1
|
Zhang P, Liu Y, Wei J, Wu Z, Song X, Ding G, Wang H, Liang J, Tie Z, Jin Z. An amphoteric and hydrogen-bond-rich artificial α-amino acid for highly durable aqueous redox flow batteries. Nat Commun 2025; 16:4727. [PMID: 40399283 DOI: 10.1038/s41467-025-59962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 05/09/2025] [Indexed: 05/23/2025] Open
Abstract
Aqueous organic redox flow batteries offer promising prospects for large-scale, high-safety, and cost-effective energy storage systems with no reliance on scarce mineral resources. However, challenges such as limited water solubility and poor stability hinder the practical application of organic redox molecules in aqueous organic redox flow batteries. Herein, we report the design and synthesis of an artificial redox-active α-amino acid molecule by functionalizing 1,5-dihydroxyanthraquinone with natural cysteine side group, which exhibits enhanced aqueous solubility and redox reversibility in alkaline aqueous organic redox flow batteries. Owing to its unique zwitterionic structure and abundant hydrogen bonds, the negolyte based on artificial α-amino acid molecule exhibits a very low capacity decay rate of 0.00025% per cycle (equivalent to 0.011% per day) under 1 M electron transfer. Theoretical simulations and spectroscopic analyses underscore the importance of the symmetric distribution and abundant hydrogen-bonding interactions of amphipathic amino acid side chains in enhancing the stability of the anthraquinone redox core and reducing its dimerization, as well as enhancing its water solubility and redox reversibility. This study presents the promising potential of nature-inspired principles in designing electrochemically stable, redox-active organic molecules, contributing to the advancement of large-scale, biocompatible, and sustainable aqueous organic redox flow batteries.
Collapse
Affiliation(s)
- Pengbo Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yuzhu Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Energy and Environmental Materials Research Department, Suzhou Laboratory, Suzhou, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China
| | - Zuoao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Xinmei Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Guochun Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, Nanjing University, Tianchang, Anhui, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, Nanjing University, Tianchang, Anhui, China
| | - Junchuan Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, Nanjing University, Tianchang, Anhui, China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, Nanjing University, Tianchang, Anhui, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Energy and Environmental Materials Research Department, Suzhou Laboratory, Suzhou, China.
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Suzhou, Jiangsu, China.
- Tianchang New Materials and Energy Technology Research Center, Nanjing University, Tianchang, Anhui, China.
| |
Collapse
|
2
|
de Kogel A, Wang RJ, Tsai WY, Tobis M, Leiter R, Luo R, Zhao EW, Fleischmann S, Wang X. Material characterization methods for investigating charge storage processes in 2D and layered materials-based batteries and supercapacitors. NANOSCALE 2025. [PMID: 40376754 DOI: 10.1039/d5nr00649j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Two-dimensional (2D) materials offer distinct advantages for electrochemical energy storage (EES) compared to bulk materials, including a high surface-to-volume ratio, tunable interlayer spacing, and excellent in-plane conductivity, making them highly attractive for applications in batteries and supercapacitors. Gaining a fundamental understanding of the energy storage processes in 2D material-based EES devices is essential for optimizing their chemical composition, surface chemistry, morphology, and interlayer structure to enhance ion transport, promote redox reactions, suppress side reactions, and ultimately improve overall performance. This review provides a comprehensive overview of the characterization techniques employed to probe charge storage mechanisms in 2D and thin-layered material-based EES systems, covering optical spectroscopy, imaging techniques, X-ray and neutron-based methods, mechanical probing, and nuclear magnetic resonance spectroscopy. We specifically highlight the application of these techniques in elucidating ion transport dynamics, tracking redox processes, identifying degradation pathways, and detecting interphase formation. Furthermore, we discuss the limitations, challenges, and potential pitfalls associated with each method, as well as future directions for advancing characterization techniques to better understand and optimize 2D material-based electrodes.
Collapse
Affiliation(s)
- Albert de Kogel
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629JB, Delft, The Netherlands.
| | - Ruocun John Wang
- University of North Texas, 3940 N Elm St, Denton, TX 76207, USA.
| | - Wan-Yu Tsai
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex 80039, France
| | - Maciej Tobis
- Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany.
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Robert Leiter
- Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany.
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Ruipeng Luo
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands.
| | - Evan Wenbo Zhao
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands.
| | - Simon Fleischmann
- Helmholtz Institute Ulm (HIU), 89081 Ulm, Germany.
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, 2629JB, Delft, The Netherlands.
| |
Collapse
|
3
|
Zhang X, de Silva P. Computational framework for discovery of degradation mechanisms of organic flow battery electrolytes. Chem Sci 2025; 16:8422-8434. [PMID: 40225182 PMCID: PMC11986837 DOI: 10.1039/d4sc07640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/06/2025] [Indexed: 04/15/2025] Open
Abstract
The stability of organic redox-active molecules is a key challenge for the long-term viability of organic redox flow batteries (ORFBs). Electrolyte degradation leads to capacity fade, reducing the efficiency and lifespan of ORFBs. To systematically investigate degradation mechanisms, we present a computational framework that automates the exploration of degradation pathways. The approach integrates local reactivity descriptors to generate reactive complexes and employs a single-ended process search to discover elementary reaction steps, including transition states and intermediates. The resulting reaction network is iteratively refined with heuristics and human-guided validation. The framework is applied to study the degradation mechanisms of quinone- and quinoxaline-based electrolytes under acidic and basic aqueous conditions. The predicted reaction pathways and degradation products align with experimental observations, highlighting key degradation modes such as Michael addition, disproportionation, dimerization, and electrochemical transformation. The framework provides a valuable tool for in silico screening of stable electrolyte candidates and guiding the molecular design of next-generation ORFBs.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej 301 2800 Kongens Lyngby Denmark
| | - Piotr de Silva
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej 301 2800 Kongens Lyngby Denmark
| |
Collapse
|
4
|
Wei Z, Yuan D, Yuan X, Zhang Y, Ma J, Zhang S, Zhang H. Formulation principles and synergistic effects of high-voltage electrolytes. Chem Soc Rev 2025; 54:3775-3818. [PMID: 40045810 DOI: 10.1039/d4cs00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The energy density of lithium-ion batteries (LIBs) is primarily determined by the working potential of devices and the specific capacity of cathode compounds. Carbonate-based electrolytes have received considerable attention due to their significance for advancing current cell-assembly process. However, the commercially available liquid LiPF6 based electrolytes cannot withstand the harsh high-voltage environment and the effects of cathode, due to issues such as the undesired oxidative decomposition of ethylene carbonate (EC), the catalytic influence of dissolved transition metal ions (TMs), and the poor performance of interphases with unstable morphologies and components. Furthermore, the complex working mechanisms of high-voltage electrolytes (HVEs) are not fully understood. This review presents a comprehensive summary of the HVEs, including their physical properties, solvation structures, and interface chemistry. Specifically, chemical environment of high-voltage cathode compounds and failure mechanisms of commercial electrolytes are investigated, followed by a discussion of expected functions of HVEs. Then, screening criteria for single-component electrolytes, considering their oxidation resistance and decomposition mechanism, and screening mechanism of interphase species are explored based on their energy level positions. Next, a cross-scale evolution framework is proposed, from the solvation structure to interphase characteristics, aimed at uncovering the formulation principles and synergistic effects of HVEs. Operational mechanisms are systematically scrutinized, starting from the conventional tuning of solvation structure to the incorporation of multiple components and further to the role of entropy-driven effects, all of which will favor the understanding of formulation principles and synergistic effects. Finally, integration of advanced computational methods and mature experimental techniques is expected to foster the development of novel perspectives and promising electrolyte candidates.
