1
|
Chen SJ, Lin JH, Wu JM, Li YH, Dong BL, Chen GS, Liu YL. Visible-light-induced difunctionalization of β-CF 2H-1,3-enynes to access CF 2H-containing all-carbon quaternary centers. Org Biomol Chem 2025; 23:4069-4073. [PMID: 40192472 DOI: 10.1039/d5ob00425j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
An efficient and regioselective method for the introduction of a highly functionalized CF2H-containing quaternary carbon center at the C-2 position of pyridines has been described. This method proceeds via [3 + 2] cycloaddition of β-CF2H-1,3-enynes with pyridinium ylides, followed by a light-induced aza-Norrish II rearrangement. The salient features of this present protocol include mild reaction conditions, operational simplicity, and excellent C2 site selectivity. Furthermore, the synthetic utility of this method is demonstrated by the downstream functionalization of the resulting products.
Collapse
Affiliation(s)
- Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jin-Hao Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jia-Ming Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - You-Hong Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Bao-Le Dong
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Patra K, Deb S, Kumar Choutipalli VS, Mulani S, Mallik S, Subramanian V, Baidya M. Transforming 2D azolium salts to 3D caged tertiary amines via stereoselective dearomative cascade annulation. Chem Sci 2025; 16:7551-7559. [PMID: 40171030 PMCID: PMC11955917 DOI: 10.1039/d5sc01527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Three-dimensional fused-ring frameworks, especially those incorporating heteroatoms, are fundamental to expanding chemical space and unlocking unique properties critical for drug discovery and functional materials, yet their synthesis remains a formidable challenge. Herein, we report for the first time the union of two distinct azolium salts as an efficient synthetic platform to access tertiary amine-caged frameworks under mild conditions. The strategy combines the masked nucleophilic and electrophilic properties of isoquinolinium and pyridinium salts, and avails double dearomatization guided inverse electron demand (4 + 2) or (3 + 2) annulation in a highly regio- and diastereoselective manner to construct the nitrogen caged motifs. Our methodology creates two new rings and four new bonds in a single operation and transforms flat-aromatic compounds into structurally unprecedented three-dimensional architectures with contiguous stereocenters in very high yields. DFT studies have shed light on the reaction mechanism, indicating that the annulation step is rate-limiting, with (4 + 2) annulation proceeding stepwise and (3 + 2) annulation following a concerted pathway.
Collapse
Affiliation(s)
- Koushik Patra
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Samiran Deb
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | | | - Sana Mulani
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Sumitava Mallik
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| | - Venkatesan Subramanian
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 Tamil Nadu India
- Centre for High Computing, CSIR-Central Leather Research Institute Chennai 600020 Tamil Nadu India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600 036 Tamil Nadu India
| |
Collapse
|
3
|
Wang B, Sun L, Zhang P, Zhang S, Zhao J, Qu J, Zhou Y. Pd-Catalyzed Asymmetric Synthesis of Chiral 2-Trifluoromethyl-4-(indol-3-yl)-4 H-chromene Derivatives. J Org Chem 2025; 90:1755-1767. [PMID: 39878415 DOI: 10.1021/acs.joc.4c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
This paper presents a new strategy for the construction of the chiral 4H-chromene skeleton. A series of chiral 2-trifluoromethyl-4-(indol-3-yl)-4H-chromenes were synthesized in moderate to good yields (60-92%) with excellent enantioselectivity (up to 97% ee) through the palladium-catalyzed asymmetric condensation of 2H-chromenes and indoles. These trifluoromethylated, stereochemically rich building blocks hold potential value in medicinal chemistry.
Collapse
Affiliation(s)
- Bangzhong Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Luyang Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Pengyue Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Shuaibo Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jinfeng Zhao
- Instrumental Analysis Center, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
4
|
Wang YQ, Chen LJ, Yang RL, Lang M, Peng JB. Oxidative [4+2] Annulation of Pyrrole-2-carbaldehyde Derivatives with o-Hydroxyphenyl Propargylamines: Syntheses of 5,6,7-Trisubstituted Indolizines. Chemistry 2024; 30:e202402487. [PMID: 39177474 DOI: 10.1002/chem.202402487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
A base promoted oxidative [4+2] annulation of pyrrole-2-carbaldehyde derivatives with o-hydroxyphenyl propargylamines for the synthesis of highly substituted indolizines has been developed. Using DBN as base, a broad range of 5,6,7-trisubstituted indolizines have been prepared in good to excellent yields under mild conditions, and many useful functional groups can be tolerated.
Collapse
Affiliation(s)
- Yu-Qing Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Li-Jia Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Rui-Lin Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, 529020, People's Republic of China
| |
Collapse
|
5
|
Tang Y, Huang M, Yan Z, Tang S, Zhang X, Sun J. Oxy-pyridinium Ylides Mediated 1,4-Pyridyl/Aryl Translocation. Org Lett 2024. [PMID: 39526936 DOI: 10.1021/acs.orglett.4c03656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Molecular rearrangement via carbene transfer is a powerful tool to access molecular diversity. Herein, we describe an efficient approach to selective pyridyl/aryl relocation via a rhodium-catalyzed aminoarylation of diazo compounds, providing a promising strategy to access ortho-pyridyl N-alkylated pyridone scaffolds in a single operation. This reaction features the novel reactivity of oxy-pyridinium ylide, rhodium-associated five-membered transition state, and 1,4-pyridyl/aryl relocation. A computational study discloses the initial oxy-pyridinium ylide formation, keto-enol tautomerization, and 1,4-pyridyl migration to complete the whole rearrangement.
