1
|
Yao W, Liu Z, Ling H, Wang H, Zheng H, Wang SH, Zhu DY, Zhang SY, Chen X. Convergent Total Synthesis of (-)-Calidoustene. J Am Chem Soc 2025; 147:15963-15969. [PMID: 40298127 DOI: 10.1021/jacs.5c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The first total synthesis of the sesterterpenoid (-)-calidoustene has been accomplished, featuring a stereoselective Michael/aldol cascade to construct the trans-hydrindane backbone, a tandem Pummerer/Sakurai cyclization to establish the bicyclo[3.2.1]octane framework, a metallaphotoredox enone coupling followed by MHAT-initiated cyclization to forge the congested central C-ring, and late-stage functionalization via Cu-catalyzed desaturation and diimide reduction.
Collapse
Affiliation(s)
- Weidong Yao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Ziqi Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hao Ling
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hongyu Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hufeng Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Sheng-Yong Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Xiaoming Chen
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China, 518055
| |
Collapse
|
2
|
Rao H, Deng BB, Sun P, Xia Q, Ding H. Forging the Tetracyclic Core Framework of Daphlongamine B Enabled by a Peripheral Derivation of the Aza-Angular Triquinane Strategy. Org Lett 2025; 27:1779-1785. [PMID: 39968966 DOI: 10.1021/acs.orglett.4c04548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
A synthetic route to the highly functionalized tetracyclic core framework of daphlongamine B is described. Key features of the strategy involve an oxidative dearomatization-induced [4+2] cycloaddition, a di-π-methane rearrangement, and a ring-closing metathesis reaction. Our approach enables the reliable construction of a fully elaborated tetracyclic precursor, which, in turn, provides valuable functional handles for further elaboration to the target molecule.
Collapse
Affiliation(s)
- Huijuanzi Rao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bin-Bin Deng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peijie Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qidong Xia
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Mao HK, Wang Q, Xie S, Xu J. Synthetic Study toward Daphnimacropodines. Org Lett 2024; 26:10616-10621. [PMID: 39629664 DOI: 10.1021/acs.orglett.4c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Daphnimacropodines A-C are members of a small but structurally distinct subfamily of Daphniphyllum alkaloids. Their congested polycyclic skeletons, and two vicinal quaternary stereocenters, present significant synthetic challenges. This paper describes two stereoselective approaches to constructing the tricyclic core structures of daphnimacropodines, achieved through a straightforward Rh-catalyzed [4 + 3] cycloaddition using simple building blocks. This work also highlights an intramolecular Heck reaction that rapidly assembles the cyclohexane ring moiety, a Tsuji-Trost allylation that forged the critical C-8 quaternary stereocenter, an efficient hetero-Diels-Alder reaction, and an intramolecular nucleophilic addition, which paved the way to the key cyclopentane ring. The assembly of the tetrahydropyrrole motif was also investigated.
Collapse
Affiliation(s)
- Hai-Kang Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Qian Wang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Sujun Xie
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| |
Collapse
|
4
|
Wright BA, Okada T, Regni A, Luchini G, Sowndarya S V S, Chaisan N, Kölbl S, Kim SF, Paton RS, Sarpong R. Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline. J Am Chem Soc 2024; 146:33130-33148. [PMID: 39565045 DOI: 10.1021/jacs.4c11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this report, we detail two distinct synthetic approaches to calyciphylline A-type Daphniphyllum alkaloids himalensine A and daphenylline, which are inspired by our analysis of the structural complexity of these compounds. Using MolComplex, a Python-based web application that we have developed, we quantified the structural complexity of all possible precursors resulting from one-bond retrosynthetic disconnections. This led to the identification of transannular bonds as especially simplifying to the molecular graph, and, based on this analysis, we pursued a total synthesis of himalensine A from macrocyclic intermediates with planned late-stage transannular ring formations. Despite initial setbacks in accessing an originally designed macrocycle, targeting a simplified macrocycle ultimately enabled investigation of this intermediate's unique transannular reactivity. Given the lack of success to access himalensine A based solely on molecular graph analysis, we revised our approach to the related alkaloid, daphenylline. Herein, we also provide the details of the various synthetic challenges that we encountered and overcame en route to a total synthesis of daphenylline. First, optimization of a Rh-mediated intramolecular Buchner/6π-electrocyclic ring-opening sequence enabled construction of the pentacyclic core. We then describe various attempts to install a key quaternary methyl group and, ultimately, our solution to leverage a [2 + 2] photocycloaddition/bond cleavage sequence to achieve this elusive goal. Finally, a late-stage Friedel-Crafts cyclization and deoxygenation facilitated the 11-step total synthesis, which was made formally enantioselective by a Rh-mediated dihydropyridone conjugate arylation. Complexity analysis of the daphenylline synthesis highlights how complexity-building/C-C cleavage combinations can be uniquely effective in achieving synthetic outcomes.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taku Okada
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alessio Regni
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Guilian Luchini
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shree Sowndarya S V
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nattawadee Chaisan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sebastian Kölbl
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Chen L, Lv C, Meng Y, Yang Z, Xin W, Zhu Y, Wang X, Wang B, Ding X, Wang Z, Wei X, Zhang X, Fu X, Meng X, Zhang M, Huo M, Li Y, Yu H, Wei Y, Geng L. The Latest Progress in the Chemistry of Daphniphyllum Alkaloids. Molecules 2024; 29:5498. [PMID: 39683658 DOI: 10.3390/molecules29235498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Daphniphyllum alkaloids (DAs) are interesting molecules with rich molecular skeletons and diverse biological activities. Since their discovery, phytochemists have isolated, purified, and identified more than 350 DAs. Synthetic chemists, attracted by the structure and activity of DAs, have accomplished many elegant synthetic jobs. Herein, we summarize work on the isolation, structural identification, bioactivity testing, and synthesis of DAs from 2018 to 2023, with the aim of providing a reference for future studies.