Collapse
Affiliation(s)
- Zewei Wei
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410004, China
| | - Xuedi Yuan
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yalin Zhang
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jianmin Ma
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Haitao Zhang
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
5
|
Liu Y, Wu Z, Zhang P, Wei J, Li J, Wang H, Wen S, Liang J, Chen Y, Dai T, Tie Z, Ma J, Wang X, Jin Z. Artificial α-amino acid based on cysteine grafted natural aloe-emodin for aqueous organic redox flow batteries. Nat Commun 2025; 16:2965. [PMID: 40140383 PMCID: PMC11947443 DOI: 10.1038/s41467-025-58165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Natural redox-active anthraquinone derivatives possess promising attributes for applications in aqueous organic redox flow batteries (AORFBs) due to their environmental friendliness and abundant sources. However, their limited aqueous solubility and electrochemical stability have posed significant challenges to their practical utilization. Herein, inspired by click chemistry, we report the synthesis of an artificial α-amino acid derived from cysteine-functionalized natural aloe-emodin (namely Cys-AE), which exhibits good water-solubility and redox-reversibility, particularly suited for alkaline AORFBs. The bio-inspired Cys-AE molecule exhibits a threefold increase in aqueous solubility compared to pristine aloe-emodin. Furthermore, the AORFB based Cys-AE negolyte with an electron concentration of 1.0 M demonstrates a low capacity fade rate of 0.000948% cycle-1 (equivalent to 0.0438% day-1) during 592 cycles, significantly outperforming the AORFB based on pristine aloe-emodin (0.00446% cycle-1, or 0.908% day-1) during 1564 cycles. Our investigation incorporates time-dependent density functional theory (TDDFT) simulations and detailed spectroscopic analyses reveal the essential role played by the asymmetric distribution of multiple solubilizing groups in enhancing the aqueous solubility and cycling stability of Cys-AE. This study highlights the potential of nature-inspired molecular engineering strategies in creating and crafting redox-reversible organic species poised to revolutionize large-scale and sustainable energy storage applications.
Collapse
Affiliation(s)
- Yuzhu Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zuoao Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Pengbo Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Junjie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Sheng Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Junchuan Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yongkang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Tengfei Dai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Tianchang New Materials and Energy Technology Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Xizhang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Suzhou Key Laboratory of Green Intelligent Manufacturing of New Energy Materials and Devices, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Tianchang New Materials and Energy Technology Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Ge G, Mu C, Wang Y, Zhang C, Li X. Four-Electron-Transferred Pyrene-4,5,9,10-tetraone Derivatives Enabled High-Energy-Density Aqueous Organic Flow Batteries. J Am Chem Soc 2025; 147:4790-4799. [PMID: 39888713 DOI: 10.1021/jacs.4c12506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Multielectron-transferred molecules hold great potential to enhance the energy density and reduce the cost for aqueous organic flow batteries (AOFBs). However, the extended conjugated units required for increasing redox-active sites and stabilizing the multielectron reaction always decrease the molecular polarity, limiting the solubility in the electrolyte. Herein, we presented an asymmetrical pyrene-4,5,9,10-tetraone-1-sulfonate (PTO-PTS) monomer which not only could reversibly store four electrons but also exhibited a high theoretical electron concentration of 4.0 M and the strongly heat-resistant intermediate semiquinone free radical. As a result, PTO-PTS-based AOFBs demonstrated a high energy density of 59.6 Wh Lcatholyte-1 (89 Ah L-1) with an ultrastable capacity retention of nearly 100% for above 5200 cycles (60 days). Moreover, the heat-stable PTO-PTS structure further enabled both symmetric and full cells to achieve remarkable cycling durability for over a thousand cycles at 60 °C. The outstanding cell performance and high thermal stability suggest its promising application in large-scale energy storage.
Collapse
Affiliation(s)
- Guangxu Ge
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenkai Mu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|
7
|
Ahn S, Yun A, Ko D, Singh V, Joo JM, Byon HR. Organic redox flow batteries in non-aqueous electrolyte solutions. Chem Soc Rev 2025; 54:742-789. [PMID: 39601089 DOI: 10.1039/d4cs00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Redox flow batteries (RFBs) are gaining significant attention due to the growing demand for sustainable energy storage solutions. In contrast to conventional aqueous vanadium RFBs, which have a restricted voltage range resulting from the use of water and vanadium, the utilization of redox-active organic molecules (ROMs) as active materials broadens the range of applicable liquid media to include non-aqueous electrolyte solutions. The extended voltage range of non-aqueous media, exceeding 2 V, facilitates the establishment of high-energy storage systems. Additionally, considering the higher cost of non-aqueous solvents compared to water, the objective in developing non-aqueous electrolyte solution-based organic RFBs (NRFBs) is to efficiently install these systems in a compact manner and explore unique applications distinct from those associated with aqueous RFBs, which are typically deployed for grid-scale energy storage systems. This review presents recent research progress in ROMs, electrolytes, and membranes in NRFBs. Furthermore, we address the prevailing challenges that require revolution, encompassing a narrow cell voltage range, insufficient solubility, chemical instability, and the crossover of ROMs. Through this exploration, the review contributes to the understanding of the current landscape and potential advancements in NRFB technology and encourages researchers and professionals in the energy field to explore this emerging technology as a potential solution to global environmental challenges.