Collapse
Affiliation(s)
- Yaping Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
6
|
Dhake K, Woelk KJ, Krueckl LDN, Alberts F, Mutter J, Pohl MO, Thomas GT, Sharma M, Bjornerud-Brown J, Fernández NP, Schley ND, Leitch DC. Diastereoselective dearomative cycloaddition of bicyclobutanes with pyridinium ylides: a modular approach to multisubstituted azabicyclo[3.1.1]heptanes. Chem Commun (Camb) 2024; 60:13008-13011. [PMID: 39403040 DOI: 10.1039/d4cc04730c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Diastereoselective (3+3) cycloaddition between bicyclobutanes and pyridinium ylides forms azabicyclo[3.1.1]heptanes via pyridine dearomatization. These reactions proceed under ambient conditions with no need for photochemistry or catalysis, and tolerate a wide range of functional gorups. The resulting multicyclic ring systems have diverse synthetic handles for further transformations, making them potentially valuable for the design of Csp3-rich drug candidates. These include semi-reduction of the dihydropyridine, and diastereoselective photochemical skeletal rearrangement to give a tetrasubstituted cyclobutane.
Collapse
Affiliation(s)
- Kushal Dhake
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Kyla J Woelk
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Liam D N Krueckl
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Faith Alberts
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - James Mutter
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Matthew O Pohl
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Gilian T Thomas
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Muskan Sharma
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Jaelyn Bjornerud-Brown
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Nahiane Pipaón Fernández
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| | - Nathan D Schley
- Department of Chemistry, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN, 37235, USA
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
7
|
Ye BC, Li WH, Zhang X, Chen J, Gao Y, Wang D, Pan H. Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402747. [PMID: 39291881 DOI: 10.1002/adma.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Indexed: 09/19/2024]
Abstract
For traditional metal complexes, intricate chemistry is required to acquire appropriate ligands for controlling the electron and steric hindrance of metal active centers. Comparatively, the preparation of single-atom catalysts is much easier with more straightforward and effective accesses for the arrangement and control of metal active centers. The presence of coordination atoms or neighboring functional atoms on the supports' surface ensures the stability of metal single-atoms and their interactions with individual metal atoms substantially regulate the performance of metal active centers. Therefore, the collaborative interaction between metal and the surrounding coordination environment enhances the initiation of reaction substrates and the formation and transformation of crucial intermediate compounds, which imparts single-atom catalysts with significant catalytic efficacy, rendering them a valuable framework for investigating the correlation between structure and activity, as well as the reaction mechanism of catalysts in organic reactions. Herein, comprehensive overviews of the coordination interaction for both homogeneous metal complexes and single-atom catalysts in organic reactions are provided. Additionally, reflective conjectures about the advancement of single-atom catalysts in organic synthesis are also proposed to present as a reference for later development.
Collapse
Affiliation(s)
- Bo-Chao Ye
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Xia Zhang
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yong Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| |
Collapse
|
8
|
Li C, Cai SZ, Ye J, Fang X. Enantioselective Synthesis of Axially and Centrally Chiral Styrenes via Nickel-Catalyzed Desymmetric Hydrocyanation of Biaryl Dienes. Org Lett 2024; 26:3867-3871. [PMID: 38691097 DOI: 10.1021/acs.orglett.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Herein, a highly regio-, enantio-, and diastereoselective nickel-catalyzed desymmetric hydrocyanation of biaryl dienes for the simultaneous construction of axial and central chiralities is presented, which offers a convenient approach to a variety of tirenes containing the union of an axially chiral biaryl and a centrally α-chiral nitrile under mild conditions using a commercially available catalyst. The synthetic utility is highlighted by the development of a novel axially chiral phosphine ligand and biphenyl-based chiral diene ligand and their potential applications in the field of asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Song-Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
9
|
Luo W, Guo H, Qiu X, Ming M, Zhang L, Zhu H, Zhou J. Organocatalytic Atroposelective Construction of Pentatomic Heterobiaryl Diamines through Arylation of 5-Aminoisoxazoles with Azonaphthalenes. Org Lett 2024; 26:2564-2568. [PMID: 38514236 DOI: 10.1021/acs.orglett.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
An efficient catalytic asymmetric Michael-type reaction of azonaphthalenes with 5-aminoisoxazoles has been developed. The reaction was based on the utilization of a chiral phosphoric acid as the catalyst, delivering a large panel of axially chiral heterobiaryl diamines in generally good yields with excellent enantioselectivities. The gram-scale reaction and postmodification of the chiral product demonstrated their potentials in the synthesis of chiral catalysts and ligands. This approach not only provides a useful method for the construction of pentatomic heterobiaryl scaffolds but also offers new members to the axially chiral diamine family with promising applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Weiwei Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huanhuan Guo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xueying Qiu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Meijun Ming
- Sichuan Police College, Luzhou 646000, China
| | - Lin Zhang
- Sichuan Police College, Luzhou 646000, China
| | - Hao Zhu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
10
|
Zhu Z, Wu Q, Song X, Ni Q. Thermodynamic Controlled Regioselective C1-Functionalization of Indolizines with 3-Hydroxyisoindolinones via Brønsted Acid Catalyzed aza-Friedel-Crafts Reaction. J Org Chem 2024; 89:2794-2799. [PMID: 38294192 DOI: 10.1021/acs.joc.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A Brønsted acid catalyzed aza-Friedel-Crafts reaction of indolizines with 3-hydroxyisoindolinones has been established, which constructs isoindolinone derivatives bearing a tetrasubstituted stereocenter in good to high yields and enantioselectivities. Notably, this strategy provides a new access to C1-functionalization of indolizines with excellent regioselectivities. Moreover, this intriguing C1-regioselective transformation was induced under thermodynamic control.
