.1021/acs.joc.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The incorporation of gem-difluoromethylene units into organic molecules remains a formidable challenge. Conventional methodologies for constructing aryldifluoromethyl derivatives relied on the use of high-functional fluorinating regents under harsh conditions. Herein, we report general and efficient photoredox catalytic systems for defluoroalkylation of readily available trifluoromethylarenes through selective C-F cleavage to deliver gem-difluoromethyl radicals which proceed through reductive addition to both electron-donating and withdrawing alkenes under transition-metal free conditions. Mechanistic studies reveal that thiol serves as both photocatalyst and HAT reagent under visible light irradiation. This synergistic photocatalysis and HAT catalysis protocol exhibits ample and salient features such as high chemo- and regioselectivity, broad substrate scope, amenable gram-scale synthesis and late-stage modification of bioactive molecules.
Collapse
Affiliation(s)
- Mengqi Zhu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiao-Lin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
Cheng C, Liu Y, Sheng G, Jiang X, Kang X, Jiang C, Liu Y, Zhu Y, Cui Y. Construction of Benzoxazine-linked One-Dimensional Covalent Organic Frameworks Using the Mannich Reaction. Angew Chem Int Ed Engl 2024; 63:e202403473. [PMID: 38829678 DOI: 10.1002/anie.202403473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xinru Jiang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Li C, Yan Q, Xu H, Luo S, Hu H, Wang S, Su X, Xiao S, Gao Y. Highly Efficient Capture of Volatile Iodine by Conjugated Microporous Polymers Constructed Using Planar 3- and 4-Connected Organic Monomers. Molecules 2024; 29:2242. [PMID: 38792104 PMCID: PMC11124010 DOI: 10.3390/molecules29102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The effective capture and recovery of radioiodine species associated with nuclear fuel reprocessing is of significant importance in nuclear power plants. Porous materials have been proven to be one of the most effective adsorbents for the capture of radioiodine. In this work, we design and synthesize a series of conjugated microporous polymers (CMPs), namely, TPDA-TFPB CMP, TPDA-TATBA CMP, and TPDA-TECHO CMP, which are constructed based on a planar rectangular 4-connected organic monomer and three triangular 3-connected organic monomers, respectively. The resultant CMPs are characterized using various characterization techniques and used as effective adsorbents for iodine capture. Our experiments indicated that the CMPs exhibit excellent iodine adsorption capacities as high as 6.48, 6.25, and 6.37 g g-1 at 348 K and ambient pressure. The adsorption mechanism was further investigated and the strong chemical adsorption between the iodine and the imine/tertiary ammonia of the CMPs, 3D network structure with accessible hierarchical pores, uniform micromorphology, wide π-conjugated structure, and high-density Lewis-base sites synergistically contribute to their excellent iodine adsorption performance. Moreover, the CMPs demonstrated good recyclability. This work provides guidance for the construction of novel iodine adsorbent materials with high efficiency in the nuclear power field.
Collapse
Affiliation(s)
- Chaohui Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China;
| | - Siyu Luo
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (C.L.); (Q.Y.); (S.L.); (X.S.); (Y.G.)
| |
Collapse
|
21
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
22
|
Das S, Mabuchi H, Irie T, Sasaki K, Nozaki M, Tomioka R, Wen D, Zhao Y, Ben T, Negishi Y. 3D Covalent Organic Framework with "the" Topology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307666. [PMID: 38279566 DOI: 10.1002/smll.202307666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Discovery of new topology covalent organic frameworks (COFs) is a mainstay in reticular chemistry and materials research because it not only serves as a stepwise guide to the designed construction of covalent-organic architectures but also helps to comprehend function from structural design point-of-view. Proceeding on this track, the first 3D COF, TUS-38, with the topology is constructed by reticulating a planar triangular 3-c node of D3h symmetry with a tetragonal prism 8-c node of D2h symmetry via [3 + 8] reversible imine condensation reaction. TUS-38 represents a twofold interpenetrated multidirectional pore network with a high degree of crystallinity and structural integrity. Interestingly, stemming from the nitrogen-rich s-triazine rings with electron-deficient character and ─C ═ N─ linkages composing the TUS-38 framework that benefit to the charge-transfer and hence dipole-dipole electrostatic interactions between the framework and iodine in addition to exclusive topological characteristics of the exotic the net, TUS-38 achieves an exemplary capacity for iodine vapor uptake reaching 6.3 g g-1. Recyclability studies evidence that TUS-38 can be reused at least five times retaining 95% of its initial adsorption capacity; while density functional theory (DFT) calculations have heightened the understanding of the interactions between iodine molecules and the framework.
