1
|
Wen Y, Wang F, Zhu J, Wen Q, Xia X, Wen J, Deng C, Du JH, Ke X, Zhang Z, Guan H, Nie L, Wang M, Hou W, Li W, Tang W, Ding W, Chen J, Peng L. Revealing the structure-activity relationship of Pt 1/CeO 2 with 17O solid-state NMR spectroscopy and DFT calculations. Nat Commun 2025; 16:3537. [PMID: 40229320 PMCID: PMC11997086 DOI: 10.1038/s41467-025-58709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/28/2025] [Indexed: 04/16/2025] Open
Abstract
Single-atom catalysts (SACs) have attracted significant interest due to their exceptional and tunable performance, enabled by diverse coordination environments achieved through innovative synthetic strategies. However, various local structures of active sites pose significant challenges for precise characterization, a prerequisite for developing structure-activity relationships. Here, we combine 17O solid-state NMR spectroscopy and DFT calculations to elucidate the detailed structural information of Pt/CeO2 SACs and their catalytic behaviors. The NMR data reveal that single Pt atoms, dispersed from clusters with water vapor, exhibit a square planar geometry embedded in CeO2 (111) surface, distinct from the original clusters and other conventionally generated Pt single atoms. The square planar Pt/CeO2 SAC demonstrates improved CO oxidation performance compared to Pt/CeO2 SAC with octahedral coordination, due to moderately strong CO adsorption and low energy barriers. This approach can be extended to other oxide-supported SACs, enabling spatially resolved characterization and offering comprehensive insights into their structure-activity relationships.
Collapse
Affiliation(s)
- Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jie Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Qian Wen
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Xiaoli Xia
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Juan Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Changshun Deng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jia-Huan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhen Zhang
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Hanxi Guan
- Institute of Zhejiang University-Quzhou, Quzhou, China
| | - Lei Nie
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenhua Hou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Weiping Tang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Junchao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing, China.
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Yang J, Zheng J, Dun C, Falling LJ, Zheng Q, Chen JL, Zhang M, Jaegers NR, Asokan C, Guo J, Salmeron M, Prendergast D, Urban JJ, Somorjai GA, Guo Y, Su J. Unveiling Highly Sensitive Active Site in Atomically Dispersed Gold Catalysts for Enhanced Ethanol Dehydrogenation. Angew Chem Int Ed Engl 2024; 63:e202408894. [PMID: 38830120 DOI: 10.1002/anie.202408894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Developing a desirable ethanol dehydrogenation process necessitates a highly efficient and selective catalyst with low cost. Herein, we show that the "complex active site" consisting of atomically dispersed Au atoms with the neighboring oxygen vacancies (Vo) and undercoordinated cation on oxide supports can be prepared and display unique catalytic properties for ethanol dehydrogenation. The "complex active site" Au-Vo-Zr3+ on Au1/ZrO2 exhibits the highest H2 production rate, with above 37,964 mol H2 per mol Au per hour (385 g H2 g Au - 1 ${{\rm{g}}_{{\rm{Au}}}^{ - 1} }$ h-1) at 350 °C, which is 3.32, 2.94 and 15.0 times higher than Au1/CeO2, Au1/TiO2, and Au1/Al2O3, respectively. Combining experimental and theoretical studies, we demonstrate the structural sensitivity of these complex sites by assessing their selectivity and activity in ethanol dehydrogenation. Our study sheds new light on the design and development of cost-effective and highly efficient catalysts for ethanol dehydrogenation. Fundamentally, atomic-level catalyst design by colocalizing catalytically active metal atoms forming a structure-sensitive "complex site", is a crucial way to advance from heterogeneous catalysis to molecular catalysis. Our study advanced the understanding of the structure sensitivity of the active site in atomically dispersed catalysts.