Collapse
Affiliation(s)
- Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qianling Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
11
|
Liu Q, Wang F, He ZY, Zhang H, Wang JR, Li QH, Zhang Z, Xu H. Switchable Synthesis of Spirodihydroindolizines and Indolizines from Aurones and Pyridin-2-yl Active Methylene Compounds. J Org Chem 2024; 89:1753-1761. [PMID: 38252457 DOI: 10.1021/acs.joc.3c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel and flexible domino reaction of aurones with pyridin-2-yl active methylene compounds promoted by I2/BF3 has been developed to afford spirodihydroindolizines and indolizines in a controllable manner. When the reaction was performed in 1,2-dichloroethane at 80 °C, a variety of spirodihydroindolizines were obtained, whereas it almost exclusively provided a series of indolizines when the reaction was performed in a mixed solvent of 1,2-dichloroethane and N,N-dimethylformamide at a relatively higher temperature of 100 °C. Being metal-free, excellent product selectivity, high atom economy, good functional group tolerance, and feasibility for large-scale synthesis are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Quan Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Feng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Hui Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jia-Rong Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Qing-Hai Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
12
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (1-indolizinyl) (diaryl)-methanamines via chiral phosphoric acid catalysis. RSC Adv 2024; 14:1106-1113. [PMID: 38174273 PMCID: PMC10759308 DOI: 10.1039/d3ra07636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (1-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
13
|
Yang G, Shi W, Qian Y, Zheng X, Meng Z, Jiang HL. Turning on Asymmetric Catalysis of Achiral Metal-Organic Frameworks by Imparting Chiral Microenvironment. Angew Chem Int Ed Engl 2023; 62:e202308089. [PMID: 37551837 DOI: 10.1002/anie.202308089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal-organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral -OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.
Collapse
Affiliation(s)
- Ge Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Wenwen Shi
- CAS Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Xiao Zheng
- CAS Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
- Department of Chemistry, Fudan University, 200433, Shanghai, P. R. China
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| |
Collapse
|
14
|
Chang X, Liu XT, Li F, Yang Y, Chung LW, Wang CJ. Electron-rich benzofulvenes as effective dipolarophiles in copper(i)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Sci 2023; 14:5460-5469. [PMID: 37234882 PMCID: PMC10207880 DOI: 10.1039/d3sc00435j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A series of benzofulvenes without any electron-withdrawing substituents were employed as 2π-type dipolarophiles for the first time to participate in Cu(i)-catalyzed asymmetric 1,3-dipolar cycloaddition (1,3-DC) reactions of azomethine ylides. An intrinsic non-benzenoid aromatic characteristic from benzofulvenes serves as a key driving force for activation of the electron-rich benzofulvenes. Utilizing the current methodology, a wide range of multi-substituted chiral spiro-pyrrolidine derivatives containing two contiguous all-carbon quaternary centers were formed in good yield with exclusive chemo-/regioselectivity and high to excellent stereoselectivity. Computational mechanistic studies elucidate the origin of the stereochemical outcome and the chemoselectivity, in which the thermostability of these cycloaddition products is the major factor.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Xue-Tao Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Fangfang Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Yuhong Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
15
|
Zhu BK, Xu H, Xiao L, Chang X, Wei L, Teng H, Dang Y, Dong XQ, Wang CJ. Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis. Chem Sci 2023; 14:4134-4142. [PMID: 37063803 PMCID: PMC10094240 DOI: 10.1039/d3sc00118k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
Highly diastereo-/enantioselective assembly of 2,3-fused indolizine derivatives could be easily available through a cascade allylation/Friedel-Crafts type reaction enabled by a synergistic Cu/Ir catalysis. This designed protocol provides an unprecedented and facile route to enantioenriched indolizines bearing three stereogenic centers in moderate to high yields with excellent stereoselective control, which also featured broad substrate generality. Remarkably, four stereoisomers of the 2,3-fused indolizine products could be efficiently constructed in a predictable manner through the pairwise combination of copper and iridium catalysts. The synthetic utility of this method was readily elaborated by a gram-scale reaction, and synthetic transformations to other important chiral indolizine derivatives. Quantum mechanical explorations constructed a plausible synergetic catalytic cycle, revealed the origins of stereodivergence, and rationalized the protonation-stimulated stereoselective Friedel-Crafts type cyclization to form the indolizine products.
Collapse
Affiliation(s)
- Bing-Ke Zhu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
16
|
Zhang D, Pu M, Liu Z, Zhou Y, Yang Z, Liu X, Wu YD, Feng X. Enantioselective anti-Dihalogenation of Electron-Deficient Olefin: A Triplet Halo-Radical Pylon Intermediate. J Am Chem Soc 2023; 145:4808-4818. [PMID: 36795915 DOI: 10.1021/jacs.2c13810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The textbook alkene halogenation reaction establishes straightforward access to vicinal dihaloalkanes. However, a robust catalytic method for dihalogenizing electron-deficient olefins in an enantioselective manner is still under development, and its mechanism remains controversial. Herein, we disclose efficient regio-, anti-diastereo-, and enantioselective dibromination, bromochlorination, and dichlorination reactions of enones catalyzed by a chiral N,N'-dioxide/Yb(OTf)3 complex. With the combination of electrophilic halogen and halide salts as halogenating agents, an array of homo- and heterodihalogenated derivatives is achieved in moderate to good enantioselectivities. Moreover, DFT calculations reveal that a novel triplet halo-radical pylon intermediate is probable in accounting for the exclusive regio- and anti-diastereoselectivity.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhenzhong Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhendong Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Zhang C, Wang W, Zhu X, Chen L, Luo H, Guo M, Liu D, Liu F, Zhang H, Li Q, Lin J. Synthesis of Indolizines via Tf 2O-Mediated Cascade Reaction of Pyridyl-enaminones with Thiophenols/Thioalcohols. Org Lett 2023; 25:1192-1197. [PMID: 36779678 DOI: 10.1021/acs.orglett.3c00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A cost-effective, highly regioselective and metal-free version for the synthesis of indolizine derivatives by means of Tf2O-mediated cascade reaction of pyridyl-enaminones and thiophenols/thioalcohols under mild reaction conditions has been reported. Diverse electron-rich indolizine derivatives could be obtained in up to 94% yield via the selective 1,4-addition of vinyl iminium triflate tandem cyclization/aromatization, which allowed the simultaneous construction of C-N and C-S/and one example of C-Se bonds.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Hejiang Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, P.R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Dan Liu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Fan Liu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Huisheng Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Qi Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| | - Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun, 336000, P.R. China
| |
Collapse
|
18
|
Wang S, Zhou Y, Xiao W, Li Z, Liu X, Feng X. Asymmetric synthesis of complex tricyclo[3.2.2.0]nonenes from racemic norcaradienes: kinetic resolution via Diels-Alder reaction. Chem Sci 2023; 14:1844-1851. [PMID: 36819855 PMCID: PMC9930936 DOI: 10.1039/d2sc06490a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Herein, the enantioselective synthesis of complex tricyclo[3.2.2.0]nonenes through the Diels-Alder reaction is reported. Utilizing racemic norcaradienes prepared from the visible-light-mediated dearomative cyclopropanation of m-xylene as dienes and enone derivatives as dienophiles, the overall process represents a kinetic asymmetric transformation in the presence of a chiral cobalt(ii) complex of chiral N,N'-dioxide. High diastereo- and enantioselectivity could be obtained in most cycloaddition processes and part racemization of norcaradiene is observed. The topographic steric maps of the catalysts were collected to rationalize the relationship between reactivity and enantioselectivity with the catalysts.