Collapse
Affiliation(s)
- Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Kohki Sasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Mika Nozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Rina Tomioka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
23
|
Wang X, Jin Y, Li N, Zhang H, Liu X, Yang X, Pan H, Wang T, Wang K, Qi D, Jiang J. 12 Connecting Sites Linked Three-dimensional Covalent Organic Frameworks with Intrinsic Non-interpenetrated shp Topology for Photocatalytic H 2O 2 Synthesis. Angew Chem Int Ed Engl 2024; 63:e202401014. [PMID: 38334002 DOI: 10.1002/anie.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
Developing high connectivity (>8) three-dimensional (3D) covalent organic frameworks (COFs) towards new topologies and functions remains a great challenge owing to the difficulty in getting high connectivity organic building blocks. This however represents the most important step towards promoting the diversity of COFs due to the still limited dynamic covalent bonds available for constructing COFs at this stage. Herein, highly connected phthalocyanine-based (Pc-based) 3D COFs MPc-THHI-COFs (M=H2, Ni) were afforded from the reaction between 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine M(TAPc) (M=H2, Ni) and 5,5',5'',5''',5'''',5'''''-(triphenylene-2,3,6,7,10,11-hexayl)hexa(isophthalohydrazide) (THHI) with 12 connecting sites. Powder X-ray diffraction analysis together with theoretical simulations and transmission electron microscopy reveals their crystalline nature with an unprecedented non-interpenetrated shp topology. Experimental and theoretical investigations disclose the broadened visible light absorption range and narrow optical band gap of MPc-THHI-COFs. This in combination with their 3D nanochannels endows them with efficient photocatalysis performance for H2O2 generation from O2 and H2O via 2e- oxygen reduction reaction and 2e- water oxidation reaction under visible-light irradiation (λ >400 nm). This work provides valuable result for the development of high connectivity functional COFs towards diverse application potentials.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Houhe Pan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
24
|
Ma TR, Ge F, Ke SW, Lv S, Yang ZM, Zhou XC, Liu C, Wu XJ, Yuan S, Zuo JL. Accessible Tetrathiafulvalene Moieties in a 3D Covalent Organic Framework for Enhanced Near-Infrared Photo-Thermal Conversion and Photo-Electrical Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308013. [PMID: 37988642 DOI: 10.1002/smll.202308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples (I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.
Collapse
Affiliation(s)
- Tian-Rui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Feiyue Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Sen Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
25
|
Al-Dolaimy F, Saraswat SK, Hussein BA, Hussein UAR, Saeed SM, Kareem AT, Abdulwahid AS, Mizal TL, Muzammil K, Alawadi AH, Alsalamy A, Hussin F, Kzarb MH. A review of recent advancement in covalent organic framework (COFs) synthesis and characterization with a focus on their applications in antibacterial activity. Micron 2024; 179:103595. [PMID: 38341939 DOI: 10.1016/j.micron.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.
Collapse
Affiliation(s)
| | | | - Baydaa Abed Hussein
- Department of Medical Engineering, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq.
| | | | | | - Ashwaq Talib Kareem
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq.
| | | | - Thair L Mizal
- Department of Medical Engineering, Al-Esraa University College, Baghdad, Iraq.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA.
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Najaf, Iraq.