Collapse
Affiliation(s)
- Lujuan Chen
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Chao Lv
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yinping Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhen Yang
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Wenbin Xin
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Yuxue Zhu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuehan Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Baozhen Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuan Ding
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Zhaoxia Wang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuyue Wei
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xinyue Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xuexue Fu
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangru Meng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Meimei Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Manyu Huo
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ying Li
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Hui Yu
- Health and Medicine College, Dezhou University, Dezhou 253023, China
| | - Yuxia Wei
- School of Life Sciences, Dezhou University, Dezhou 253023, China
| | - Longlong Geng
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| |
Collapse
|
6
|
Dohoda AF, Rishwain N, Tran YN, Michael FE. α'-Selective Selenium-catalyzed Allylic C-H Amination of Enol Derivatives. Angew Chem Int Ed Engl 2024; 63:e202408333. [PMID: 38977425 DOI: 10.1002/anie.202408333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A transition metal-free Se-catalyzed C-H amination protocol for α'-amination of enol derivatives has been developed. This reaction can be used to functionalize a wide variety of oxygen- and halogen-substituted alkenes spanning a vast range of nucleophilicities, giving α'-aminated enol derivatives with high regioselectivity. Amination of E/Z mixtures of alkenes proceeds stereoconvergently to give the (Z)-enol derivatives exclusively. Mechanistic studies revealed that the relative reactivity and α'-regioselectivity of these transformations is determined by substantial resonance donation to the heteroatom-bound carbon in the transition state. These products participate in traditional reactions of enol derivatives, allowing for efficient functionalization of both α- and α'-positions from a single enol derivative with high diastereocontrol.
Collapse
Affiliation(s)
| | - Nicole Rishwain
- Department of Chemistry, University of, Washington, Box 351700
| | - Y-Nhi Tran
- Department of Chemistry, University of, Washington, Box 351700
| | | |
Collapse
|
7
|
Essayan DE, Schubach MJ, Smoot JM, Puri T, Pronin SV. Directed Hydrogen Atom Transfer for Selective Reactions of Polyenols. J Am Chem Soc 2024; 146:18224-18229. [PMID: 38917421 PMCID: PMC11694355 DOI: 10.1021/jacs.4c06601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Directed hydrogen atom transfer to alkenes is described. The process is catalyzed by iron complexes and allows for the site-selective hydrofunctionalization of polyenols. Experimental data suggest that coordination of the hydroxy group to the iron hydride intermediate plays an important role in preferential engagement of the allylic alcohol motif and provides a new basis for selectivity in radical hydrofunctionalization events. As a proof of concept, β- and γ-amino alcohols are prepared from the corresponding polyenols in a selective manner.
Collapse
Affiliation(s)
- Daniel E. Essayan
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Matthew J. Schubach
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jeanelle M. Smoot
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Taranee Puri
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V. Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Wu BL, Yao JN, Long XX, Tan ZQ, Liang X, Feng L, Wei K, Yang YR. Enantioselective Total Synthesis of (-)-Daphenylline. J Am Chem Soc 2024; 146:1262-1268. [PMID: 38180776 DOI: 10.1021/jacs.3c12741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A concise enantioselective total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid with a unique benzene ring, was achieved in 14 steps. The synthesis commences with two chiral stereocenters, C2 and C18, readily installed via Carreira's Ir/amine dual-catalyzed allylation. The allylic bridgehead amine 6 was rapidly prepared through Wickens' photoredox-catalyzed hydrocarboxylation of olefin and CuBr2-catalyzed α-amination of ketone. The tetracycle 4 was formed via Pd-catalyzed reductive Heck reaction or, more concisely, by Krische's Rh-catalyzed reductive 1,6-enyne cyclization. In this synthesis, newly reported Wickens' photoredox-catalyzed hydrocarboxylation was used twice, and Friedel-Crafts acylation thrice.