Collapse
Affiliation(s)
- Ji Yang
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Juan Zheng
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Lorenz J Falling
- Advanced Light Source, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Qi Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park, 30076, Hsinchu, Taiwan
| | - Miao Zhang
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Nicholas R Jaegers
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Chithra Asokan
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Miquel Salmeron
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - David Prendergast
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| | - Gabor A Somorjai
- College of Chemistry, University of California-Berkeley, 94720, Berkeley, California, United States
| | - Yanbing Guo
- College of Chemistry, Central China Normal University, 430079, Wuhan, People's Republic of China
| | - Ji Su
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| |
Collapse
|
4
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
5
|
Khoo RH, Fiankor C, Yang S, Hu W, Yang C, Lu J, Morton MD, Zhang X, Liu Y, Huang J, Zhang J. Postsynthetic Modification of the Nonanuclear Node in a Zirconium Metal-Organic Framework for Photocatalytic Oxidation of Hydrocarbons. J Am Chem Soc 2023; 145:24052-24060. [PMID: 37880201 PMCID: PMC10636760 DOI: 10.1021/jacs.3c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Heterogeneous catalysis plays an indispensable role in chemical production and energy conversion. Incorporation of transition metals into metal oxides and zeolites is a common strategy to fine-tune the activity and selectivity of the resulting solid catalysts, as either the active center or promotor. Studying the underlying mechanism is however challenging. Decorating the metal-oxo clusters with transition metals in metal-organic frameworks (MOFs) via postsynthetic modification offers a rational approach to construct well-defined structural models for better understanding of the reaction mechanism. Therefore, it is important to expand the materials scope beyond the currently widely studied zirconium MOFs consisting of Zr6 nodes. In this work, we report the design and synthesis of a new (4,12)-connected Zr-MOF with ith topology that consists of rare Zr9 nodes. FeIII was further incorporated onto the Zr9 nodes of the framework, and the resulting MOF material exhibits significantly enhanced activity and selectivity toward the photocatalytic oxidation of toluene. This work demonstrates a delicate ligand design strategy to control the nuclearity of Zr-oxo clusters, which further dictates the number and binding sites of transition metals and the overall photocatalytic activity toward C-H activation. Our work paves the way for future exploration of the structure-activity study of catalysts using MOFs as the model system.
Collapse
Affiliation(s)
- Rebecca
Shu Hui Khoo
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Christian Fiankor
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Wenhui Hu
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jingzhi Lu
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Martha D. Morton
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xu Zhang
- Jiangsu
Engineering Laboratory for Environment Functional Materials, Jiangsu
Collaborative Innovation Center of Regional Modern Agriculture &
Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, No. 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Yi Liu
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jier Huang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
6
|
Das S, Anjum U, Lim KH, He Q, Hoffman AS, Bare SR, Kozlov SM, Gates BC, Kawi S. Genesis of Active Pt/CeO 2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207272. [PMID: 36942900 DOI: 10.1002/smll.202207272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Atomically dispersed metal catalysts offer the advantages of efficient metal utilization and high selectivities for reactions of technological importance. Such catalysts have been suggested to be strong candidates for dry reforming of methane (DRM), offering prospects of high selectivity for synthesis gas without coke formation, which requires ensembles of metal sites and is a challenge to overcome in DRM catalysis. However, investigations of the structures of isolated metal sites on metal oxide supports under DRM conditions are lacking, and the catalytically active sites remain undetermined. Data characterizing the DRM reaction-driven structural evolution of a cerium oxide-supported catalyst, initially incorporating atomically dispersed platinum, and the corresponding changes in catalyst performance are reported. X-ray absorption and infrared spectra show that the reduction and agglomeration of isolated cationic platinum atoms to form small platinum clusters/nanoparticles are necessary for DRM activity. Density functional theory calculations of the energy barriers for methane dissociation on atomically dispersed platinum and on platinum clusters support these observations. The results emphasize the need for in-operando experiments to assess the active sites in such catalysts. The inferences about the catalytically active species are suggested to pertain to a broad class of catalytic conversions involving the rate-limiting dissociation of light alkanes.