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq.
| | - Farah Hussin
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq.
| | - Mazin Hadi Kzarb
- College of Physical Education and Sport Sciences, Al-Mustaqbal University, 51001 Hillah, Babil, Iraq.
| |
Collapse
|
26
|
Kang X, Cheng C, Chen X, Dong J, Liu Y, Cui Y. Three-Dimensional Homochiral Covalent Organic Frameworks with Intrinsic Chiral qzd Topology. J Am Chem Soc 2024; 146:8407-8416. [PMID: 38482804 DOI: 10.1021/jacs.3c14230] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Although a variety of chiral porous framework materials have been reported, there are few examples known to combine molecular chirality, helicity, and three-dimensional (3D) intrinsically chiral topology in one structure, which is beneficial for chirality transfer and amplification. Here, we report the synthesis of the first two 3D covalent organic frameworks (COFs) with an intrinsic chiral qzd topology, which exhibit unusual integration of various homochiral and homohelical features. By imine condensation of 4-connected porphyrin tetraamines and 2-connected enantiopure diene dialdehyde, we prepared two isostructural COFs with a noninterpenetrated qzd topology. The specific geometry and conformation flexibility of the V-shaped diene linker control the alignment of square-planar porphyrin units with rotational linkages and facilitate the creation of homochiral extended porous structures that feature a helical arrangement of porphyrins. Post-synthetic metalation of CCOF 23 with Rh(I) affords a heterogeneous catalyst for the asymmetric Michael addition reaction of aryl boronic acids to 2-cyclohexenone, which shows higher enantioselectivities compared to their homogeneous counterparts, presumably due to the confined effect of helical channels. This finding will provide an impetus to explore multichirality materials, offering new insights into the generation and control of helicity, homochirality, and enantioselectivity in the solid state.
Collapse
Affiliation(s)
- Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Han X, Jiang C, Hou B, Liu Y, Cui Y. Covalent Organic Frameworks with Tunable Chirality for Chiral-Induced Spin Selectivity. J Am Chem Soc 2024; 146:6733-6743. [PMID: 38418379 DOI: 10.1021/jacs.3c13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Chiral covalent organic frameworks (CCOFs) have attracted extensive interest for their potential applications in various enantioselective processes. However, the exploitation of chirality-induced spin selectivity (CISS) that enables a new technology for the injection of spin polarized current without the need for a permanent magnetic layer within CCOFs remains a largely untapped area of research. Here, we demonstrate that, for the first time, COFs can be an attractive platform to develop spin filter materials with efficient CISS. This facilitates the design and synthesis of a new family of Zn(salen)-based 2D CCOFs, namely, CCOFs-9-12, by imine condensation of chiral 1,2-diaminocyclohexane and tri- or tetra(salicylaldehyde) derivatives. CCOF-9, distinguished by its unique C2 symmetric "armchair" tetrasubstituted pyrene conformation, exhibits the most pronounced chirality among these materials and serves as a solid-state host, enabling the enantioselective adsorption of racemic drugs with an enantiomeric excess (ee) of up to 97%. After substituting diamagnetic zinc(II) ions for paramagnetic cobalt(II), the resulting CCOF-9-Co not only retains its high crystallinity, porosity, and exceptional chirality but also exhibits enhanced conductivity, a crucial factor for the effective observation of CISS. Magnetic conductive atomic force microscopy showed that CCOF-9-Co exhibited a remarkable CISS effect with up to an 88-94% spin polarization ratio. This phenomenon is further confirmed by the increased intensity in the magnetic circular dichroism (MCD) when CCOF-9-Co is under an external magnetic field. This work therefore shows the tremendous potential of CCOFs for controlling spin selectivity and will stimulate the creation of new types of crystalline polymers with strong CISS effects for spin filters.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Li Z, Xu G, Zhang C, Ma S, Jiang Y, Xiong H, Tian G, Wu Y, Wei Y, Chen X, Yang Y, Wei F. Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with lnj Topology. J Am Chem Soc 2024; 146:4327-4332. [PMID: 38277433 DOI: 10.1021/jacs.3c12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The structural exploration of three-dimensional covalent organic frameworks (3D COFs) is of great significance to the development of COF materials. Different from structurally diverse MOFs, which have a variety of connectivity (3-24), now the valency of 3D COFs is limited to only 4, 6, and 8. Therefore, the exploration of organic building blocks with higher connectivity is a necessary path to broaden the scope of 3D COF structures. Herein, for the first time, we have designed and synthesized a 12-connected triptycene-based precursor (triptycene-12-CHO) with 12 symmetrical distributions of aldehyde groups, which is also the highest valency reported until now. Based on this unique 12-connected structure, we have successfully prepared a novel 3D COF with lnj topology (termed 3D-lnj-COF). The as-synthesized 3D COF exhibits honeycomb main pores and permanent porosity with a Brunauer-Emmett-Teller surface area of 1159.6 m2 g-1. This work not only provides a strategy for synthesizing precursors with a high connectivity but also provides inspiration for enriching the variety of 3D COFs.