Collapse
Affiliation(s)
- Seongmo Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Ariyeong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Donghwi Ko
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Vikram Singh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Jung Min Joo
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Ryung Byon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
8
|
Ge G, Li F, Yang M, Zhao Z, Hou G, Zhang C, Li X. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412197. [PMID: 39428902 DOI: 10.1002/adma.202412197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Aqueous organic flow batteries (AOFBs) hold great potential for large-scale energy storage, however, scalable, green, and economical synthetic methods for stable organic redox-active molecules (ORAMs) are still required for their practical applications. Herein, pyrene-based ORAMs are obtained via an in situ organic electrolysis strategy in a flow cell. It is revealed that the water attacking pyrenes restructured molecules to produce a variety of isomers and dimers during the electrolysis, which can be modulated by regulating the local electron cloud density and steric hindrance of pyrene precursors. As a result, the molecularly reconfigured pyrene-based catholytes, even without any further purification, achieved a high electrolyte utilization of ≈96% and volumetric capacity above 50 Ah L-1. Inspiringly, remarkable cell stability with almost no capacity decay for ≈70 days is achieved, benefiting from the robust aromatic structure of the pyrene cores. The insights into the in situ electrosynthesis of pyrene-based ORAMs provided in the work will provide guidance for designing ultra-stable ORAMs for AOFB applications.
Collapse
Affiliation(s)
- Guangxu Ge
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fan Li
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Min Yang
- University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| |
Collapse
|
9
|
Jacquemond RR, van der Heijden M, Boz EB, Carreón Ruiz ER, Greco KV, Kowalski JA, Muñoz Perales V, Brushett FR, Nijmeijer K, Boillat P, Forner-Cuenca A. Quantifying concentration distributions in redox flow batteries with neutron radiography. Nat Commun 2024; 15:7434. [PMID: 39237517 PMCID: PMC11377732 DOI: 10.1038/s41467-024-50120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/28/2024] [Indexed: 09/07/2024] Open
Abstract
The continued advancement of electrochemical technologies requires an increasingly detailed understanding of the microscopic processes that control their performance, inspiring the development of new multi-modal diagnostic techniques. Here, we introduce a neutron imaging approach to enable the quantification of spatial and temporal variations in species concentrations within an operating redox flow cell. Specifically, we leverage the high attenuation of redox-active organic materials (high hydrogen content) and supporting electrolytes (boron-containing) in solution and perform subtractive neutron imaging of active species and supporting electrolyte. To resolve the concentration profiles across the electrodes, we employ an in-plane imaging configuration and correlate the concentration profiles to cell performance with polarization experiments under different operating conditions. Finally, we use time-of-flight neutron imaging to deconvolute concentrations of active species and supporting electrolyte during operation. Using this approach, we evaluate the influence of cell polarity, voltage bias and flow rate on the concentration distribution within the flow cell and correlate these with the macroscopic performance, thus obtaining an unprecedented level of insight into reactive mass transport. Ultimately, this diagnostic technique can be applied to a range of (electro)chemical technologies and may accelerate the development of new materials and reactor designs.
Collapse
Affiliation(s)
- Rémy Richard Jacquemond
- Electrochemical Materials and Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- DIFFER - Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH5612, Eindhoven, The Netherlands
| | - Maxime van der Heijden
- Electrochemical Materials and Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Emre Burak Boz
- Electrochemical Materials and Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Eindhoven Institute for Renewable Energy Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Eric Ricardo Carreón Ruiz
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Katharine Virginia Greco
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jeffrey Adam Kowalski
- Joint Center for Energy Storage Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vanesa Muñoz Perales
- Department of Thermal and Fluids Engineering, Universidad Carlos III de Madrid, 28911, Leganes, Spain
| | - Fikile Richard Brushett
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kitty Nijmeijer
- DIFFER - Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH5612, Eindhoven, The Netherlands
- Membrane Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Pierre Boillat
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Antoni Forner-Cuenca
- Electrochemical Materials and Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Eindhoven Institute for Renewable Energy Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Wu S, Yang J, Ni Y, Han Y, Chen W, Wu J. Azatriangulenetrione as the Anode Material for Sodium-Ion Batteries: Reversible Redox Chemistry Mediated by Lone Pair Electrons. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39349-39355. [PMID: 39020499 DOI: 10.1021/acsami.4c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Redox-active organic molecules have potential as electrode materials, but their cycling stability is often limited by the irreversible formation of σ-bonds from the radical intermediates. Herein, we present an effective approach to achieve high reversibility by using lone pair electrons to mediate intramolecular radical-radical coupling. Azatriangulenetrione (1) was examined as the anode in sodium-ion batteries, which displayed a reversible four-step, one-electron redox chemistry. In situ electron spin resonance, ex situ Fourier transform infrared/X-ray photoelectron spectroscopy, and density functional theory calculation revealed that the unstable radical anions can couple with each other through the lone pair electrons of the central nitrogen atom, leading to stabilized radical species. Furthermore, scan-rate-dependent cyclic voltammetry measurements and galvanostatic intermittent titration techniques demonstrated that the redox reaction kinetics for radical formation were much faster than the radical paring process. This study offers deep insights into the design of highly reversible organic electrodes.
Collapse
Affiliation(s)
- Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jinlin Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
11
|
Burghoff A, Holubowitch NE. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries. J Am Chem Soc 2024; 146:9728-9740. [PMID: 38535624 DOI: 10.1021/jacs.3c13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A lack of suitable high-potential catholytes hinders the development of aqueous redox flow batteries (RFBs) for large-scale energy storage. Hydrolysis of the charged (oxidized) catholyte typically occurs when its redox potential approaches that of water, with a negative impact on battery performance. Here, we elucidate and address such behavior for a representative iron-based organometallic complex, showing that the associated voltage and capacity losses can be curtailed by several simple means. We discovered that addition of activated carbon cloth (ACC) to the reservoir of low-cost, high-potential [Fe(bpy)3]2+/3+ catholyte-limited aqueous redox flow batteries extends their lifetime and boosts discharge voltage─two typically orthogonal performance metrics. Similar effects are observed when the catholyte's graphite felt electrode is electrochemically oxidized (overcharged) and by modifying the catholyte solution's pH, which was monitored in situ for all flow batteries. Modulation of solution pH alters hydrolytic speciation of the charged catholyte from the typical dimeric species μ-O-[FeIII(bpy)2(H2O)]24+, converting it to a higher-potential μ-dihydroxo form, μ-[FeIII(bpy)2(H2O)(OH)]24+, at lower pH. The existence of free bpyH22+ at low pH is found to strongly correlate with battery degradation. Near-neutral-pH RFBs employing a viologen anolyte, (SPr)2V, in excess with the [Fe(bpy)3]2+/3+ catholyte containing ACC exhibited high-voltage discharge for up to 600 cycles (41 days) with no discernible capacity fade. Correlating pH and voltage data offers powerful fundamental insight into organometallic (electro)chemistry with potential utility beyond battery applications. The findings, with implications toward a host of other "near-neutral" active species, illuminate the critical and underappreciated role of electrolyte pH on intracycle and long-term aqueous flow battery performance.
