1
|
Levorin L, Becker N, Uluca-Yazgi B, Gardon L, Kraus M, Sevenich M, Apostolidis A, Schmitz K, Rüter N, Apanasenko I, Willbold D, Hoyer W, Neudecker P, Gremer L, Heise H. Isoleucine Side Chains as Reporters of Conformational Freedom in Protein Folding Studied by DNP-Enhanced NMR. J Am Chem Soc 2025; 147:15867-15879. [PMID: 40285725 PMCID: PMC12063180 DOI: 10.1021/jacs.5c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Conformations of protein side chains are closely linked to protein function. DNP-enhanced solid-state NMR (ssNMR), which operates at cryogenic temperatures (<110 K), can be used to freeze-trap protein conformations, including the side chains. In the present study, we employed two-dimensional DNP-enhanced ssNMR to get detailed insights into backbone and side chain conformations of isoleucine. We used different amino acid selectively labeled model proteins for intrinsically disordered proteins (IDPs), denatured and well-folded proteins, and amyloid fibrils. 13C chemical shifts are closely correlated with secondary structure elements and χ1 and χ2 angles in isoleucine side chains. Thus, line shape analysis by integration of representative peak areas in 2D spectra provides an accurate overview of the distribution of backbone and side chain conformations. For the well-folded proteins GABARAP and bovine PI3-kinase (PI3K) SH3 domain, most Ile chemical shifts in frozen solution are well resolved and similar to those observed in solution. However, line widths of individual Ile residues are directly linked to residual mobility, and line broadening or even signal splitting appears for those Ile residues, which are not part of well-defined secondary structure elements. For unfolded PI3K SH3 and the IDP α-synuclein (α-syn), all Ile side chains have full conformational freedom, and as a consequence, inhomogeneous line broadening dominates the cryogenic spectra. Moreover, we demonstrate that conformational ensembles of proteins strongly depend on solvent and buffer conditions. This allowed different unfolded structures for chemical and acidic pH denaturation of the PI3K SH3 domain to be distinguished. In amyloid fibrils of α-syn and PI3K SH3, chemical shifts typical for β-strand like secondary structure dominate the spectra, whereas Ile residues belonging to the fuzzy coat still add the IDP-type line shapes. Hence, DNP-enhanced ssNMR is a useful tool for investigating side chain facilitated protein functions and interactions.
Collapse
Affiliation(s)
- Leonardo Levorin
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Nina Becker
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Boran Uluca-Yazgi
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Luis Gardon
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Mirko Kraus
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Marc Sevenich
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Athina Apostolidis
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Kai Schmitz
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Neomi Rüter
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Irina Apanasenko
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Dieter Willbold
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Wolfgang Hoyer
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Philipp Neudecker
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Lothar Gremer
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| | - Henrike Heise
- Institute
of Physical Biology, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
2
|
Juramy M, Besson E, Gastaldi S, Ziarelli F, Viel S, Mollica G, Thureau P. Exploring the crystallisation of aspirin in a confined porous material using solid-state nuclear magnetic resonance. Faraday Discuss 2025; 255:483-494. [PMID: 39356059 PMCID: PMC11445803 DOI: 10.1039/d4fd00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024]
Abstract
In this study, nuclear magnetic resonance (NMR) is used to investigate the crystallisation behaviour of aspirin within a mesoporous SBA-15 silica material. The potential of dynamic nuclear polarisation (DNP) experiments is also investigated using specifically designed porous materials that incorporate polarising agents within their walls. The formation of the metastable crystalline form II is observed when crystallisation occurs within the pores of the mesoporous structure. Conversely, bulk crystallisation yields the most stable form, namely form I, of aspirin. Remarkably, the metastable form II remains trapped within the pores of mesoporous SBA-15 silica material even 30 days after impregnation, underscoring its persistent stability within this confined environment.
Collapse
Affiliation(s)
- Marie Juramy
- Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Eric Besson
- Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France.
| | | | - Fabio Ziarelli
- Aix-Marseille Univ., Centrale Mediterranée, CNRS, Fédération des Sciences Chimiques FR 1739, 13397 Marseille, France
| | - Stéphane Viel
- Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France.