Collapse
Affiliation(s)
- Zonglong Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guojie Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, China
| | - Shuan Ma
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaxin Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanzhou Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yen Wei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Ordos Laboratory, Ordos, Inner Mongolia 017010, China
| |
Collapse
|
29
|
Zhou LL, Guan Q, Dong YB. Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202314763. [PMID: 37983842 DOI: 10.1002/anie.202314763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa, Macau SAR, 999078, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
30
|
Chang J, Chen F, Li H, Suo J, Zheng H, Zhang J, Wang Z, Zhu L, Valtchev V, Qiu S, Fang Q. Three-dimensional covalent organic frameworks with nia nets for efficient separation of benzene/cyclohexane mixtures. Nat Commun 2024; 15:813. [PMID: 38280854 PMCID: PMC10821887 DOI: 10.1038/s41467-024-45005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
The synthesis of three-dimensional covalent organic frameworks with highly connected building blocks presents a significant challenge. In this study, we report two 3D COFs with the nia topology, named JUC-641 and JUC-642, by introducing planar hexagonal and triangular prism nodes. Notably, our adsorption studies and breakthrough experiments reveal that both COFs exhibit exceptional separation capabilities, surpassing previously reported 3D COFs and most porous organic polymers, with a separation factor of up to 2.02 for benzene and cyclohexane. Additionally, dispersion-corrected density functional theory analysis suggests that the good performance of these 3D COFs can be attributed to the incorporation of highly aromatic building blocks and the presence of extensive pore structures. Consequently, this research not only expands the diversity of COFs but also highlights the potential of functional COF materials as promising candidates for environmentally-friendly separation applications.
Collapse
Affiliation(s)
- Jianhong Chang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Zitao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
31
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
32
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
33
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
34
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
35
|
Zhu D, Zhu Y, Chen Y, Yan Q, Wu H, Liu CY, Wang X, Alemany LB, Gao G, Senftle TP, Peng Y, Wu X, Verduzco R. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023; 14:2865. [PMID: 37208348 DOI: 10.1038/s41467-023-38538-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/06/2023] [Indexed: 05/21/2023] Open
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) possess higher surface areas, more abundant pore channels, and lower density compared to their two-dimensional counterparts which makes the development of 3D COFs interesting from a fundamental and practical point of view. However, the construction of highly crystalline 3D COF remains challenging. At the same time, the choice of topologies in 3D COFs is limited by the crystallization problem, the lack of availability of suitable building blocks with appropriate reactivity and symmetries, and the difficulties in crystalline structure determination. Herein, we report two highly crystalline 3D COFs with pto and mhq-z topologies designed by rationally selecting rectangular-planar and trigonal-planar building blocks with appropriate conformational strains. The pto 3D COFs show a large pore size of 46 Å with an extremely low calculated density. The mhq-z net topology is solely constructed from totally face-enclosed organic polyhedra displaying a precise uniform micropore size of 1.0 nm. The 3D COFs show a high CO2 adsorption capacity at room temperature and can potentially serve as promising carbon capture adsorbents. This work expands the choice of accessible 3D COF topologies, enriching the structural versatility of COFs.