Collapse
Affiliation(s)
- Bing-Lu Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Neng Yao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiang-Xi Long
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qin Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Feng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
9
|
Bray JM, Stephens SM, Weierbach SM, Vargas K, Lambert KM. Recent advancements in the use of Bobbitt's salt and 4-acetamidoTEMPO. Chem Commun (Camb) 2023; 59:14063-14092. [PMID: 37946555 DOI: 10.1039/d3cc04709a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Recent advances in synthetic methodologies for selective, oxidative transformations using Bobbitt's salt (4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate, 1) and its stable organic nitroxide counterpart ACT (4-acetamidoTEMPO, 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl, 2) have led to increased applications across a broad array of disciplines. Current applications and mechanistic understanding of these metal-free, environmentally benign, and easily accessible organic oxidants now span well-beyond the seminal use of 1 and 2 in selective alcohol oxidations. New synthetic methodologies for the oxidation of alcohols, ethers, amines, thiols, C-H bonds and other functional groups with 1 and 2 along with the field's current mechanistic understandings of these processes are presented alongside our contributions in this area. Exciting new areas harnessing the unique properties of these oxidants include: applications to drug discovery and natural product total synthesis, the development of new electrocatalytic methods for depolymerization of lignin and modification of other biopolymers, in vitro and in vivo nucleoside modifications, applications in supramolecular catalysis, the synthesis of new polymers and materials, enhancements in the design of organic redox flow batteries, uses in organic fuel cells, applications and advancements in energy storage, the development of electrochemical sensors, and the production of renewable fuels.
Collapse
Affiliation(s)
- Jean M Bray
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Karen Vargas
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| |
Collapse
|
10
|
Fan S, Jiang T, Siddique MN, Zhang L, Liu J, Wang X. Total Synthesis of Nikkomycin S z and Nikkomycin So z. Org Lett 2023; 25:7832-7835. [PMID: 37870307 DOI: 10.1021/acs.orglett.3c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The nikkomycins Sz/Soz are a class of locked nucleoside antibiotics that share a common [5,6] trans-bicyclic core. Herein we present an efficient synthesis of these nikkomycins from diene, using neighboring group participation N-glycosylation and stereoselective oxidation state installation. This synthetic strategy overcomes several challenges due to the poor redox tolerance of the uracil base, the high strain of the trans-fused furanopyran C8 monosaccharides, and the acid-sensitive glycosidic bond when dealing with the deoxynucleotide natural product nikkomycin Sz.
Collapse
Affiliation(s)
- Shuai Fan
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tai Jiang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Muhammad Nasir Siddique
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lei Zhang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jian Liu
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
11
|
Zou YP, Lai ZL, Zhang MW, Peng J, Ning S, Li CC. Total Synthesis of (±)- and (-)-Daphnillonin B. J Am Chem Soc 2023; 145:10998-11004. [PMID: 37167083 DOI: 10.1021/jacs.3c03755] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first total synthesis of (±)- and (-)-daphnillonin B, a daphnicyclidin-type alkaloid with a new [7-6-5-7-5-5] A/B/C/D/E/F hexacyclic core, has been achieved. The [6-5-7] B/C/D ring system was efficiently and diastereoselectively constructed via a mild type I intramolecular [5+2] cycloaddition, followed by a Grubbs II catalyst-catalyzed radical cyclization. The [5-5] fused E/F ring system was synthesized via a diastereoselective intramolecular Pauson-Khand reaction. Notably, the synthetically challenging [7-6-5-7-5-5] hexacyclic core was reassembled by a unique Wagner-Meerwein-type rearrangement from the [6-6-5-7-5-5] hexacyclic framework found in calyciphylline A-type Daphniphyllum alkaloids.
Collapse
Affiliation(s)
- Yun-Peng Zou
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zheng-Lin Lai
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianzhao Peng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuai Ning
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
12
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Hu J, Chen W, Jiang Y, Xu J. Synthesis of Tetracyclic Core Structure of Daphnezomines A and B. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Hu N, He YT, Lan P, Banwell MG, White LV. Six-step total syntheses of (−)-galanthamine and (−)-. Aust J Chem 2022. [DOI: 10.1071/ch22183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Amaryllidaceae alkaloid (−)-galanthamine (1) is a reversible, competitive acetylcholinesterase inhibitor deployed clinically to treat the dementia associated with Alzheimer’s disease. Here, we describe a six-step synthesis of this natural product from simple, readily accessible starting materials. Enantioselective 1,2-reduction, Mitsunobu coupling, Heck cyclization and diastereoselective allylic oxidation reactions are used in our approach, which provides the shortest synthetic route to compound 1 reported to date. A simple modification to the closing stages of the sequence allows equally facile access to (−)-N-norgalanthamine (2), a compound with a range of distinctive biological properties. The concise and operationally simple synthetic protocols reported here could obviate the need to manipulate naturally sourced galanthamine in the pursuit of analogues required for pharmacological studies.