Collapse
Affiliation(s)
- Alexis Burghoff
- Department of Physical and Environmental Sciences, Texas A&M University─Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas 78412, United States
| | - Nicolas E Holubowitch
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, New Mexico 87801, United States
| |
Collapse
|
12
|
Wu K, Ran P, Wang B, Wang F, Zhao J, Zhao E. Diffusion-Optimized Long Lifespan 4.6 V LiCoO 2: Homogenizing Cycled Bulk-To-Surface Li Concentration with Reduced Structure Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308258. [PMID: 38291813 PMCID: PMC11005714 DOI: 10.1002/advs.202308258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Increasing the charging cut-off voltage (e.g., 4.6 V) to extract more Li ions are pushing the LiCoO2 (LCO) cathode to achieve a higher energy density. However, an inhomogeneous cycled bulk-to-surface Li distribution, which is closely associated with the enhanced extracted Li ions, is usually ignored, and severely restricts the design of long lifespan high voltage LCO. Here, a strategy by constructing an artificial solid-solid Li diffusion environment on LCO's surface is proposed to achieve a homogeneous bulk-to-surface Li distribution upon cycling. The diffusion optimized LCO not only shows a highly reversible capacity of 212 mA h g-1 but also an ultrahigh capacity retention of 80% over 600 cycles at 4.6 V. Combined in situ X-ray diffraction measurements and stress-evolution simulation analysis, it is revealed that the superior 4.6 V long-cycled stability is ascribed to a reduced structure stress leaded by the homogeneous bulk-to-surface Li diffusion. This work broadens approaches for the design of highly stable layered oxide cathodes with low ion-storage structure stress.
Collapse
Affiliation(s)
- Kang Wu
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Peilin Ran
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Baotian Wang
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049P. R. China
- Spallation Neutron Source Science CenterDongguanGuangdong523803P. R. China
| | - Fangwei Wang
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
- Spallation Neutron Source Science CenterDongguanGuangdong523803P. R. China
| | - Jinkui Zhao
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190P. R. China
| | - Enyue Zhao
- Songshan Lake Materials LaboratoryDongguan523808P. R. China
| |
Collapse
|
13
|
Gu S, Chen J, Hussain I, Wang Z, Chen X, Ahmad M, Feng SP, Lu Z, Zhang K. Modulation of Radical Intermediates in Rechargeable Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306491. [PMID: 37533193 DOI: 10.1002/adma.202306491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Organic materials have been considered as promising electrodes for next-generation rechargeable batteries in view of their sustainability, structural flexibility, and potential recyclability. The radical intermediates generated during the redox process of organic electrodes have profound effect on the reversible capacity, operation voltage, rate performance, and cycling stability. However, the radicals are highly reactive and have very short lifetime during the redox of organic materials. Great efforts have been devoted to capturing and investigating the radical intermediates in organic electrodes. Herein, this review summarizes the importance, history, structures, and working principles of organic radicals in rechargeable batteries. More importantly, challenges and strategies to track and regulate the radicals in organic batteries are highlighted. Finally, further perspectives of organic radicals are proposed for the development of next-generation high-performance rechargeable organic batteries.
Collapse
Affiliation(s)
- Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shien-Ping Feng
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
14
|
Latchem EJ, Kress T, Klusener PAA, Kumar RV, Forse AC. Charge-Dependent Crossover in Aqueous Organic Redox Flow Batteries Revealed Using Online NMR Spectroscopy. J Phys Chem Lett 2024; 15:1515-1520. [PMID: 38299498 PMCID: PMC10860123 DOI: 10.1021/acs.jpclett.3c03482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
Aqueous organic redox-flow batteries (AORFBs) are promising candidates for low-cost grid-level energy storage. However, their wide-scale deployment is limited by crossover of redox-active material through the separator membrane, which causes capacity decay. Traditional membrane permeability measurements do not capture all contributions to crossover in working batteries, including migration and changes in ion size and charge. Here we present a new method for characterizing crossover in operating AORFBs using online 1H NMR spectroscopy. By the introduction of a separate pump to decouple NMR and battery flow rates, this method opens a route to quantitative time-resolved monitoring of redox-flow batteries under real operating conditions. In this proof-of-concept study of a 2,6-dihydroxyanthraquinone (2,6-DHAQ)/ferrocyanide model system, we observed a doubling of the 2,6-DHAQ crossover during battery charging, which we attribute to migration effects. This new membrane testing methodology will advance our understanding of crossover and accelerate the development of improved redox-flow batteries.
Collapse
Affiliation(s)
- Emma J. Latchem
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd., Cambridge CB2 1EW, U.K.
- Department
of Materials Science, University of Cambridge, Charles Babbage Rd., Cambridge CB3 0FS, U.K.
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd., Cambridge CB2 1EW, U.K.
| | - Peter A. A. Klusener
- Shell
Global Solutions International B.V.,
Energy Transition Campus, Grasweg 31, Amsterdam 1031 HW, Netherlands
| | - R. Vasant Kumar
- Department
of Materials Science, University of Cambridge, Charles Babbage Rd., Cambridge CB3 0FS, U.K.
| | - Alexander C. Forse
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Rd., Cambridge CB2 1EW, U.K.
| |
Collapse
|
15
|
Jethwa R, Hey D, Kerber RN, Bond AD, Wright DS, Grey CP. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:414-426. [PMID: 38273966 PMCID: PMC10806605 DOI: 10.1021/acsaem.3c02223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.
Collapse
Affiliation(s)
| | - Dominic Hey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - Andrew D. Bond
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Dominic S. Wright
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Clare P. Grey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
16
|
Carrington ME, Sokołowski K, Jónsson E, Zhao EW, Graf AM, Temprano I, McCune JA, Grey CP, Scherman OA. Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature 2023; 623:949-955. [PMID: 38030777 PMCID: PMC10686829 DOI: 10.1038/s41586-023-06664-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.
Collapse
Affiliation(s)
- Mark E Carrington
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Kamil Sokołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erlendur Jónsson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Evan Wenbo Zhao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Anton M Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Israel Temprano
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jade A McCune
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Oren A Scherman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
17
|
Zhao Z, Liu X, Zhang M, Zhang L, Zhang C, Li X, Yu G. Development of flow battery technologies using the principles of sustainable chemistry. Chem Soc Rev 2023; 52:6031-6074. [PMID: 37539656 DOI: 10.1039/d2cs00765g] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Realizing decarbonization and sustainable energy supply by the integration of variable renewable energies has become an important direction for energy development. Flow batteries (FBs) are currently one of the most promising technologies for large-scale energy storage. This review aims to provide a comprehensive analysis of the state-of-the-art progress in FBs from the new perspectives of technological and environmental sustainability, thus guiding the future development of FB technologies. More importantly, we evaluate the current situation and future development of key materials with key aspects of green economy and decarbonization to promote sustainable development and improve the novel energy framework. Finally, we present an analysis of the current challenges and prospects on how to effectively construct low-carbon and sustainable FB materials in the future.