Collapse
Affiliation(s)
- Sonali Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076, India
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, CA, 95616, USA
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
7
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
8
|
Tan W, Xie S, Le D, Diao W, Wang M, Low KB, Austin D, Hong S, Gao F, Dong L, Ma L, Ehrlich SN, Rahman TS, Liu F. Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nat Commun 2022; 13:7070. [PMID: 36400791 PMCID: PMC9674627 DOI: 10.1038/s41467-022-34797-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2 supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2 prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2 with a Pt-O coordination number of ca. 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2 terrace with a Pt-O coordination number of ca. 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2 coordination environments exhibit a reversal of activity trend in CO oxidation and NH3 oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32816, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering; Center of Modern Analysis, Nanjing University, Nanjing, 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32816, USA
| | - Duy Le
- Department of Physics, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), University of Central Florida, Orlando, FL, 32816, USA
| | - Weijian Diao
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA, 19085, USA
| | - Meiyu Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Ke-Bin Low
- BASF Corporation, Iselin, NJ, 08830, USA
| | - Dave Austin
- Department of Physics, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), University of Central Florida, Orlando, FL, 32816, USA
| | - Sampyo Hong
- Brewton-Parker College, Mount Vernon, GA, 30445, USA
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering; Center of Modern Analysis, Nanjing University, Nanjing, 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment; Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering; Center of Modern Analysis, Nanjing University, Nanjing, 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Talat S Rahman
- Department of Physics, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), University of Central Florida, Orlando, FL, 32816, USA
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
9
|
Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Wang J, Zhu P, Liu C, Liu H, Zhang W, Zhang X. Regulating Encapsulation of Small Pt Nanoparticles inside Silicalite-1 Zeolite with the Aid of Sodium Ions for Enhancing n-Hexane Reforming. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710065, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Zhu L, Sun Y, Zhu H, Chai G, Yang Z, Shang C, Ye H, Chen BH, Kroner A, Guo Z. Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH) 2 Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lihua Zhu
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
- College of Chemistry and Chemical Engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China
| | - Yilun Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, Fujian, P. R. China
| | - Huaze Zhu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, Fujian, P. R. China
| | - Zhiqing Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Congxiao Shang
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
| | - Hengqiang Ye
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bing Hui Chen
- Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Anna Kroner
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire OX11 0DE, U.K
| | - Zhengxiao Guo
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China
| |
Collapse
|
12
|
Xie S, Zhang X, Xu P, Hatcher B, Liu Y, Ma L, Ehrlich SN, Hong S, Liu F. Effect of surface acidity modulation on Pt/Al2O3 single atom catalyst for carbon monoxide oxidation and methanol decomposition. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Chen Y, Ahn S, Mian MR, Wang X, Ma Q, Son FA, Yang L, Ma K, Zhang X, Notestein JM, Farha OK. Modulating Chemical Environments of Metal-Organic Framework-Supported Molybdenum(VI) Catalysts for Insights into the Structure-Activity Relationship in Cyclohexene Epoxidation. J Am Chem Soc 2022; 144:3554-3563. [PMID: 35179900 DOI: 10.1021/jacs.1c12421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Solid supports are crucial in heterogeneous catalysis due to their profound effects on catalytic activity and selectivity. However, elucidating the specific effects arising from such supports remains challenging. We selected a series of metal-organic frameworks (MOFs) with 8-connected Zr6 nodes as supports to deposit molybdenum(VI) onto to study the effects of pore environment and topology on the resulting Mo-supported catalysts. As characterized by X-ray absorption spectroscopy (XAS) and single-crystal X-ray diffraction (SCXRD), we modulated the chemical environments of the deposited Mo species. For Mo-NU-1000, the Mo species monodentately bound to the Zr6 nodes were anchored in the microporous c-pore, but for Mo-NU-1008 they were bound in the mesopore of Mo-NU-1008. Both monodentate and bidentate modes were found in the mesopore of Mo-NU-1200. Cyclohexene epoxidation with H2O2 was probed to evaluate the support effect on catalytic activity and to unveil the resulting structure-activity relationships. SCXRD and XAS studies demonstrated the atomically precise structural differences of the Mo binding motifs over the course of cyclohexene epoxidation. No apparent structural change was observed for Mo-NU-1000, whereas the monodentate mode of Mo species in Mo-NU-1008 and the monodentate and bidentate Mo species in Mo-NU-1200 evolved to a new bidentate mode bound between two adjacent oxygen atoms from the Zr6 node. This work demonstrates the great advantage of using MOF supports for constructing heterogeneous catalysts with modulated chemical environments of an active species and elucidating structure-activity relationships in the resulting reactions.
Collapse
Affiliation(s)
- Yongwei Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sol Ahn
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing Ma
- DND-CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne, Illinois 60439, United States
| | - Florencia A Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lifeng Yang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Notestein
- Center for Catalysis and Surface Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Wang J, Liu C, Zhu P, Liu H, Zhang X. Mercaptosilane-assisted synthesis of highly dispersed and stable Pt nanoparticles on HL zeolites for enhancing hydroisomerization of n-hexane. NEW J CHEM 2022. [DOI: 10.1039/d1nj05774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt/HL-SH catalysts were synthesized by a facile mercaptosilane-assisted in situ synthesis approach and exhibited better catalytic performance in n-hexane hydroisomerization.