Collapse
|
15
|
Li LX, Min L, Yao TB, Ji SX, Qiao C, Tian PL, Sun J, Li CC. Total Synthesis of Yuzurine-type Alkaloid Daphgraciline. J Am Chem Soc 2022; 144:18823-18828. [PMID: 36198113 DOI: 10.1021/jacs.2c09548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first total synthesis of daphgraciline has been achieved, which also represents the first example of the synthesis of Daphniphyllum yuzurine-type alkaloids (∼50 members). The unique bridged azabicyclo[4.3.1] ring system in the yuzurine-type subfamily was efficiently and diastereoselectively assembled via a mild type II [5+2] cycloaddition for the first time. The compact tetracyclic [6-7-5-5] skeleton was installed efficiently via an intramolecular Diels-Alder reaction, followed by a benzilic acid-type rearrangement. The synthetically challenging spiro tetrahydropyran moiety in the final product was installed diastereoselectively via a TiIII-mediated reductive epoxide coupling reaction. Potential access to enantioenriched daphgraciline is presented.
Collapse
Affiliation(s)
- Li-Xuan Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Long Min
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tian-Bing Yao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu-Xiao Ji
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuang Qiao
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pei-Lin Tian
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
16
|
Lu HH, Gan KJ, Ni FQ, Zhang Z, Zhu Y. Concise Total Synthesis of Salimabromide. J Am Chem Soc 2022; 144:18778-18783. [PMID: 36194507 DOI: 10.1021/jacs.2c08337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We achieved a concise total synthesis of salimabromide by using a novel intramolecular radical cyclization to simultaneously construct the unique benzo-fused [4.3.1] carbon skeleton and the vicinal quaternary stereocenters. Other notable transformations include a tandem Michael/Mukaiyama aldol reaction to introduce most of the molecule's structural elements, along with hidden information for late-stage transformations, an intriguing tandem oxidative cyclization of a diene to form the bridged butyrolactone and enone moieties spontaneously, and a highly enantioselective hydrogenation of a cycloheptenone derivative (97% ee) that paved the way for the asymmetric synthesis of salimabromide.
Collapse
Affiliation(s)
- Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Fu-Qiang Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Yao Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|
17
|
Hu J, Guo LD, Chen W, Jiang Y, Pu F, Ning C, Xu J. Total Syntheses of Daphnezomine L-type and Secodaphniphylline-type Daphniphyllum Alkaloids via Late-Stage C-N Bond Activation. Org Lett 2022; 24:7416-7420. [PMID: 36191161 DOI: 10.1021/acs.orglett.2c02988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we report the first total syntheses of daphnezomine L-type alkaloids daphnezomine L methyl ester and calyciphylline K via late-stage C-N bond activation. The first synthesis of secodaphniphylline-type alkaloid caldaphnidine D was also achieved via a similar strategy. Other key transformations employed in our synthesis were a facile vicinal diol olefination and an efficient radical cyclization cascade. Biological studies indicated two synthetic compounds possess promising neuroprotective activity.
Collapse
Affiliation(s)
- Jingping Hu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, China.,Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Fan Pu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China
| | - Chengqing Ning
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, Guangdong518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen518055, China.,Shenzhen Bay Laboratory, Shenzhen518132, China
| |
Collapse
|
18
|
Zhang Y, Chen Y, Song M, Tan B, Jiang Y, Yan C, Jiang Y, Hu X, Zhang C, Chen W, Xu J. Total Syntheses of Calyciphylline A-Type Alkaloids (-)-10-Deoxydaphnipaxianine A, (+)-Daphlongamine E and (+)-Calyciphylline R via Late-Stage Divinyl Carbinol Rearrangements. J Am Chem Soc 2022; 144:16042-16051. [PMID: 36007885 DOI: 10.1021/jacs.2c05957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Among the famous Daphniphyllum alkaloids family, the calyciphylline A-type subfamily has triggered particular interest from the organic synthesis community in recent years. Here, we report divergent total syntheses of three calyciphylline A-type alkaloids, namely, (-)-10-deoxydaphnipaxianine A, (+)-daphlongamine E, and (+)-calyciphylline R. Our work highlights an efficient, divergent strategy via late-stage divinyl carbinol rearrangements, including an unprecedented oxidative Nazarov electrocyclization using an unfunctionalized tertiary divinyl carbinol and an unusual allylic alcohol rearrangement. A highly efficient "donor-acceptor" platinum catalyst was used for a critical nitrile hydration step. Moreover, the power of selective amide reductions has also been showcased by novel and classic tactics.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Manrong Song
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujia Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Yan
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuyang Jiang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Hu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengqian Zhang
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenqing Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Abstract
Synthesis of a potent inhibitor of bacterial protein synthesis, pleuromutilin, is described. Assembly of the critical cyclooctane fragment relies on an oxidative ring-expansion, and complete stereochemical relay in the synthetic sequence is enabled by the judicious choice of tactics. The requisite connectivity pattern of the perhydroindanone motif is rapidly established in a sequence of cycloaddition and radical cyclization events. Application of this strategy allows for preparation of the target natural product in 16 steps from commercially available material.