Collapse
Affiliation(s)
- Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Xianghui Liu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Mengqi Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
18
|
Hey D, Jethwa RB, Farag NL, Rinkel BLD, Zhao EW, Grey CP. Identifying and preventing degradation in flavin mononucleotide-based redox flow batteries via NMR and EPR spectroscopy. Nat Commun 2023; 14:5207. [PMID: 37626038 PMCID: PMC10457286 DOI: 10.1038/s41467-023-40649-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
While aqueous organic redox flow batteries (RFBs) represent potential solutions to large-scale grid storage, their electrolytes suffer from short lifetimes due to rapid degradation. We show how an understanding of these degradation processes can be used to dramatically improve performance, as illustrated here via a detailed study of the redox-active biomolecule, flavin mononucleotide (FMN), a molecule readily derived from vitamin B2. Via in-situ nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) we identify FMN hydrolysis products and show that these give rise to the additional plateau seen during charging of an FMN-cyanoferrate battery. The redox reactions of the hydrolysis product are not reversible, but we demonstrate that capacity is still retained even after substantial hydrolysis, albeit with reduced voltaic efficiency, FMN acting as a redox mediator. Critically, we demonstrate that degradation is mitigated and battery efficiency is substantially improved by lowering the pH to 11. Furthermore, the addition of cheap electrolyte salts to tune the pH results in a dramatic increase in solubility (above 1 M), this systematic improvement of the flavin-based system bringing RFBs one step closer to commercial viability.
Collapse
Affiliation(s)
- Dominic Hey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Rajesh B Jethwa
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Nadia L Farag
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Evan Wenbo Zhao
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Magnetic Resonance Research Centre, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, Chen J. Organic Electroactive Materials for Aqueous Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301898. [PMID: 37158492 DOI: 10.1002/adma.202301898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Organic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox-active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low-cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.
Collapse
Affiliation(s)
- Gaojing Yang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxun Zhu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimeng Hao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing Zhao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
20
|
Modak SV, Shen W, Singh S, Herrera D, Oudeif F, Goldsmith BR, Huan X, Kwabi DG. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques. Nat Commun 2023; 14:3602. [PMID: 37328467 PMCID: PMC10275907 DOI: 10.1038/s41467-023-39257-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Organic redox-active molecules are attractive as redox-flow battery (RFB) reactants because of their low anticipated costs and widely tunable properties. Unfortunately, many lab-scale flow cells experience rapid material degradation (from chemical and electrochemical decay mechanisms) and capacity fade during cycling (>0.1%/day) hindering their commercial deployment. In this work, we combine ultraviolet-visible spectrophotometry and statistical inference techniques to elucidate the Michael attack decay mechanism for 4,5-dihydroxy-1,3-benzenedisulfonic acid (BQDS), a once-promising positive electrolyte reactant for aqueous organic redox-flow batteries. We use Bayesian inference and multivariate curve resolution on the spectroscopic data to derive uncertainty-quantified reaction orders and rates for Michael attack, estimate the spectra of intermediate species and establish a quantitative connection between molecular decay and capacity fade. Our work illustrates the promise of using statistical inference to elucidate chemical and electrochemical mechanisms of capacity fade in organic redox-flow battery together with uncertainty quantification, in flow cell-based electrochemical systems.
Collapse
Affiliation(s)
- Sanat Vibhas Modak
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wanggang Shen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Siddhant Singh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dylan Herrera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fairooz Oudeif
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bryan R Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xun Huan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Kwabi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Wu B, Aspers RLEG, Kentgens APM, Zhao EW. Operando benchtop NMR reveals reaction intermediates and crossover in redox flow batteries. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 351:107448. [PMID: 37099853 DOI: 10.1016/j.jmr.2023.107448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/29/2023]
Abstract
Redox flow batteries (RFBs) provide a promising battery technology for grid-scale energy storage. High-field operando NMR analyses of RFBs have yielded useful insight into their working mechanisms and helped improve battery performance. Nevertheless, the high cost and large footprint of a high-field NMR system limit its implementation by a wider electrochemistry community. Here, we demonstrate an operando NMR study of an anthraquinone/ferrocyanide-based RFB on a low-cost and compact 43 MHz benchtop system. The chemical shifts induced by bulk magnetic susceptibility effects differ remarkably from those obtained in high-field NMR experiments, due to the different orientations of the sample relative to the external magnetic field. We apply Evans method to estimate the concentrations of paramagnetic anthraquinone radical and ferricyanide anions. The degradation of 2,6-dihydroxy-anthraquinone (DHAQ) to 2,6-dihydroxy-anthrone and 2,6-dihydroxy-anthranol has been quantified. We further identified the impurities commonly present in the DHAQ solution to be acetone, methanol and formamide. The crossover of DHAQ and impurity molecules through the sseparation Nafion® membrane was captured and quantified, and a negative correlation between the molecular size and crossover rate was established. We show that a benchtop NMR system has sufficient spectral and temporal resolution and sensitivity for the operando study of RFBs, and anticipate a broad application of operando benchtop NMR methods for studying flow electrochemistry targeted for different applications.