- Institut Universitaire de France, 75005 Paris, France
| | - Giulia Mollica
- Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Pierre Thureau
- Aix-Marseille Univ., CNRS, ICR UMR 7273, 13397 Marseille, France.
| |
Collapse
|
3
|
Tycko R, Jeon J. Quantification of Rapid Cooling of Glycerol/Water Solutions Based on Photoluminescence from Thioflavin T. J Phys Chem B 2024; 128:12310-12324. [PMID: 39627173 DOI: 10.1021/acs.jpcb.4c07105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Rapid cooling to a solid state allows intermediates in chemical and biomolecular processes that occur in solution near room temperature to be trapped for subsequent measurements by magnetic resonance spectroscopies, electron microscopy, or other techniques. In time-resolved solid state nuclear magnetic resonance and rapid freeze-quench electron paramagnetic resonance studies, solutions are typically frozen by spraying into a cold bath or onto a cold metal surface. Although simulations suggest freezing on millisecond or submillisecond time scales, direct experimental measurements of cooling rates have been elusive. Here, we describe a method for quantification of rapid cooling rates based on measurements of temperature-dependent photoluminescence from thioflavin T (ThT). In our experiments, a jet of ThT solution in glycerol/water, with 10.8 m/s jet velocity and 30 μm diameter, freezes on a cold, rotating copper surface. Images of ThT photoluminescence on the copper surface indicate that the cooling rate of the solution increases linearly with the surface velocity over the 0.45-6.2 m/s range. At surface velocities greater than 3.8 m/s, the time to cool from 300 to 260 K or from 300 to 230 K is less than 100 μs or less than 700 μs. The experimental results do not agree quantitatively with calculations in which a layer of glycerol/water cools by thermal conduction when suddenly brought in contact with a cold copper surface. Discrepancies between experimental results and simplistic calculations illustrate the importance of direct measurements of cooling rates.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jaekyun Jeon
- Laboratory of Chemical Physics National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Institute for Bioscience and Biotechnology Research University of Maryland/National Institute of Standards and Technology, Rockville, Maryland 20850, United States
| |
Collapse
|
4
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions. Biophys J 2024; 123:4097-4114. [PMID: 39497416 PMCID: PMC11628836 DOI: 10.1016/j.bpj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/13/2024] Open
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature TLLPS. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e., single-phase) and phase-separated states of FUS-LC, we performed solid-state NMR (ssNMR) measurements on solutions that were frozen on submillisecond timescales after equilibration at temperatures well above (50°C) or well below (4°C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets." Comparison of the experimental results with simulations of the sensitivity of two-dimensional ssNMR crosspeaks to changes in populations of β strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
5
|
Blake Wilson C, Tycko R. Optimization of 15N- 13C double-resonance NMR experiments under low temperature magic angle spinning dynamic nuclear polarization conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107783. [PMID: 39383594 PMCID: PMC11573627 DOI: 10.1016/j.jmr.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR carried out at 25 K enables rapid acquisition of multi-dimensional 13C-15N correlation spectra for protein structure studies and resonance assignment. Under commonly used DNP conditions, solvent deuteration reduces 1H-15N cross polarization (CP) efficiencies, necessitates more careful optimization, and requires longer high-power 15N radio-frequency pulses. The sensitivity of 2D heteronuclear correlation experiments is potentially impaired. Here we show that 2D 15N-13C experiments based on 13C-15N transferred echo double resonance (TEDOR) methods outperform 2D experiments based on CP transfers in a fully deuterated solvent, and are competitive with CP-based experiments when the solvent is only partially deuterated. Additionally, we show that optimization of TEDOR-based 2D experiments is simpler than optimization of CP-based experiments under 25 K MAS conditions.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A.
| |
Collapse
|
6
|
Ru G, Liu X, Ge Y, Wang L, Jiang L, Pielak G, Liu M, Li C. Trimethylamine N-oxide (TMAO) doubly locks the hydrophobic core and surfaces of protein against desiccation stress. Protein Sci 2024; 33:e5107. [PMID: 38989549 PMCID: PMC11237552 DOI: 10.1002/pro.5107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/12/2024]
Abstract
Interactions between proteins and osmolytes are ubiquitous within cells, assisting in response to environmental stresses. However, our understanding of protein-osmolyte interactions underlying desiccation tolerance is limited. Here, we employ solid-state NMR (ssNMR) to derive information about protein conformation and site-specific interactions between the model protein, SH3, and the osmolyte trimethylamine N-oxide (TMAO). The data show that SH3-TMAO interactions maintain key structured regions during desiccation and facilitate reversion to the protein's native state once desiccation stress is even slightly relieved. We identify 10 types of residues at 28 sites involved in the SH3-TMAO interactions. These sites comprise hydrophobic, positively charged, and aromatic amino acids located in SH3's hydrophobic core and surface clusters. TMAO locks both the hydrophobic core and surface clusters through its zwitterionic and trimethyl ends. This double locking is responsible for desiccation tolerance and differs from ideas based on exclusion, vitrification, and water replacement. ssNMR is a powerful tool for deepening our understanding of extremely weak protein-osmolyte interactions and providing insight into the evolutionary mechanism of environmental tolerance.