Collapse
Affiliation(s)
- Nicholas J Foy
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
20
|
Sasaki M, Iwasaki K, Arai K, Hamada N, Umehara A. Convergent Synthesis of the HIJKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1 by a Late-Stage Reductive Olefin Coupling Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Naoya Hamada
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| | - Atsushi Umehara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
| |
Collapse
|
21
|
Cao MY, Ma BJ, Gu QX, Fu B, Lu HH. Concise Enantioselective Total Synthesis of Daphenylline Enabled by an Intramolecular Oxidative Dearomatization. J Am Chem Soc 2022; 144:5750-5755. [PMID: 35289615 DOI: 10.1021/jacs.2c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).
Collapse
Affiliation(s)
- Meng-Yue Cao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bei Fu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hai-Hua Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
22
|
Myasoedova YV, Garifullina LR, Belyaeva ER, Ishmuratov GY. Ozonolytic transformations of (
R
)‐(−)‐carvon in the presence of pyridine. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuliya V. Myasoedova
- Ufa Institute of Chemistry, Ufa Federal Research Center Russian Academy of Sciences Ufa Russia
| | - Liliya R. Garifullina
- Ufa Institute of Chemistry, Ufa Federal Research Center Russian Academy of Sciences Ufa Russia
| | - Evelina R. Belyaeva
- Ufa Institute of Chemistry, Ufa Federal Research Center Russian Academy of Sciences Ufa Russia
| | - Gumer Yu Ishmuratov
- Ufa Institute of Chemistry, Ufa Federal Research Center Russian Academy of Sciences Ufa Russia
| |
Collapse
|
23
|
Liu R, Xia M, Ling C, Fu S, Liu B. Construction of the Tetracyclic Core Structure of Dysiherbols A–C. Org Lett 2022; 24:1642-1646. [DOI: 10.1021/acs.orglett.2c00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Cichang Ling
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Zhao Y, Hu J, Chen R, Xiong F, Xie H, Ding H. Divergent Total Syntheses of (-)-Crinipellins Facilitated by a HAT-Initiated Dowd-Beckwith Rearrangement. J Am Chem Soc 2022; 144:2495-2500. [PMID: 35112847 DOI: 10.1021/jacs.1c13370] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A hydrogen atom transfer (HAT)-initiated Dowd-Beckwith rearrangement reaction was developed, which enables the efficient assembly of diversely functionalized polyquinane frameworks. By incorporation of an iridium-catalyzed regio- and enantioselective hydrogenation and a diastereocontrolled ODI-[5+2] cycloaddition/pinacol rearrangement cascade reaction, the asymmetric total syntheses of eight tetraquinane natural products, including (-)-crinipellins A-F and (-)-dihydrocrinipellins A and B, have been achieved in a concise and divergent manner.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ruyi Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengping Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Fang X, Zhang N, Chen SC, Luo T. Scalable Total Synthesis of (-)-Triptonide: Serendipitous Discovery of a Visible-Light-Promoted Olefin Coupling Initiated by Metal-Catalyzed Hydrogen Atom Transfer (MHAT). J Am Chem Soc 2022; 144:2292-2300. [PMID: 35089705 DOI: 10.1021/jacs.1c12525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient and scalable total synthesis of (-)-triptonide is accomplished based on a metal-catalyzed hydrogen atom transfer (MHAT)-initiated radical cyclization. During the optimization of the key step, we discovered that blue LEDs significantly promoted the efficiency of reaction initiated by Co(TPP)-catalyzed MHAT. Further exploration and optimization of this catalytic system led to development of a dehydrogenative MHAT-initiated Giese reaction.
Collapse
Affiliation(s)
- Xianhe Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Nan Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Si-Cong Chen
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
26
|
Zhang X, Xu J. Five-membered carbocycle construction in the synthesis of Daphniphyllum alkaloids: recent strategic and methodological advances. Org Chem Front 2022. [DOI: 10.1039/d2qo01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review article, we summarize novel or non-standard strategies and methods for the five-membered carbocycle construction in recent Daphniphyllum alkaloid synthesis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
27
|
Deng S, Xu H, Jiang H, Ma Z. Formal total synthesis of dankasterone B. Org Chem Front 2022. [DOI: 10.1039/d2qo00299j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal total synthesis of dankasterone B was achieved in 15 steps.