Collapse
Affiliation(s)
- Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zegong Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
19
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
20
|
Lv KH, Zhao QS, Zhao KH, Yang JM, Yan SJ. Cu-Catalyzed Oxidative [3 + 2] Annulation of 2-(Pyridine-2-yl)acetates with Maleimides: Synthesis of 1 H-Pyrrolo[3,4- b]indolizine-1,3-diones. J Org Chem 2022; 87:15301-15311. [DOI: 10.1021/acs.joc.2c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kai-Hong Lv
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Qing-Sheng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ke-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Jia-Ming Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Sheng-Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| |
Collapse
|
21
|
Li X, Chen Z, Chen W, Xie X, Zhou H, Liao Y, Yu F, Huang J. B 2pin 2-Mediated Cascade Cyclization/Aromatization Reaction: Facial Access to Functionalized Indolizines. Org Lett 2022; 24:7372-7377. [PMID: 36173232 DOI: 10.1021/acs.orglett.2c02905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Herein, a B2pin2-mediated radical cascade cyclization/aromatization reaction of enaminone with pyridine is described. This strategy provides a practical way for the construction of valuable functionalized indolizines under metal-, external oxidant-, and base-free conditions, which could be compatible with various kinds of functional groups, such as halogen, π-system, heterocycle, ferrocenyl, etc. A preliminary mechanism investigation indicated that the pyridine-boryl radical formed in situ triggered the reaction to occur.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Xin Xie
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Hui Zhou
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yingmei Liao
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
22
|
Li YN, Zhang SY, Ma Y, Ding YJ, Chen ZH, Che QL, Qin L, Sun XL, Liu X, Feng X, Liu ZP, Wang XY, Tang Y. Hydrogen Bond Effects: A Strategy for Improving Controllability in Organocatalytic Photoinduced Controlled Radical Polymerization Targeting High Molecular Weight. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ya-Ning Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yang Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Yi-Jie Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Zhi-Hao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qiao-Ling Che
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Long Qin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi-Pan Liu
- Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
23
|
Li Z, Liu W, Wang B, Yang Y, Liu D, Dai Y. The crystal structure of 1,5-bis(4-chlorophenyl)-3-(3-methylphenyl)pentane- 1,5-dione, C 48H 40Cl 4O 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C48H40Cl4O4, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 7.1407(5) Å, b = 12.5905(8) Å, c = 24.6662(17) Å, α = 103.442(6)°, β = 93.551(5)°, γ = 101.219(5)°, V = 2102.3(2) Å3, Z = 2, R
gt
(F) = 0.0595, wR
ref
(F
2) = 0.1641, T = 293 K.
Collapse
Affiliation(s)
- Zhen Li
- School of Chemistry & Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Wanxing Liu
- The Non-Public Enterprise Service Center of Liaocheng, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Baolei Wang
- The Non-Public Enterprise Service Center of Liaocheng, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Yanbing Yang
- The Non-Public Enterprise Service Center of Liaocheng, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Dong Liu
- The Non-Public Enterprise Service Center of Liaocheng, School of Chemistry and Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Yifan Dai
- School of Chemistry & Chemical Engineering , Liaocheng University , Liaocheng 252000 , Shandong , China
| |
Collapse
|
24
|
Yang L, Li WY, Hou L, Zhan T, Cao W, Liu X, Feng X. Nickel II-catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chem Sci 2022; 13:8576-8582. [PMID: 35974747 PMCID: PMC9337722 DOI: 10.1039/d2sc02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
A diastereo- and enantioselective photoenolization/Mannich (PEM) reaction of ortho-alkyl aromatic ketones with benzosulfonimides was established by utilizing a chiral N,N'-dioxide/Ni(OTf)2 complex as the Lewis acid catalyst. It afforded a series of benzosulfonamides and the corresponding ring-closure products, and a reversal of diastereoselectivity was observed through epimerization of the benzosulfonamide products under continuous irradiation. On the basis of the control experiments, the role of the additive LiNTf2 in achieving high stereoselectivity was elucidated. This PEM reaction was proposed to undergo a direct nucleophilic addition mechanism rather than a hetero-Diels-Alder/ring-opening sequence. A possible transition state model with a photoenolization process was proposed to explain the origin of the high level of stereoinduction.