Collapse
Affiliation(s)
- Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
| | - Han Wu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lawrence B Alemany
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaowei Wu
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-325, Houston, TX, 77005, USA.
| |
Collapse
|
36
|
Yuan Y, Bang KT, Wang R, Kim Y. Macrocycle-Based Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210952. [PMID: 36608278 DOI: 10.1002/adma.202210952] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Macrocycles with well-defined cavities and the ability to undergo supramolecular interactions are classical materials that have played an essential role in materials science. However, one of the most substantial barriers limiting the utilization of macrocycles is their aggregation, which blocks the active regions. Among many attempted strategies to prevent such aggregation, installing macrocycles into covalent organic frameworks (COFs), which are porous and stable reticular networks, has emerged as an ideal solution. The resulting macrocycle-based COFs (M-COFs) preserve the macrocycles' unique activities, enabling applications in various fields such as single-atom catalysis, adsorption/separation, optoelectronics, phototherapy, and structural design of forming single-layered or mechanically interlocked COFs. The resulting properties are unmatchable by any combination of macrocycles with other substrates, opening a new chapter in advanced materials. This review focuses on the latest progress in the concepts, synthesis, properties, and applications of M-COFs, and presents an in-depth outlook on the challenges and opportunities in this emerging field.
Collapse
Affiliation(s)
- Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ki-Taek Bang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
37
|
Liu W, Wang K, Zhan X, Liu Z, Yang X, Jin Y, Yu B, Gong L, Wang H, Qi D, Yuan D, Jiang J. Highly Connected Three-Dimensional Covalent Organic Framework with Flu Topology for High-Performance Li-S Batteries. J Am Chem Soc 2023; 145:8141-8149. [PMID: 36989190 DOI: 10.1021/jacs.3c01102] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lithium-sulfur batteries (LSBs) have been considered as a promising candidate for next-generation energy storage devices, which however still suffer from the shuttle effect of the intermediate lithium polysulfides (LiPSs). Covalent-organic frameworks (COFs) have exhibited great potential as sulfur hosts for LSBs to solve such a problem. Herein, a pentiptycene-based D2h symmetrical octatopic polyaldehyde, 6,13-dimethoxy-2,3,9,10,18,19,24,25-octa(4'-formylphenyl)pentiptycene (DMOPTP), was prepared and utilized as a building block toward preparing COFs. Condensation of DMOPTP with 4-connected tetrakis(4-aminophenyl)methane affords an expanded [8 + 4] connected network 3D-flu-COF, with a flu topology. The non-interpenetrated nature of the flu topology endows 3D-flu-COF with a high Brunauer-Emmett-Teller surface area of 2860 m2 g-1, large octahedral cavities, and cross-linked tunnels in the framework, enabling a high loading capacity of sulfur (∼70 wt %), strong LiPS adsorption capability, and facile ion diffusion. Remarkably, when used as a sulfur host for LSBs, 3D-flu-COF delivers a high capacity of 1249 mA h g-1 at 0.2 C (1.0 C = 1675 mA g-1), outstanding rate capability (764 mA h g-1 at 5.0 C), and excellent stability, representing one of the best results among the thus far reported COF-based sulfur host materials for LSBs and being competitive with the state-of-the-art inorganic host materials.