Collapse
Affiliation(s)
- Shengzhen Deng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| |
Collapse
|
28
|
Cui Y, Ren J, Lv J, Wang Z. Studies toward the Total Syntheses of Calyciphylline D-Type Daphniphyllum Alkaloids. Org Lett 2021; 23:9189-9193. [PMID: 34791884 DOI: 10.1021/acs.orglett.1c03497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An efficient construction of an aza-[5.7.6.5] tetracyclic core structure of calyciphylline D-type Daphniphyllum alkaloids has been achieved. The synthetic route features a diastereoselective cyclopropanation, efficient construction of the core bridged 8-aza-[3.2.1]octane skeleton through a [3 + 2] IMCC strategy, oxidative dearomatization of phenol, and gram-scale preparation in each step.
Collapse
Affiliation(s)
- Yi Cui
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jun Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jiayuan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhongwen Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
29
|
Yu K, Yao F, Zeng Q, Xie H, Ding H. Asymmetric Total Syntheses of (+)-Davisinol and (+)-18-Benzoyldavisinol: A HAT-Initiated Transannular Redox Radical Approach. J Am Chem Soc 2021; 143:10576-10581. [PMID: 34240855 DOI: 10.1021/jacs.1c05703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first and asymmetric total syntheses of two C11-oxygenated hetisine-type diterpenoid alkaloids, namely, (+)-davisinol and (+)-18-benzoyldavisinol, is described. The concise synthetic approach features a HAT-initiated transannular redox radical cyclization, an ODI-Diels-Alder cycloaddition, and an acylative kinetic resolution. By incorporating an efficient late-stage assembly of the azabicycle, our strategy would streamline the synthetic design of C20-diterpenoid alkaloids and pave the way for their modular syntheses.
Collapse
Affiliation(s)
- Kuan Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qingrui Zeng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hujun Xie
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
30
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021; 60:12807-12812. [PMID: 33822444 DOI: 10.1002/anie.202102643] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/26/2021] [Indexed: 11/08/2022]
Abstract
We report herein the asymmetric total synthesis of norzoanthamine using radical reactions as key steps for rapid access to the congested carbocyclic core, which is the major synthetic challenge for most zoanthamine alkaloids. (1) The Ueno-Stork radical cyclization was applied to construct the adjacent quaternary centers at the C-9 and C-22 positions; (2) a Co-catalyzed HAT radical reaction was successfully applied to construct the quaternary center at C-12 via Csp3 -Csp2 bond formation; (3) a Mn-catalyzed HAT radical reaction was used to stereospecifically reduce the tetra-substituted olefin (C13=C18) and install the contiguous stereocenters in proximity to the quaternary center. A one-pot bio-inspired cyclization step was finally applied to forge the unstable bis-amino acetal skeleton. Our approach can precisely control the stereochemistry of seven vicinal stereocenters and effectively construct the highly congested heptacyclic skeleton.
Collapse
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
31
|
Xin Z, Wang H, He H, Zhao X, Gao S. Asymmetric Total Synthesis of Norzoanthamine. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhengyuan Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Hui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Xiaoli Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical, Processes School of Chemistry and Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|
32
|
Recent advances in the total synthesis of natural products bearing the contiguous all-carbon quaternary stereocenters. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Chen Y, Guo LD, Xu J. Synthesis of the tricyclic skeleton of Daphniphyllum alkaloids daphnimacropodines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A‐Type Alkaloids: Divergent Total Syntheses of (−)‐Daphenylline and (−)‐Himalensine A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fayang G. Qiu
- Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Wang B, Xu B, Xun W, Guo Y, Zhang J, Qiu FG. A General Strategy for the Construction of Calyciphylline A-Type Alkaloids: Divergent Total Syntheses of (-)-Daphenylline and (-)-Himalensine A. Angew Chem Int Ed Engl 2021; 60:9439-9443. [PMID: 33569888 DOI: 10.1002/anie.202016212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/31/2021] [Indexed: 12/16/2022]
Abstract
An efficient general strategy for the synthesis of the Daphniphyllum alkaloids via the rapid construction of a common core intermediate has been established, based on which a divergent total synthesis of (-)-daphenylline and (-)-himalensine A has been accomplished in 16 and 19 steps, respectively. The present work features an enantioselective Mg(ClO4 )2 -catalyzed intramolecular amidocyclization to construct the aza-bridged core structure; a Cu-catalyzed intramolecular cyclopropanation and subsequent phosphine-catalyzed Cope-type rearrangement to furnish the himalensine A scaffold; and a one-pot Diels-Alder/aromatization method to assemble the aromatic skeleton of daphenylline.