Collapse
Affiliation(s)
- Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wang-Yuren Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
25
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines via chiral phosphoric acid catalysis. RSC Adv 2022; 12:20499-20506. [PMID: 35919132 PMCID: PMC9284663 DOI: 10.1039/d2ra03750e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
26
|
Cao WB, Zhang JD, Xu MM, Liu HW, Li HY, Xu XP, Ji SJ. Syn-Stereoselective C3-Spirocyclization and C2-Amination of 3-(2-Isocyanoethyl)indole Using C, N-Cyclic Azomethine Imines. Org Lett 2022; 24:4620-4624. [PMID: 35730796 DOI: 10.1021/acs.orglett.2c01736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By utilizing an underexplored reaction mode of C,N-cyclic azomethine imines, a catalyst-free [1+2+3] cycloaddition/N-N bond cleavage sequential reaction for accessing spiroindolines with syn-stereoselectivity was developed. On the basis of experimental results and DFT calculations, peroxide and ethereal solvent were identified to trigger the hydrogen abstraction of the unstable [1+2+3] cycloaddition adducts, followed by homolytic cleavage of the N-N bond and hydrogen absorption.
Collapse
Affiliation(s)
- Wen-Bin Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Jian-Dong Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Hua-Wei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China
| | - Hai-Yan Li
- Analysis and Testing Center, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Innovation Center for Chemical Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, People's Republic of China.,Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
27
|
Zheng J, Liu S, Zhang Y, Huang X. The crystal structure of 3-(4-chlorophenyl)-1,5-di- p-tolylpentane-1,5-dione, C 25H 23ClO 2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C25H23ClO2, orthorhombic, P212121, a = 5.5648(5) Å, b = 17.6062(15) Å, c = 21.5033(19) Å, V = 2106.8(3) Å3, Z = 4, R
gt
(F) = 0.0529, wR
ref
(F
2) = 0.1371, T = 298 K.
Collapse
Affiliation(s)
- Jun Zheng
- School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Sen Liu
- School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Yaru Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252000 , Shandong , China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy, Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University , Liaocheng 252000 , Shandong , China
| |
Collapse
|
28
|
Song X, Fan Y, Zhu Z, Ni Q. Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Org Lett 2022; 24:2315-2320. [PMID: 35297627 DOI: 10.1021/acs.orglett.2c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein a highly straightforward strategy for the synthesis of a new axially chiral 3-arylindolizine scaffold via organocatalytic asymmetric arylation reactions of indolizines and p-quinone esters. Using the chiral phosphoric acid catalyst, a series of axially chiral 3-arylindolizines were accessed in good to excellent yields and atropo-enantioselectivities. This approach features a broad substrate scope, mild reaction conditions, good scalability, and facile derivatization. Moreover, preliminary investigations based on nonlinear effects and a thermal racemization study demonstrated the intrinsic pathway for the formation of axial chirality and its potential utility.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
29
|
Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nat Commun 2022; 13:632. [PMID: 35110529 PMCID: PMC8810779 DOI: 10.1038/s41467-022-28211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The axially chiral indole-aryl motifs are present in natural products and biologically active compounds as well as in chiral ligands. Atroposelective indole formation is an efficient method to construct indole-based biaryls. We report herein the result of a chiral phosphoric acid catalyzed asymmetric cycloaddition of 3-alkynylindoles with azonaphthalenes. A class of indole-based biaryls were prepared efficiently with excellent yields and enantioselectivities (up to 98% yield, 99% ee). Control experiment and DFT calculations illustrate a possible mechanism in which the reaction proceeds via a dearomatization of indole to generate an allene-iminium intermediate, followed by an intramolecular aza-Michael addition. This approach provides a convergent synthetic strategy for enantioselective construction of axially chiral heterobiaryl backbones. There is great interest in methods for catalytic enantioselective construction of axially chiral compounds found in natural products. Here, the authors develop a cycloaddition strategy for atroposelective construction of indole-based biaryls via chiral phosphoric acid-catalysed cycloaddition.
Collapse
|
30
|
Niu X, Yan S, Chen J, Li H, Wang K. Enantioselective recognition of L/D-amino acids in the chiral nanochannels of a metal-organic framework. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Chen SJ, Chen GS, Deng T, Li JH, He ZQ, Liu LS, Ren H, Liu YL. 1,2-Dicarbofunctionalization of Trifluoromethyl Alkenes with Pyridinium Salts via a Cycloaddition/Visible-Light-Enabled Fragmentation Cascade. Org Lett 2022; 24:702-707. [PMID: 34994204 DOI: 10.1021/acs.orglett.1c04148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although trifluoromethyl alkenes have great synthetic potential, their 1,2-difunctionalization has been a challenge. In this Letter, we disclose the first 1,2-dicarbofunctionalization of trifluoromethyl alkenes with pyridinium salts via a cascade process involving a base-promoted [3 + 2] cycloaddition followed by a visible-light-mediated Norrish-type-II fragmentation. This protocol allows for the formation of pyridines bearing a trifluoromethyl-substituted quaternary center in moderate to excellent yields under mild conditions.
Collapse
Affiliation(s)
- Shu-Jie Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Guo-Shu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Tao Deng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Jia-Hui Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhi-Qing He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li-Shan Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
32
|
Saito T, Shimizu Y, Araki Y, Ohgami Y, Kitazawa Y, Nishii Y. From Enantioenriched Donor‐Acceptor Cyclopropylcarbinols to Axially Chiral Arylnaphthalenes through Aryldihydronaphthalenes: Central‐to‐Axial Chirality Exchange. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Taichi Saito
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yuka Shimizu
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yusuke Araki
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yoshino Ohgami
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yu Kitazawa
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| | - Yoshinori Nishii
- Department of Applied Chemistry, Faculty of Textile Science and Technology Shinshu University Tokida 3-15-1 Ueda Nagano 386–8567 Japan
| |
Collapse
|
33
|
Zhang YY, Li L, Ma AJ, Wang WF, Peng JB. Base-promoted [4 + 2] annulation of pyrrole-2-carbaldehyde derivatives with β,γ-unsaturated α-ketoesters: syntheses of 5,6-dihydroindolizines. Org Biomol Chem 2022; 20:8633-8637. [DOI: 10.1039/d2ob01903e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A base-promoted [4 + 2] annulation of pyrrole-2-carbaldehyde derivatives with β,γ-unsaturated α-ketoesters for the syntheses of multisubstituted 5,6-dihydroindolizines was developed.