Collapse
Affiliation(s)
- Bing Wu
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Ruud L E G Aspers
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Arno P M Kentgens
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands
| | - Evan Wenbo Zhao
- Magnetic Resonance Research Center, Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Liu M, Liu J, Li J, Zhao Z, Zhou K, Li Y, He P, Wu J, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer. J Am Chem Soc 2023; 145:9198-9206. [PMID: 37125453 DOI: 10.1021/jacs.3c01273] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aryl-ketone derivatives have been acknowledged as promising organic photocatalysts for photosynthesis. However, they are limited by their photostability and have been less explored for photoinduced electron transfer (PET) applications. Herein we demonstrate a novel strategy to cover the shortage of aryl-ketone photocatalysts and control the photoreactivity by implanting symmetric aryl ketones into the conjugated covalent organic frameworks (COFs). To prove the concept, three comparative materials with the same topology and varied electronic structures were built, adopting truxenone knot and functionalized terephthalaldehyde linkers. Spectroscopic investigation and excited carrier dynamics analysis disclosed improvements in the photostability and electronic transfer efficiency as well as the structure-performance relationships toward N-aryl tetrahydroisoquinoline oxidation. This system provides a robust rule of thumb for designing new-generation aryl-ketone photocatalysts.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhenghua Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yueming Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Peipei He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Jiashu Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
| |
Collapse
|
23
|
Steen JS, de Vries F, Hjelm J, Otten E. Bipolar Verdazyl Radicals for Symmetrical Batteries: Properties and Stability in All States of Charge. Chemphyschem 2023; 24:e202200779. [PMID: 36317641 DOI: 10.1002/cphc.202200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 11/27/2022]
Abstract
Redox flow batteries based on organic electrolytes are promising energy storage devices, but stable long-term cycling is often difficult to achieve. Bipolar organic charge-storage materials allow the construction of symmetrical flow batteries (i. e., with identical electrolyte composition on both sides), which is a strategy to mitigate crossover-induced degradation. One such class of bipolar compounds are verdazyl radicals, but little is known on their stability/reactivity either as the neutral radical, or in the charged states. Here, we study the chemical properties of a Kuhn-type verdazyl radical (1) and the oxidized/reduced form (1+/- ). Chemical synthesis of the three redox-states provides spectroscopic characterization data, which are used as reference for evaluating the composition of the electrolyte solutions of an H-cell battery during/after cycling. Our data suggest that, rather than the charged states, the decomposition of the parent verdazyl radical is responsible for capacity fade. Kinetic experiments and DFT calculations provide insight in the decomposition mechanism, which is shown to occur by bimolecular disproportionation to form two closed-shell products (leuco-verdazyl 1H and triazole derivative 2).
Collapse
Affiliation(s)
- Jelte S Steen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Johan Hjelm
- Department of Energy Conversion and Storage (DTU Energy), Technical University of Denmark, Fysikvej, Building 310, 2800, Kgs Lyngby, Denmark
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
24
|
Zhu F, Guo W, Fu Y. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Chem Asian J 2023; 18:e202201098. [PMID: 36454229 DOI: 10.1002/asia.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Redox flow batteries (RFBs) are promising candidates for large-scale energy storage systems (ESSs) due to their unique architecture that can decouple energy and power. Aqueous RFBs based on organic molecules (AORFBs) work with a non-flammable and intrinsically safe aqueous electrolyte, and organic compounds are performed as redox couples. The application of redox-active organics tremendously expands the development space of RFBs owing to the highly tunable molecule structure. Molecular engineering enables the exceptional merits in solubility, stability, and redox potential of different organic molecules. Herein, this review summarizes the application of molecular engineering to several organic compounds, focusing on the fundamental overview of their physicochemical properties and design strategies. We discuss the electrochemical merits and performances along with the intrinsic properties of the designed organic components. Finally, we outline the requirements for rational design of innovative organics to motivate more valuable research and present the prospect of molecule engineering used in AORFBs.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
25
|
Nuclear Magnetic Resonance for interfaces in rechargeable batteries. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Fenton A, Ashraf Gandomi Y, Mallia CT, Neyhouse BJ, Kpeglo MA, Exson WE, Wan CTC, Brushett FR. Toward a Mechanically Rechargeable Solid Fuel Flow Battery Based on Earth-Abundant Materials. ACS OMEGA 2022; 7:40540-40547. [PMID: 36385869 PMCID: PMC9648110 DOI: 10.1021/acsomega.2c05798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Metal-air batteries are a promising energy storage solution, but material limitations (e.g., metal passivation and low active material utilization) have stymied their adoption. We investigate a solid fuel flow battery (SFFB) architecture that combines the energy density of metal-air batteries with the modularity of redox flow batteries. Specifically, a metallic solid electrochemical fuel (SEF) is spatially separated from the anodic current collector, a dissolved redox mediator (RM) shuttles charges between the two, and an oxygen reduction cathode completes the circuit. This modification decouples power and energy system components while enabling mechanical recharging and mitigating the effects of nonuniform metal oxidation. We conduct an exploratory study showing that metallic SEFs can chemically reduce organic RMs repeatedly. We subsequently operate a proof-of-concept SFFB cell for ca. 25 days as an initial demonstration of technical feasibility. Overall, this work illustrates the potential of this storage concept and highlights scientific and engineering pathways to improvement.
Collapse
Affiliation(s)
- Alexis
M. Fenton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Yasser Ashraf Gandomi
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Christopher T. Mallia
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Bertrand J. Neyhouse
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - M. Aba Kpeglo
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - William E. Exson
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Charles Tai-Chieh Wan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Fikile R. Brushett
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| |
Collapse
|
27
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Challenges and opportunities in continuous flow processes for electrochemically mediated carbon capture. iScience 2022; 25:105153. [PMID: 36204263 PMCID: PMC9529983 DOI: 10.1016/j.isci.2022.105153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Carbon capture from both stationary emitters and dilute sources is critically needed to mitigate climate change. Carbon dioxide separation methods driven by electrochemical stimuli show promise to sidestep the high-energy penalty and fossil-fuel dependency associated with the conventional pressure and temperature swings. Compared with a batch process, electrochemically mediated carbon capture (EMCC) operating in a continuous flow mode offers greater design flexibility. Therefore, this review introduces key advances in continuous flow EMCC for point source, air, and ocean carbon captures. Notably, the main challenges and future research opportunities for practical implementation of continuous flow EMCC processes are discussed from a multi-scale perspective, from molecules to electrochemical cells and finally to separation systems.
Collapse
|
29
|
Fontmorin JM, Guiheneuf S, Godet-Bar T, Floner D, Geneste F. How anthraquinones can enable aqueous organic redox flow batteries to meet the needs of industrialization. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
|
31
|
Jones AE, Ejigu A, Wang B, Adams RW, Bissett MA, Dryfe RA. Quinone voltammetry for redox-flow battery applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Romay L, González J, Molina Á, Laborda E. Investigating Comproportionation in Multielectron Transfers via UV-Visible Spectroelectrochemistry: The Electroreduction of Anthraquinone-2-sulfonate in Aqueous Media. Anal Chem 2022; 94:12152-12158. [PMID: 35994566 DOI: 10.1021/acs.analchem.2c02523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV-vis spectroelectrochemistry is assessed as a tool for the diagnosis and quantitative in situ investigation of the incidence of comproportionation in multielectron transfer processes. Thus, the sensitivity of the limiting current chronoabsorptometric signals related to the different redox states to the comproportionation kinetics is studied theoretically for different working modes (normal and parallel light beam arrangements) and mass transport regimes (from semi-infinite to thin layer diffusion). The theoretical results are applied to the spectroelectrochemical study of the two-electron reduction of the anthraquinone-2-sulfonate in alkaline aqueous solution, tuning the thermodynamic favorability of the comproportionation reaction through the electrolyte cation. The quantitative analysis of the experimental results reveals the occurrence of comproportionation in the three media examined, showing different kinetics depending on the cationic species in solution.