Collapse
Affiliation(s)
- Bingyang Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Xun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fayang G Qiu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Sasaki M, Iwasaki K, Arai K. Synthesis and Structural Implication of the JKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2021; 86:4580-4597. [PMID: 33667088 DOI: 10.1021/acs.joc.0c03031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of the JKLMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the causative toxin of ciguatera fish poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. Key to the synthesis are a [2,3]-sigmatropic rearrangement to construct a seven-membered α-hydroxy exo-enol ether, stereoselective construction of an angular tetrasubstituted stereogenic center on the seven-membered M-ring by a hydrogen atom transfer-based reductive olefin coupling, Suzuki-Miyaura coupling of the KLMN-ring enol phosphate with a highly congested M-ring, and silica gel-mediated epoxide ring opening to form the J-ring. Comparison of the nuclear magnetic resonance spectroscopic data for the synthesized fragment with those for the natural product provided support for the formerly assigned structure of the N-ring in the right-hand terminal of C-CTX-1.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| |
Collapse
|
37
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021; 60:5512-5518. [PMID: 33206427 DOI: 10.1002/anie.202013881] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/11/2022]
Abstract
We describe herein the assembly of the cis-decalin framework through radical cyclization initiated by metal-catalyzed hydrogen atom transfer (MHAT), further applied it in the asymmetric synthesis of dankasterones A and B and periconiastone A. Position-selective C-H oxygenation allowed for installation of the necessary functionality. A radical rearrangement was adopted to create 13(14→8)abeo-8-ergostane skeleton. Interconversion of dankasterone B and periconiastone A was realized through biomimetic intramolecular aldol and retro-aldol reactions. The MHAT-based approach, serves as a new dissection means, is complementary to the conventional ways to establish cis-decalin framework.
Collapse
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, China
| |
Collapse
|
38
|
Vrubliauskas D, Gross BM, Vanderwal CD. Stereocontrolled Radical Bicyclizations of Oxygenated Precursors Enable Short Syntheses of Oxidized Abietane Diterpenoids. J Am Chem Soc 2021; 143:2944-2952. [PMID: 33555176 DOI: 10.1021/jacs.0c13300] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The power of cation-initiated cyclizations of polyenes for the synthesis of polycyclic terpenoids cannot be overstated. However, a major limitation is the intolerance of many relevant reaction conditions toward the inclusion in the substrate of polar functionality, particularly in unprotected form. Radical polycyclizations are important alternatives to bioinspired cationic variants, in part owing to the range of possible initiation strategies, and in part for the functional group tolerance of radical reactions. In this article, we demonstrate that Co-catalyzed MHAT-initiated radical bicyclizations are not only tolerant of oxidation at virtually every position in the substrate, oftentimes in unprotected form, but these functional groups can also contribute to high levels of stereochemical control in these complexity-generating transformations. Specifically, we show the effects of protected or unprotected hydroxy groups at six different positions and their impact on stereoselectivity. Further, we show how multiply oxidized substrates perform in these reactions, and finally, we document the utility of these reactions in the synthesis of three aromatic abietane diterpenoids.
Collapse
Affiliation(s)
- Darius Vrubliauskas
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Benjamin M Gross
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Christopher D Vanderwal
- 1102 Natural Sciences II, Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
39
|
Abstract
The first asymmetric total synthesis of rumphellclovane E, a clovane-type sesquiterpenoid, has been accomplished in eight steps from commercially available (R)-carvone. Key elements of the synthesis include Rh-catalyzed cyclopropanation, iron-catalyzed intramolecular reductive aldol reaction, and SmI2-mediated chemo- and diastereoselective reduction of the cyclopentanone.
Collapse
Affiliation(s)
- Guanggen Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhijiang Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
Chen P, Wang C, Yang R, Xu H, Wu J, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical Cyclization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pengquan Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Rui Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Hongjin Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| | - Kai Chen
- College of Chemistry and Chemical Engineering Central South University Changsha 410083 China
- Lab of Computational Chemistry and Drug Design State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province School of Chemistry & Chemical Engineering South China University of Technology Wushan Road-381 Guangzhou 510641 China
| |
Collapse
|
41
|
Abstract
The triterpenoids Daphniphyllum alkaloids share the unique fused hexacyclic ring framework are isolated from the genus Daphniphyllum. These natural products possess comprehensive biological activities and exhibit excellent potential medicinal appliment. This review covers the reported isolation studies and biological activities of Daphniphyllum alkaloids spanning the period from 1966 to the beginning of 2020, In the meantime, the total synthesis of Daphniphyllum alkaloids will be emphatically summarized for supplement over this review series.
Collapse
|
42
|
Wu J, Ma Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo01139a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Functionalization of olefins has been an important transformation in synthetic chemistry. This review will focus on the natural product synthesis employing the MHAT reaction as the key strategy.