Collapse
Affiliation(s)
- You-Ya Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Wei-Feng Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
34
|
Li SW, Gu CZ, Huang C, Zhao Z, Zhao J, Wu L. Catalytic Asymmetric Conjugate Addition of Indolizines to Unsatu-rated Ketones Catalyzed by Chiral-at-metal Complexes. Org Chem Front 2022. [DOI: 10.1039/d1qo01657a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective conjugate addition of indolizine and its analogues with α,β-unsaturated 2-acyl imidazoles have been developed. In the presence of 1.0 mol % of Δ-Rh1, the corresponding adducts were...
Collapse
|
35
|
Zheng J, Fan S, Liu S, Shen G, Si WD, Dong X, Huang X, Zhang Y, Yao Q, Li Z, Sun D. In situ ball-milling gram-scale preparation of polyoxoniobate-intercalated MgAl-layered double hydroxides for selective aldol and Michael addition cascade reactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile one-step ball-milling strategy to prepare gram-scale Mg3Al-LDH-Nb6 has been demonstrated and the thus-obtained catalyst exhibited efficient selective catalytic activities in the synthesis of biologically active organic molecules in water.
Collapse
Affiliation(s)
- Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Shuhua Fan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Sen Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Xinyi Dong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Qingxia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| |
Collapse
|
36
|
Ni Q, Zhu Z, Fan Y, Chen X, Song X. Chiral Phosphoric Acid Catalyzed Desymmetrization of Cyclopentendiones via Friedel-Crafts Conjugate Addition of Indolizines. Org Lett 2021; 23:9548-9553. [PMID: 34855406 DOI: 10.1021/acs.orglett.1c03780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An organocatalytic highly diastero- and enantioselective Friedel-Crafts conjugate addition of indolizines to prochiral cyclopentenediones has been successfully developed. This desymmetric transformation provides a direct access to the desired indolizine-substituted cyclopentanediones in yields of 62-91% and excellent stereoselectivities. The utility of the approach was demonstrated by diverse late-stage functionalizations through reduction or oxidation. Importantly, the direct sp2 C-H functionalization with nitromethane in one-pot process resulted in the indolizine-linked axially chiral styrene bearing a remote chiral center.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaoyun Chen
- Jiangsu University of Science and Technology, School of Environmental and Chemical Engineering, No. 2 Mengxi Road, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
37
|
Tang X, Wu Y, Jiang J, Fang H, Zhou WJ, Huang W, Zhan G. Formal (3 + 1 + 1) Carboannulation of Morita-Baylis-Hillman Carbonates with Pyridinium Ylides: Access to Spiro-Cyclopentadiene Oxindoles. Org Lett 2021; 23:8937-8941. [PMID: 34752114 DOI: 10.1021/acs.orglett.1c03418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient formal (3 + 1 + 1) carboannulation strategy of Morita-Baylis-Hillman (MBH) carbonates with pyridinium ylides was developed for constructing diversely functionalized spiro-cyclopentadiene oxindoles. The reaction initiates with an SN2' olefination of MBH carbonates with pyridinium ylides. The in situ generated dienes then engage in a challenging (4 + 1) ylide carboannulation, which has been rarely reported before. The reaction features broad substrate scope as well as high chemo- and regioselectivity. (3 + 1 + 1) carboannulation products could be easily transformed into interesting spiro-cyclopenta[c]furan oxindoles.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Yuling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Huaying Fang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wu-Jingyun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
38
|
Xu WL, Zhao WM, Zhang RX, Chen J, Zhou L. Organocatalytic cycloaddition-elimination cascade for atroposelective construction of heterobiaryls. Chem Sci 2021; 12:14920-14926. [PMID: 34820108 PMCID: PMC8597853 DOI: 10.1039/d1sc05161j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
The first chiral phosphoric acid (CPA) catalyzed cycloaddition–elimination cascade reaction of 2-naphthol- and phenol-derived enecarbamates with azonaphthalenes has been established, providing a highly atroposelective route to an array of axially chiral aryl-C3-benzoindoles in excellent yields with excellent enantioselectivities. The success of this strategy derives from the stepwise process involving CPA-catalyzed asymmetric formal [3 + 2] cycloaddition and subsequent central-to-axial chirality conversion by elimination of a carbamate. In addition, the practicality of this reaction had been verified by varieties of transformations towards functionalized atropisomers. An organocatalytic asymmetric cycloaddition–elimination cascade reaction of aryl enecarbamates with azonaphthalenes has been developed to access axially chiral heterobiaryls in excellent yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Wen-Lei Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Wei-Ming Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Ru-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710102 P. R. China
| |
Collapse
|
39
|
An QJ, Xia W, Ding WY, Liu HH, Xiang SH, Wang YB, Zhong G, Tan B. Nitrosobenzene-Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric N-Arylbenzimidazoles. Angew Chem Int Ed Engl 2021; 60:24888-24893. [PMID: 34553823 DOI: 10.1002/anie.202111251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Described herein is an imidazole ring formation strategy for the synthesis of axially chiral N-arylbenzimidazoles by means of chiral phosphoric acid catalysis. Two sets of conditions were developed to transform two classes of 2-naphthylamine derivatives into structurally diverse N-arylbenzimidazole atropisomers with excellent chemo- and regioselectivity as well as high levels of enantiocontrol. It is worth reflecting on the unique roles played by the nitroso group in this domino reaction. It functions as a linchpin by first offering an electrophilic site (N) for the initial C-N bond formation while the resulting amine performs the nucleophilic addition to form the second C-N bond. Additionally, it could facilitate the final oxidative aromatization as an oxidant. The atropisomeric products could be conveniently elaborated to a series of axially chiral derivatives, enabling the exploitation of N-arylbenzimidazoles for their potential utilities in asymmetric catalysis.