Collapse
Affiliation(s)
- Geying Ru
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yuwei Ge
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Gary Pielak
- Department of Chemistry, Department of Biochemistry & Biophysics, Lineberger Cancer Center, Integrative Program for Biological and Genome Sciences of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Du Y, Su Y. Quantification of Residual Water in Pharmaceutical Frozen Solutions Via 1H Solid-State NMR. J Pharm Sci 2024; 113:2405-2412. [PMID: 38643897 DOI: 10.1016/j.xphs.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Freezing is essential for the stability of biological drug substances and products, particularly in frozen solution formulations and during the primary drying of lyophilized preparations. However, the unfrozen segment within the frozen matrix can alter solute concentration, ionic strength, and stabilizer crystallization, posing risks of increased biophysical instability and faster chemical degradation. While quantifying the unfrozen water content is important for designing stable biopharmaceuticals, there is a lack of analytical techniques for in situ quantitative measurements. In this study, we introduce a 1H magic angle spinning NMR technique to identify the freezing point (Tice) and quantify mobile water content in frozen biologics, applying this method to analyze the freezing of a commercial high-concentration drug product, Dupixent®. Our results demonstrate that water freezing is influenced by buffer salt properties and formulation composition, including the presence of sugar cryoprotectants and protein concentration. Additionally, the 1H chemical shift can probe pH in the unfrozen phase, potentially predicting the microenvironmental acidity in the frozen state. Our proposed methodology provides fresh insights into the analysis of freeze-concentrated solutions, enhancing our understanding of the stability of frozen and lyophilized biopharmaceuticals.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co. Inc., Rahway, NJ 07065, USA; Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, USA.
| |
Collapse
|
8
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a Low-Complexity Protein in Homogeneous and Phase-Separated Frozen Solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605144. [PMID: 39372747 PMCID: PMC11451737 DOI: 10.1101/2024.07.25.605144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below temperatures TLLPS in the 20-40° C range. To investigate whether local conformational distributions are detectably different in the homogeneous and phase-separated states of FUS-LC, we performed solid state nuclear magnetic resonance (ssNMR) measurements on solutions that were frozen on sub-millisecond time scales after equilibration at temperatures well above (50° C) or well below (4° C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional (2D) ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C-labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets". Comparison of the experimental results with simulations of the sensitivity of 2D crosspeak patterns to an enhanced population of β-strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%. Statement of Significance Liquid-liquid phase separation (LLPS) in solutions of proteins with intrinsically disordered domains has attracted recent attention because of its relevance to multiple biological processes and its inherent interest from the standpoint of protein biophysics. The high protein concentrations and abundant intermolecular interactions within protein-rich, phase-separated "droplets" suggests that conformational distributions of intrinsically disordered proteins may differ in homogeneous and phase-separated solutions. To investigate whether detectable differences exist, we performed experiments on the low-complexity domain of the FUS protein (FUS-LC) in which FUS-LC solutions were first equilibrated at temperatures well above or well below their LLPS transition temperatures, then rapidly frozen and examined at very low temperatures by solid state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data for homogeneous and phase-separated frozen solutions of FUS-LC were found to be nearly identical, showing that LLPS is not accompanied by substantial changes in the local conformational distributions of this intrinsically disordered protein.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- current address: Department of Chemistry, Drexel University, Philadelphia, PA 19104
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Zhao Y, Zhang W, Hong J, Yang L, Wang Y, Qu F, Xu W. Mobility capillary electrophoresis-native mass spectrometry reveals the dynamic conformational equilibrium of calmodulin and its complexes. Analyst 2024; 149:3793-3802. [PMID: 38847183 DOI: 10.1039/d4an00378k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Benefitting from the rapid evolution of artificial intelligence and structural biology, an expanding collection of high-resolution protein structures has greatly improved our understanding of protein functions. Yet, proteins are inherently flexible, and these static structures can only offer limited snapshots of their true dynamic nature. The conformational and functional changes of calmodulin (CaM) induced by Ca2+ binding have always been a focus of research. In this study, the conformational dynamics of CaM and its complexes were investigated using a mobility capillary electrophoresis (MCE) and native mass spectrometry (native MS) based method. By analyzing the ellipsoidal geometries of CaM in the solution phase at different Ca2+ concentrations, it is interesting to discover that CaM molecules, whether bound to Ca2+ or not, possess both closed and open conformations. Moreover, each individual CaM molecule actively "jumps" (equilibrium exchange) between these two distinct conformations on a timescale ranging from milli- to micro-seconds. The binding of Ca2+ ions did not affect the structural dynamics of CaM, while the binding of a peptide ligand would stabilize CaM, leading to the observation of a single, compact conformation of the resulting protein complex. A target recognition mechanism was also proposed based on these new findings, suggesting that CaM's interaction with targets may favor a conformational selection model. This enriches our understanding of the binding principles between CaM and its numerous targets.