Collapse
Affiliation(s)
- Jinghua Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, People's Republic of China
| |
Collapse
|
43
|
Zeng X, Shukla V, Boger DL. Divergent Total Syntheses of (-)-Pseudocopsinine and (-)-Minovincinine. J Org Chem 2020; 85:14817-14826. [PMID: 33205969 PMCID: PMC7718306 DOI: 10.1021/acs.joc.0c02493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, the first total syntheses of (-)-pseudocopsinine (1) and (-)-minovincine (3) from a common intermediate 8 are detailed, enlisting late-stage, hydrogen atom transfer (HAT)-mediated free radical bond formations (C20-C2 and C20-OH, respectively) that are unique to their core or structure. The approach to 1 features an Fe-mediated HAT reaction of the intermediate olefin 2, effecting a transannular C20-C2 free radical cyclization of a challenging substrate with formation of a strained [2.2.1] ring system and reaction of a poor acceptor tetrasubstituted alkene with a hindered secondary free radical to form a bond and quaternary center adjacent to another quaternary center. Central to the assemblage of their underlying Aspidosperma skeleton is a powerful [4 + 2]/[3 + 2] cycloaddition cascade of 1,3,4-oxadiazole 9, which affords the stereochemically rich and highly functionalized pentacyclic intermediate 8 as a single diastereomer in one step. The work extends the divergent total synthesis of four to now six different natural product alkaloid classes by distinguishing late stage key strategic bond formations within the underlying Aspidosperma core from the common intermediate 8. Together, the work represents use of strategic bond analysis combined with the strategy of divergent synthesis to access six different natural product classes from a single intermediate.
Collapse
Affiliation(s)
- Xianhuang Zeng
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vyom Shukla
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L. Boger
- Department of Chemistry and the Skaggs Institute for Chemical Biology, the Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
44
|
Guo LD, Chen Y, Xu J. Total Synthesis of Daphniphyllum Alkaloids: From Bicycles to Diversified Caged Structures. Acc Chem Res 2020; 53:2726-2737. [PMID: 33074659 DOI: 10.1021/acs.accounts.0c00532] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Native to the Asia-Pacific region and widely applied in traditional Chinese medicine, the genus Daphniphyllum has produced over 330 known Daphniphyllum alkaloids. Investigations into these alkaloids have shown an exceptional range of interesting bioactivities. Challenging and caged polycyclic architectures and the promising biological profiles make Daphniphyllum alkaloids intriguing synthetic targets. Based on their backbones, these alkaloids can be categorized into 13-35 structurally distinct subfamilies. In addition to our work, almost 30 impressive total syntheses of Daphniphyllum alkaloids from seven subfamilies, namely, daphniphylline-type, secodaphniphylline-type, daphnilactone A-type, bukittinggine-type, daphmanidin A-type, calyciphylline A-type, and calyciphylline B-type alkaloids, have been reported by 11 research groups. However, many Daphniphyllum alkaloid subfamilies remain inaccessible by chemical synthesis.In this Account, we summarize our recent endeavors in the total synthesis of Daphniphyllum alkaloids commencing from simple chiral bicyclic synthons. Daphniphyllum alkaloids with diversified skeletons from four different subfamilies, namely, calyciphylline A-type, daphnezomine A-type, bukittinggine-type, and yuzurimine-type alkaloids, have been achieved. Furthermore, the tricyclic core structure of daphniglaucin C-type alkaloids daphnimacropodines was also synthesized. First, we describe a 14-step synthesis of calyciphylline A-type alkaloid (-)-himalensine A, which features a mild Cu-mediated nitrile hydration, an intramolecular Heck reaction to assemble the pivotal 2-azabicyclo[3.3.1]nonane moiety, and a Meinwald rearrangement to introduce the critical oxidative state into the skeleton. We then introduce the synthesis of daphnezomine A-type alkaloid dapholdhamine B, which possesses a unique aza-adamantane core. This target molecule was fabricated using key reactions including Huang's amide-activation-annulation. An unexpected radical detosylation during the synthesis of dapholdhamine B further inspired an ambitious radical cyclization cascade strategy, which eventually led to an efficient total synthesis of bukittinggine-type alkaloid (-)-caldaphnidine O. This highly chemo-, regio-, and stereoselective radical reaction cascade also shed light on the synthetic strategy of other alkaloids with caged structures. We next describe the first total synthesis of yuzurimine-type alkaloid (+)-caldaphnidine J. The key steps in our approach include a Pd-catalyzed regioselective hydroformylation and a novel Swern oxidation/ketene dithioacetal Prins reaction cascade. The work has achieved the first synthesis of a member of the largest subfamily of Daphniphyllum alkaloids. Finally, we show our efforts toward the total synthesis of daphniglaucin C-type alkaloids. Overall, we hope that the interesting strategies and synthetic methods demonstrated in our efforts could inspire a wide variety of additional applications to natural product synthesis.
Collapse
Affiliation(s)
- Lian-Dong Guo
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuye Chen
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing Xu
- Department of Chemistry and Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|