Collapse
Affiliation(s)
- Qian-Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
40
|
An Q, Xia W, Ding W, Liu H, Xiang S, Wang Y, Zhong G, Tan B. Nitrosobenzene‐Enabled Chiral Phosphoric Acid Catalyzed Enantioselective Construction of Atropisomeric
N
‐Arylbenzimidazoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian‐Jin An
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wang Xia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Wei‐Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Huan‐Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yong‐Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Guofu Zhong
- College of Materials, Chemistry and Chemical Engineering Hangzhou Normal University Hangzhou 311121 China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
41
|
Yang G, Li Z, Liu Y, Guo D, Sheng X, Wang J. Organocatalytic Higher-Order [8+2] Cycloaddition for the Assembly of Atropoenantiomeric 3-Arylindolizines. Org Lett 2021; 23:8109-8113. [PMID: 34590868 DOI: 10.1021/acs.orglett.1c03220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present an unprecedented atroposelective [8+2] cycloaddition reaction between pyridinium/isoquinolinium ylides and ynals. It is worth noting that this protocol represents a new example of the organocatalyzed atropoenantioselective higher-order cycloaddition reaction, providing various axial chiral 3-arylindolizines in good yields and high enantioselectivities. In addition, the obtained axially chiral 3-aryldolizines also provide many opportunities for structural transformations and potential drug discovery.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yuhan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xijun Sheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
42
|
Wang CS, Wei L, Fu C, Wang XH, Wang CJ. Asymmetric Synthesis of Axially Chiral Naphthyl-C3-indoles via a Palladium-Catalyzed Cacchi Reaction. Org Lett 2021; 23:7401-7406. [PMID: 34533962 DOI: 10.1021/acs.orglett.1c02574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atropoisomeric biaryl motifs are widely found in natural products and bioactive compounds as well as chiral catalysts and ligands. Various efficient approaches have been disclosed for the construction of chiral six-six biaryl skeletons. In contrast, the enantioselective synthesis of axially chiral arylindoles through the strategy of de novo construction, other than the asymmetric functionalization of indoles, remain a challenging task. Herein we report an efficient Pd(0)/(S)-Segphos-catalyzed atroposelective Cacchi reaction of 2-alkynylanilines with sterically congested naphthyl halides, which afforded an array of naphthyl-C3-indoles in high yields with good to excellent atroposelectivities. The addition of water and the modulation of the manipulation procedure by premixing the palladium complex and the naphthyl halide were the keys to success. The conformational stability of the obtained axially chiral naphthyl-C3-indole containing a synthetically more-valuable free NH moiety is revealed through kinetic experiments.
Collapse
Affiliation(s)
- Cong-Shuai Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin-Heng Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
He X, Wang C, Wen Y, Wang Z, Qian S. Recent Advances in Catalytic Atroposelective Construction of Pentatomic Heterobiaryl Scaffolds. ChemCatChem 2021. [DOI: 10.1002/cctc.202100539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Long He
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - Cheng Wang
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - You‐Wu Wen
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| | - Zhouyu Wang
- School of Science Xihua University Chengdu 610039 P. R. China
| | - Shan Qian
- School of Food and Bioengineering Xihua University Chengdu 610039 P. R. China
| |
Collapse
|
44
|
Liang XQ, Li YZ, Wang Z, Zhang SS, Liu YC, Cao ZZ, Feng L, Gao ZY, Xue QW, Tung CH, Sun D. Revealing the chirality origin and homochirality crystallization of Ag 14 nanocluster at the molecular level. Nat Commun 2021; 12:4966. [PMID: 34404784 PMCID: PMC8371133 DOI: 10.1038/s41467-021-25275-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Although chirality is an ever-present characteristic in biology and some artificial molecules, controlling the chirality and demystifying the chirality origin of complex assemblies remain challenging. Herein, we report two homochiral Ag14 nanoclusters with inherent chirality originated from identical rotation of six square faces on a Ag8 cube driven by intra-cluster π···π stacking interaction between pntp− (Hpntp = p-nitrothiophenol) ligands. The spontaneous resolution of the racemic (SD/rac-Ag14a) to homochiral nanoclusters (SD/L-Ag14 and SD/R-Ag14) can be realized by re-crystallizing SD/rac-Ag14a in acetonitrile, which promotes the homochiral crystallization in solid state by forming C–H···O/N hydrogen bonds with nitro oxygen atoms in pntp− or aromatic hydrogen atoms in dpph (dpph = 1,6-bis(diphenylphosphino)hexane) on Ag14 nanocluster. This work not only provides strategic guidance for the syntheses of chiral silver nanoclusters in an all-achiral environment, but also deciphers the origin of chirality at molecular level by identifying the special effects of intra- and inter-cluster supramolecular interactions. The preparation of chiral monolayer-protected metal clusters is interesting for their potential applications in a variety of fields, including catalysis. Here, the authors synthesize chiral Ag14 nanoclusters in an all-achiral environment, and decipher the origin of chirality at the molecular level; the solvent choice is key to achieve homochiral crystallization.