Collapse
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
Tang J, Zhu G, Li P, Zhang P, Peng F, Meng F. Novel recognition mechanism based on oxidative addition of Pt(II) complex-based luminescent probes for hypochlorite ion detection. Analyst 2021; 146:5691-5703. [PMID: 34515701 DOI: 10.1039/d1an01048d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platinum(II) complexes are the most commonly used anticancer drugs and potential optical materials, but the detectability of Pt(II) complex-based probes is seldom reported. In our previous work, a tetradentate Pt(II) complex Pt-CHO was utilised as a 'turn-off' probe to detect ClO- and image cancer cells. However, the recognition mechanism has not been completely clarified and there are still doubts. In this work, three Pt(II) complexes, Pt-H, Pt-CHO and Pt-COOH, were developed to elucidate the mechanism of this class of complexes and refine their property studies. As a result, the UV-visible absorption and luminescence emission experiments, as well as the mass spectrum, proved that the oxidation of Pt(II) to Pt(IV) was the real reason for luminescence quenching, which has nothing to do with aldehyde groups. This first reported mechanism introduces a new type of ClO- probe based on Pt(II) complexes, thereby expanding the application fields of platinum complexes. Moreover, the quantum yield measurements, the effect of biomolecules and reversibility were studied to improve the properties of the probes. Theoretical calculations were used to gain an in-depth understanding of optical characteristics and related mechanisms. The cell imaging of RAW264.7 cells under endogenous ClO- proved the potential of the probes in bioimaging.
Collapse
Affiliation(s)
- Jingjie Tang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Guoxun Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Li
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Pingjun Zhang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| | - Fang Peng
- Guangdong Second Provincial General Hospital, Guangzhou 510316, China.
| | - Fei Meng
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China. .,Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou 510316, China
| |
Collapse
|
16
|
Chen L, Qi Z, Peng X, Chen JL, Pao CW, Zhang X, Dun C, Young M, Prendergast D, Urban JJ, Guo J, Somorjai GA, Su J. Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO 2 Supported Single-Site Catalysts. J Am Chem Soc 2021; 143:12074-12081. [PMID: 34328729 DOI: 10.1021/jacs.1c03895] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrated how the special synergy between a noble metal single site and neighboring oxygen vacancies provides an "ensemble reaction pool" for high hydrogen generation efficiency and carbon dioxide (CO2) selectivity of a tandem reaction: methanol steam reforming. Specifically, the hydrogen generation rate over single site Ru1/CeO2 catalyst is up to 9360 mol H2 per mol Ru per hour (579 mLH2 gRu-1 s-1) with 99.5% CO2 selectivity. Reaction mechanism study showed that the integration of metal single site and O vacancies facilitated the tandem reaction, which consisted of methanol dehydrogenation, water dissociation, and the subsequent water gas shift (WGS) reaction. In addition, the strength of CO adsorption and the reaction activation energy difference between methanol dehydrogenation and WGS reaction play an important role in determining the activity and CO2 selectivity. Our study paves the way for the further rational design of single site catalysts at the atomic scale. Furthermore, the development of such highly efficient and selective hydrogen evolution systems promises to deliver highly desirable economic and ecological benefits.
Collapse
Affiliation(s)
- Luning Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 30076, Taiwan
| | - Xibo Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | - Melissa Young
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | | | | | | | - Gabor A Somorjai
- Department of Chemistry, University of California-Berkeley, Berkeley, California 94720, United States
| | | |
Collapse
|
17
|
Chen Y, Zhang X, Wang X, Drout RJ, Mian MR, Cao R, Ma K, Xia Q, Li Z, Farha OK. Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. J Am Chem Soc 2021; 143:4302-4310. [DOI: 10.1021/jacs.0c12963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yongwei Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Riki J. Drout
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ran Cao
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, People’s Republic of China
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Song B, Choi D, Xin Y, Bowers CR, Hagelin‐Weaver H. Ultra‐Low Loading Pt/CeO
2
Catalysts: Ceria Facet Effect Affords Improved Pairwise Selectivity for Parahydrogen Enhanced NMR Spectroscopy. Angew Chem Int Ed Engl 2020; 60:4038-4042. [DOI: 10.1002/anie.202012469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Bochuan Song
- Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Diana Choi
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Yan Xin
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | | | | |
Collapse
|
19
|
Song B, Choi D, Xin Y, Bowers CR, Hagelin‐Weaver H. Ultra‐Low Loading Pt/CeO
2
Catalysts: Ceria Facet Effect Affords Improved Pairwise Selectivity for Parahydrogen Enhanced NMR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bochuan Song
- Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Diana Choi
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Yan Xin
- National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA
| | | | | |
Collapse
|