Collapse
Affiliation(s)
- Luis Romay
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Joaquín González
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Ángela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
33
|
Zhang E, Wu YC, Shao H, Klimavicius V, Zhang H, Taberna PL, Grothe J, Buntkowsky G, Xu F, Simon P, Kaskel S. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR. J Am Chem Soc 2022; 144:14217-14225. [PMID: 35914237 DOI: 10.1021/jacs.2c04841] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamental understanding of ion electroadsorption processes in porous electrodes on a molecular level provides important guidelines for next-generation energy storage devices like electric double layer capacitors (EDLCs). Porous carbons functionalized by heteroatoms show enhanced capacitive performance, but the underlying mechanism is still elusive, due to the lack of reliable tools to precisely identify multiple N species and establish clear structure property relations. Here, we use advanced analytical techniques such as low-temperature solid-state NMR (ssNMR) and electrochemical quartz crystal microbalance (EQCM) to relate the complex nitrogen functionalities to the charging mechanisms and capacitive performance. For the first time, it is demonstrated at a molecular level that N-doping strongly influences the electroadsorption mechanism in EDLCs. Without N-doping, anion (SO42-) adsorption-desorption dominates the charging mechanism, whereas after doping, Li+ electroadsorption plays a key role. With the help of EQCM, it is demonstrated that SO42- is strongly immobilized on the N-doped surface, leaving Li+ as the main charge carrier. The smaller size and higher concentration of Li+ compared to SO42- benefit a higher capacitance. Amine/amide N is responsible for high capacitance, but surprisingly the pyridinic, pyrrolic, and graphitic N groups have no significant influence. 2D 1H-15N NMR spectroscopy indicates that the conversion from pyridinium to pyrrolic N gives rise to a slightly decreased capacitance. This work not only demonstrates ssNMR as a powerful tool for surface chemistry characterization of electrode materials but also uncovers the related charging mechanism by EQCM, paving the way toward a comprehensive picture of EDLC chemistry.
Collapse
Affiliation(s)
- En Zhang
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Yih-Chyng Wu
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Hui Shao
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Vytautas Klimavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio av. 3, Vilnius LT-10257, Lithuania.,Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Hanyue Zhang
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | | | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt 64287, Germany
| | - Fei Xu
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Patrice Simon
- Université Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse 31062, France.,Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Amiens 80039, France
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany.,Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, Dresden 01277, Germany
| |
Collapse
|
34
|
Shi R, Jiao S, Yue Q, Gu G, Zhang K, Zhao Y. Challenges and advances of organic electrode materials for sustainable secondary batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20220066. [PMID: 37325604 PMCID: PMC10190941 DOI: 10.1002/exp.20220066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Organic electrode materials (OEMs) emerge as one of the most promising candidates for the next-generation rechargeable batteries, mainly owing to their advantages of bountiful resources, high theoretical capacity, structural designability, and sustainability. However, OEMs usually suffer from poor electronic conductivity and unsatisfied stability in common organic electrolytes, ultimately leading to their deteriorating output capacity and inferior rate capability. Making clear of the issues from microscale to macroscale level is of great importance for the exploration of novel OEMs. Herein, the challenges and advanced strategies to boost the electrochemical performance of redox-active OEMs for sustainable secondary batteries are systematically summarized. Particularly, the characterization technologies and computational methods to elucidate the complex redox reaction mechanisms and confirm the organic radical intermediates of OEMs have been introduced. Moreover, the structural design of OEMs-based full cells and the outlook for OEMs are further presented. This review will shed light on the in-depth understanding and development of OEMs for sustainable secondary batteries.
Collapse
Affiliation(s)
- Ruijuan Shi
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Qianqian Yue
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Guangqin Gu
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Kai Zhang
- Frontiers Science Center for New Organic MatterRenewable Energy Conversion and Storage Center (RECAST)Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjinChina
- Haihe Laboratory of Sustainable Chemical TransformationsTianjinChina
| | - Yong Zhao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| |
Collapse
|
35
|
In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat Chem 2022; 14:1103-1109. [PMID: 35710986 DOI: 10.1038/s41557-022-00967-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
Aqueous organic redox flow batteries offer a safe and potentially inexpensive solution to the problem of storing massive amounts of electricity produced from intermittent renewables. However, molecular decomposition represents a major barrier to commercialization-and although structural modifications can improve stability, it comes at the expense of synthetic cost and molecular weight. Now, utilizing 2,6-dihydroxy-anthraquinone (DHAQ) without further structural modification, we demonstrate that the regeneration of the original molecule after decomposition represents a viable route to achieve low-cost, long-lifetime aqueous organic redox flow batteries. We used in situ (online) NMR and electron paramagnetic resonance, and complementary electrochemical analyses to show that the decomposition compound 2,6-dihydroxy-anthrone (DHA) and its tautomer, 2,6-dihydroxy-anthranol (DHAL) can be recomposed to DHAQ electrochemically through two steps: oxidation of DHA(L)2- to the dimer (DHA)24- by one-electron transfer followed by oxidation of (DHA)24- to DHAQ2- by three-electron transfer per DHAQ molecule. This electrochemical regeneration process also rejuvenates the positive electrolyte-rebalancing the states of charge of both electrolytes without introducing extra ions.
Collapse
|
36
|
Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Nat Commun 2022; 13:3184. [PMID: 35676263 PMCID: PMC9177609 DOI: 10.1038/s41467-022-30943-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Redox flow batteries using aqueous organic-based electrolytes are promising candidates for developing cost-effective grid-scale energy storage devices. However, a significant drawback of these batteries is the cross-mixing of active species through the membrane, which causes battery performance degradation. To overcome this issue, here we report size-selective ion-exchange membranes prepared by sulfonation of a spirobifluorene-based microporous polymer and demonstrate their efficient ion sieving functions in flow batteries. The spirobifluorene unit allows control over the degree of sulfonation to optimize the transport of cations, whilst the microporous structure inhibits the crossover of organic molecules via molecular sieving. Furthermore, the enhanced membrane selectivity mitigates the crossover-induced capacity decay whilst maintaining good ionic conductivity for aqueous electrolyte solution at pH 9, where the redox-active organic molecules show long-term stability. We also prove the boosting effect of the membranes on the energy efficiency and peak power density of the aqueous redox flow battery, which shows stable operation for about 120 h (i.e., 2100 charge-discharge cycles at 100 mA cm−2) in a laboratory-scale cell. Aqueous organic redox flow batteries are promising for grid-scale energy storage, although their practical application is still limited. Here, the authors report highly ion-conductive and selective polymer membranes, which boost the battery’s efficiency and stability, offering cost-effective electricity storage.