Collapse
Affiliation(s)
- Xiao-Qian Liang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, People's Republic of China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Yi-Cheng Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhao-Zhen Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang, People's Republic of China
| | - Qing-Wang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, People's Republic of China.
| |
Collapse
|
45
|
Jiang M, Hu K, Zhou Y, Xiong Q, Cao W, Feng X. Enantioselective Isocyanide-based Multicomponent Reaction with Alkylidene Malonates and Phenols. Org Lett 2021; 23:5261-5265. [PMID: 34156867 DOI: 10.1021/acs.orglett.1c01792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A highly enantioselective isocyanide-based multicomponent reaction catalyzed by a chiral N,N'-dioxide/MgII complex was reported. A wide range of substrates were tolerated in this reaction, including alkyl- and aryl-substituted isocyanides with alkylidene malonates and various phenols, affording the corresponding phenoxyimidate products in good to excellent yields (up to 94% yield) with good to excellent enantioselectivities (up to 95.5:4.5 er). A catalytic cycle and transition state were proposed to rationalize the reaction process and enantiocontrol.
Collapse
Affiliation(s)
- Mingyi Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kaiqi Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
46
|
Zhong X, Tan J, Qiao J, Zhou Y, Lv C, Su Z, Dong S, Feng X. Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond via [2+2] cycloaddition and sequential transformations. Chem Sci 2021; 12:9991-9997. [PMID: 34377393 PMCID: PMC8317662 DOI: 10.1039/d1sc02681j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Efficient asymmetric synthesis of a collection of small molecules with structural diversity is highly important to drug discovery. Herein, three distinct types of chiral cyclic compounds were accessible by enantioselective catalysis and sequential transformations. Highly regio- and enantioselective [2+2] cycloaddition of (E)-alkenyloxindoles with the internal C[double bond, length as m-dash]C bond of N-allenamides was achieved with N,N'-dioxide/Ni(OTf)2 as the catalyst. Various optically active spirocyclobutyl oxindole derivatives were obtained under mild conditions. Moreover, formal [4+2] cycloaddition products occurring at the terminal C[double bond, length as m-dash]C bond of N-allenamides, dihydropyran-fused indoles, were afforded by a stereospecific sequential transformation with the assistance of a catalytic amount of Cu(OTf)2. In contrast, performing the conversion under air led to the formation of γ-lactones via the water-involved deprotection and rearrangement process. Experimental studies and DFT calculations were performed to probe the reaction mechanism.
Collapse
Affiliation(s)
- Xia Zhong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jiuqi Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Cidan Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
47
|
Xu Q, Zhou X, Zhang S, Pan L, Liu Q, Li Y. Visible-Light-Induced Sulfur-Alkenylation of Alkenes. Org Lett 2021; 23:4870-4875. [PMID: 34109797 DOI: 10.1021/acs.orglett.1c01596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A visible-light-induced intermolecular sulfur-alkenylation of alkenes, including both activated and unactivated alkenes, is described. This sulfur-alkenylation reaction proceed in a highly regio- and stereospecific manner involving the visible-light-induced conversion of a ketene dithioacetal to the thiavinyl 1,3-dipole intermediate, followed by a formal [3 + 2] cycloaddition and C-S bond cleavage. Furthermore, it is also an efficient approach for the late-stage functionalization of natural products and complex molecules, even being induced by sunlight under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Si Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
48
|
Ma R, Wang X, Zhang Q, Chen L, Gao J, Feng J, Wei D, Du D. Atroposelective Synthesis of Axially Chiral 4-Aryl α-Carbolines via N-Heterocyclic Carbene Catalysis. Org Lett 2021; 23:4267-4272. [PMID: 33973794 DOI: 10.1021/acs.orglett.1c01221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first catalytic asymmetric construction of axially chiral 4-aryl α-carboline skeletons has been accomplished through an N-heterocyclic carbene (NHC)-catalyzed atroposelective formal [3 + 3] annulation of 4-nitrophenyl 3-arylpropiolates with 2-sulfonamidoindolines. The synthetic utility of the title compounds has been demonstrated by the diverse late-stage structural modifications. Density functional theory calculations were also conducted to illuminate the key factors for controlling the origin of the enantioselectivity. This strategy not only provides an efficient pathway to access axially chiral α-carboline atropisomers but also offers a novel catalytic enantioselective mode for the construction of axially chiral heterobiaryls by using NHC-bound alkynyl acylazoliums.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiaoyu Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Lei Chen
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian Gao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Feng
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
49
|
Zheng B, Li X, Song Y, Meng S, Li Y, Liu Q, Pan L. Visible-Light-Induced Formation of Thiavinyl 1,3-Dipoles: A Metal-Free [3+2] Oxidative Cyclization with Alkynes as Easy Access to Thiophenes. Org Lett 2021; 23:3453-3459. [PMID: 33881879 DOI: 10.1021/acs.orglett.1c00915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A visible-light-induced [3+2] oxidative cyclization of various alkynes with easily available ketene dithioacetals as the previously unknown thiavinyl 1,3-dipoles in the presence of an acridine photosensitizer is reported. A series of multisubstituted thiophenes were achieved regioselectively in ≤98% yields under very mild metal-free conditions without other additives. This reaction could tolerate a wide range of substrates and achieve good efficiency in large-scale syntheses. The reaction mechanism and their applications are described in detail to reveal the reactivity of the new 1,3-dipoles and the selectivity of the reactions.
Collapse
Affiliation(s)
- Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaotong Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yang Song
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shuyang Meng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
50
|
Yang L, Zhang Y, Deng J, Ma A, Zhang X, Zhang S, Peng J. Oxidative [3+2] Annulation of Pyridinium Salts with
gem
‐Difluoroalkenes: Synthesis of 2‐Fluoroindolizines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Li–Miao Yang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| | - You‐Ya Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| | - Jing‐Tong Deng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| | - Ai‐Jun Ma
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| | - Xiang‐Zhi Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| | - Shu‐Yu Zhang
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs & School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Jin‐Bao Peng
- School of Biotechnology and Health Sciences Wuyi University Jiangmen, Guangdong 529020 P. R. China
| |
Collapse
|