Collapse
Affiliation(s)
- Wenbo Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
38
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
39
|
Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers (Basel) 2023; 15:polym15040887. [PMID: 36850171 PMCID: PMC9959482 DOI: 10.3390/polym15040887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Collapse
|
40
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
41
|
Ning T, Di S, Li Z, Zhang H, Peng Z, Yang H, Chen P, Bao Y, Zhai Y, Zhu S. Fabrication of a core-shell porphyrin-based magnetic covalent organic framework for effective extraction of PCPs in a wide polarity range. Anal Chim Acta 2023; 1239:340615. [PMID: 36628698 DOI: 10.1016/j.aca.2022.340615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
A novel porphyrin-based magnetic covalent organic framework (PCOF) was first reported by using a facile synthetic procedure. The Fe3O4@NH2@PCOF nanospheres were utilized to effectively extract personal care products in a wide polarity range (log Kow values from 1.96 to 7.60). The successful magnetic solid-phase extraction (MSPE) of target analytes could be ascribed to the sufficient oxygen-, nitrogen- and phenyl-containing functional groups of the COF layer, which are demonstrated to be of good compatibility with pollutants exhibiting different polarities by using molecular dynamics simulations, independent gradient model analysis and various characterizations. The MSPE extraction efficiency was enhanced by optimizing key parameters. The findings indicated that the method had a wide linearity range (1-500 ng mL-1 for parabens and UV filters) and low detection limits (0.4-0.9 ng mL-1 for parabens and 0.2-0.6 ng mL-1 for UV filters). The accuracy was reflected by recoveries ranging from 74% to 114%. Satisfactory intra- and inter-day precisions from 3.0% to 9.8% and 0.5%-9.1% were obtained. Overall, the proposed MSPE-HPLC method is accurate and reliable for identifying parabens as well as UV filters in wastewater and swimming pool water. The potential of the method for evaluating human exposure risk was unfolded.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihan Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhangdi Peng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
42
|
Chen R, Zhao J, Yu Z, Cong M, Wang Y, Wang M, Li G, Li Z, Zhao Y. Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:830-837. [PMID: 36583732 DOI: 10.1021/acsami.2c14813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A fully π-conjugated nitrogen-rich three-dimensional covalent organic framework (PYTRI-COF-2) containing both pyrazine and triazine units was prepared through a post-synthetic strategy. The imine linkages in the pre-prepared PYTRI-COF-1 were converted into heterocyclic quinoline by the Povarov reaction. The obtained PYTRI-COF-2 displayed high Li-ion storage capacity and excellent cycling stability when it was used as the lithium (Li)-ion battery electrode.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingteng Zhao
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zefang Yu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Minghao Cong
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guoxing Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
43
|
Chen Z, Wang K, Tang Y, Li L, Hu X, Han M, Guo Z, Zhan H, Chen B. Reticular Synthesis of One-Dimensional Covalent Organic Frameworks with 4-c sql Topology for Enhanced Fluorescence Emission. Angew Chem Int Ed Engl 2023; 62:e202213268. [PMID: 36321392 DOI: 10.1002/anie.202213268] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 12/05/2022]
Abstract
Covalent organic frameworks (COFs) have been extensively investigated due to their unique structure, porosity, and functionality. However, at the topological level, COFs remain as two-dimensional (2D) or three-dimensional (3D) structures, while COFs with one-dimensional (1D) topology have not been systematically explored. In this work, we proposed a synthetic strategy for the construction of 1D-COFs based on non-linear edges and suitable high-symmetry vertices. Compared with their 2D-COFs counterparts, the 1D-COFs with AIEgens located at the vertex of the frame exhibited enhanced fluorescence. The density functional theory (DFT) calculations revealed that the dimensional-induced rotation restriction (DIRR) effect could spontaneously introduce additional non-covalent interactions between the strip frames, which could substantially diminish non-radiative transitions. This work also provides protocols for the design of 1D-COFs and a guidance scheme for the synthesis of emitting COFs.