Collapse
|
37
|
Yang L, Hao Y, Lin J, Li K, Luo S, Lei J, Han Y, Yuan R, Liu G, Ren B, Chen J. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107425. [PMID: 34866255 DOI: 10.1002/adma.202107425] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A highly soluble Li5 BW12 O40 cluster delivers 2 e- redox reaction with fast electron transfer rates (2.5 × 10-2 cm s-1 ) and high diffusion coefficients (≈2.08 × 10-6 cm2 s-1 ) at mild pH ranging from 3 to 8. In-operando aqueous-flowing Raman spectroscopy and density functional theory calculations reveal that Raman shift changing of {BW12} clusters is due to the bond length changing between W-Ob -W and W-Oc -W at different redox states. The structure changing and redox chemistry of Li5 BW12 O40 are highly reversible, which makes the Li5 BW12 O40 cluster versatile to construct all-anion aqueous redox flow batteries (RFBs). The cation-exchange Nafion membrane will also repel the cross permeability of the anion redox couples. Consequently, by coupling with Li3 K[Fe(CN)6 ] catholyte, the aqueous RFB can be operated at pH 8 with a capacity retention up to 95% and an average Coulombic efficiency more than 99.79% over 300 cycles within 0 to 1.2 V. Meanwhile, Li5 BW12 O40 cluster can also be paired with LiI catholyte to form aqueous RFBs at pH 7 and pH 3, the capacity retention of 94% and 90% can be realized over 300 cycles within 0 to 1.3 V.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yahui Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiande Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ke Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jie Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanhong Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiajia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
38
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
39
|
Zhao EW, Shellard EJK, Klusener PAA, Grey CP. In situ bulk magnetization measurements reveal the state of charge of redox flow batteries. Chem Commun (Camb) 2022; 58:1342-1345. [DOI: 10.1039/d1cc01895g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two methods, involving NMR spectroscopy and direct magnetic susceptibility measurements, are demonstrated for in situ (online) determination of the state of charge of redox flow batteries.
Collapse
Affiliation(s)
- Evan Wenbo Zhao
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
- Magnetic Resonance Research Centre, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Edward J. K. Shellard
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
| | - Peter A. A. Klusener
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam, Grasweg 31, 1031 HW Amsterdam, Netherlands
| | - Clare P. Grey
- Department of Chemistry, Lensfield Road, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
40
|
Fenton Jr. AM, Brushett FR. Using voltammetry augmented with physics-based modeling and Bayesian hypothesis testing to identify analytes in electrolyte solutions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Sun Y, Li C, Yang C, Dai G, Li L, Hu Z, Wang D, Liang Y, Li Y, Wang Y, Xu Y, Zhao Y, Liu H, Chou S, Zhu Z, Wang M, Zhu J. Novel Li 3 VO 4 Nanostructures Grown in Highly Efficient Microwave Irradiation Strategy and Their In-Situ Lithium Storage Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103493. [PMID: 34802197 PMCID: PMC8787407 DOI: 10.1002/advs.202103493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/19/2021] [Indexed: 05/17/2023]
Abstract
The investigation of novel growth mechanisms for electrodes and the understanding of their in situ energy storage mechanisms remains major challenges in rechargeable lithium-ion batteries. Herein, a novel mechanism for the growth of high-purity diversified Li3 VO4 nanostructures (including hollow nanospheres, uniform nanoflowers, dispersed hollow nanocubes, and ultrafine nanowires) has been developed via a microwave irradiation strategy. In situ synchrotron X-ray diffraction and in situ transmission electron microscope observations are applied to gain deep insight into the intermediate Li3+ x VO4 and Li3+ y VO4 phases during the lithiation/delithiation mechanism. The first-principle calculations show that lithium ions migrate into the nanosphere wall rapidly along the (100) plane. Furthermore, the Li3 VO4 hollow nanospheres deliver an outstanding reversible capacity (299.6 mAh g-1 after 100 cycles) and excellent cycling stability (a capacity retention of 99.0% after 500 cycles) at 200 mA g-1 . The unique nanostructure offers a high specific surface area and short diffusion path, leading to fast thermal/kinetic reaction behavior, and preventing undesirable volume expansion during long-term cycling.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Chunsheng Li
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion DeviceSchool of ScienceXijing UniversityXi'an710123P.R. China
| | - Chen Yang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Guoliang Dai
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Lin Li
- Institute for Carbon NeutralizationCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P.R. China
| | - Zhe Hu
- Institute for Carbon NeutralizationCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P.R. China
| | - Didi Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Yaru Liang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Yuanliang Li
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic MaterialsKey Laboratory of Environment Functional Materials of Tangshan CityCollege of Materials Science and EngineeringNorth China University of Science and TechnologyTangshan CityHebei Province063210P.R. China
| | - Yunxiao Wang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Yanfei Xu
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo‐electronics Materials and Energy Conversion DeviceSchool of ScienceXijing UniversityXi'an710123P.R. China
| | - Huakun Liu
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2522Australia
| | - Shulei Chou
- Institute for Carbon NeutralizationCollege of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiang325035P.R. China
| | - Zhu Zhu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Miaomiao Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| | - Jiahao Zhu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhou CityJiangsu Province215009P.R. China
| |
Collapse
|
42
|
Lau VWH, Kim JB, Zou F, Kang YM. Elucidating the charge storage mechanism of carbonaceous and organic electrode materials for sodium ion batteries. Chem Commun (Camb) 2021; 57:13465-13494. [PMID: 34853843 DOI: 10.1039/d1cc04925a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium ion batteries (SIB) have received much research attention in the past decades as they are considered to be one alternative to the currently prevalent lithium ion batteries, and carbonaceous and organic compounds present two promising classes of SIB electrode materials advantaged by abundance of their constituent elements and reduced environmental footprints. To accelerate the development of these materials for SIB applications, future research directions must be guided by a thorough understanding of the charge storage mechanism. This review presents recent efforts in mechanism elucidation for these two classes of SIB electrode materials since, compared to their inorganic counterparts, they have unique challenges in material analysis. Topics covered will include characterization techniques and analytical frameworks for mechanism elucidation, emphasizing the advantages and limitations of individual experimental methodologies and providing a commentary on scientific rigor in result interpretation.
Collapse
Affiliation(s)
- Vincent Wing-Hei Lau
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,Brain Korea Center for Smart Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Bum Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Feng Zou
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yong-Mook Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea. .,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|