Collapse
Affiliation(s)
- Ziao Chen
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Kai Wang
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Yumeng Tang
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Lan Li
- College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, 350018, Hangzhou, Zhejiang, P. R. China
| | - Xuening Hu
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Mingxi Han
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, P. R. China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, 78249-0698, San Antonio, TX, USA
| |
Collapse
|
44
|
Wang X, Liu H, Zhang J, Chen S. Covalent organic frameworks (COFs): a promising CO 2 capture candidate material. Polym Chem 2023. [DOI: 10.1039/d2py01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging kind of porous crystal material.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Haorui Liu
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jinrui Zhang
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuixia Chen
- PCFM Lab, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
- Materials Science Institute, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
45
|
Luan TX, Du L, Wang JR, Li K, Zhang Q, Li PZ, Zhao Y. Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework. ACS NANO 2022; 16:21565-21575. [PMID: 36472955 DOI: 10.1021/acsnano.2c10423] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing effective photosensitizers to initiate the generation of singlet oxygen (1O2) is of great significance in both chemistry and physiology. Herein, linking the photoactive porphyrin moieties by in situ-formed robust imidazole groups, a covalent organic framework (COF), PyPor-COF, was successfully designed and synthesized. Detailed characterizations reveal that it not only possesses high crystallinity, permanent porosity, and robust stability but also shows a semiconductive photoresponse activity. As demonstrated by electron paramagnetic resonance experiments, the COF can initiate the generation of 1O2 efficiently under visible-light irradiation, the efficiency of which is higher than that of the pristine porphyrin-based reactant and even higher than some commonly used commercially available photosensitizing agents. Anticancer experiments prove that it can efficiently trigger the production of 1O2 in a physiological environment. This work demonstrates that the imidazole-linked porphyrin-incorporated COF is a highly promising photosensitizer that can even be applied in photodynamic therapy.
Collapse
Affiliation(s)
- Tian-Xiang Luan
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Lehan Du
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, People's Republic of China
| | - Jia-Rui Wang
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Keyu Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, Shandong Province, People's Republic of China
| | - Quan Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Pei-Zhou Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, Shandong Province, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
46
|
Wang GB, Xie KH, Xu HP, Wang YJ, Zhao F, Geng Y, Dong YB. Covalent organic frameworks and their composites as multifunctional photocatalysts for efficient visible-light induced organic transformations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Finding the optimal CO2 adsorption material: Prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Chen Z, Wang K, Tang Y, Li L, Hu X, Han M, Guo Z, Zhan H, Chen B. Reticular Synthesis of One‐Dimensional Covalent Organic Frameworks with 4‐c sql Topology for Enhanced Fluorescence Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ziao Chen
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Kai Wang
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Yumeng Tang
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Lan Li
- College of Materials and Chemistry China Jiliang University 258 Xueyuan Street, Xiasha Higher Education Zone 350018 Hangzhou Zhejiang P. R. China
| | - Xuening Hu
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Mingxi Han
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering Fuzhou University 350108 Fuzhou Fujian P. R. China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA Circle 78249-0698 San Antonio TX USA
| |
Collapse
|
49
|
Reticular chemistry in action: 3D porphyrinic COFs with scu topology. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Zhao Y, Fang Q, Negishi Y. Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48045-48051. [PMID: 36252155 PMCID: PMC9614725 DOI: 10.1021/acsami.2c15152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) exemplify a new generation of crystalline extended solids with intriguing structures and unprecedented porosity. Notwithstanding substantial scope, the reticular synthesis of 3D COFs from pre-designed building units leading to new network topologies yet remains a demanding task owing to the shortage of 3D building units and inadequate reversibility of the linkages between the building units. In this work, by linking a tetragonal prism (8-connected) node with a square planar (4-connected) node, we report the first 3D COF with scu-c topology. The new COF, namely, TUS-84, features a two-fold interpenetrated structure with well-defined porosity and a Brunauer-Emmett-Teller surface area of 679 m2 g-1. In drug delivery applications, TUS-84 shows efficient drug loading and sustained release profile.
Collapse
Affiliation(s)
- Saikat Das
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Taishu Sekine
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Haruna Mabuchi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tsukasa Irie
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yu Zhao
- Zhejiang
Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing
Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Qianrong Fang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuichi Negishi
- Department
of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|