Collapse
Affiliation(s)
- Yi Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenjing Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Jie Hong
- Kunshan Nier Precision Instrumentation Inc. Kunshan, Suzhou, 215316, China
| | - Lei Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuanyuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
10
|
Wilson CB, Yau WM, Tycko R. Experimental Evidence for Millisecond-Timescale Structural Evolution Following the Microsecond-Timescale Folding of a Small Protein. PHYSICAL REVIEW LETTERS 2024; 132:048402. [PMID: 38335342 PMCID: PMC11423860 DOI: 10.1103/physrevlett.132.048402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/27/2023] [Indexed: 02/12/2024]
Abstract
Prior work has shown that small proteins can fold (i.e., convert from unstructured to structured states) within 10 μs. Here we use time-resolved solid state nuclear magnetic resonance (ssNMR) methods to show that full folding of the 35-residue villin headpiece subdomain (HP35) requires a slow annealing process that has not been previously detected. ^{13}C ssNMR spectra of frozen HP35 solutions, acquired with a variable time τ_{e} at 30 °C after rapid cooling from 95 °C and before rapid freezing, show changes on the 3-10 ms timescale, attributable to slow rearrangements of protein sidechains during τ_{e}.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
11
|
Jeon J, Yau WM, Tycko R. Early events in amyloid-β self-assembly probed by time-resolved solid state NMR and light scattering. Nat Commun 2023; 14:2964. [PMID: 37221174 DOI: 10.1038/s41467-023-38494-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Self-assembly of amyloid-β peptides leads to oligomers, protofibrils, and fibrils that are likely instigators of neurodegeneration in Alzheimer's disease. We report results of time-resolved solid state nuclear magnetic resonance (ssNMR) and light scattering experiments on 40-residue amyloid-β (Aβ40) that provide structural information for oligomers that form on time scales from 0.7 ms to 1.0 h after initiation of self-assembly by a rapid pH drop. Low-temperature ssNMR spectra of freeze-trapped intermediates indicate that β-strand conformations within and contacts between the two main hydrophobic segments of Aβ40 develop within 1 ms, while light scattering data imply a primarily monomeric state up to 5 ms. Intermolecular contacts involving residues 18 and 33 develop within 0.5 s, at which time Aβ40 is approximately octameric. These contacts argue against β-sheet organizations resembling those found previously in protofibrils and fibrils. Only minor changes in the Aβ40 conformational distribution are detected as larger assemblies develop.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland/National Institute of Standards and Technology, Rockville, MD, 20850, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
12
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
13
|
Juramy M, Vioglio PC, Ziarelli F, Viel S, Thureau P, Mollica G. Monitoring the influence of additives on the crystallization processes of glycine with dynamic nuclear polarization solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101836. [PMID: 36327551 DOI: 10.1016/j.ssnmr.2022.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Crystallization is fundamental in many domains, and the investigation of the sequence of solid phases produced as a function of crystallization time is thus key to understand and control crystallization processes. Here, we used a solid-state nuclear magnetic resonance strategy to monitor the crystallization process of glycine, which is a model compound in polymorphism, under the influence of crystallizing additives, such as methanol or sodium chloride. More specifically, our strategy is based on a combination of low-temperatures and dynamic nuclear polarization (DNP) to trap and detect transient crystallizing forms, which may be present only in low quantities. Interestingly, our results show that these additives yield valuable DNP signal enhancements even in the absence of glycerol within the crystallizing solution.
Collapse
Affiliation(s)
- Marie Juramy
- Aix Marseille Univ, CNRS, ICR, Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, Marseille, France; Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
14
|
Juramy M, Mollica G. Recent Progress in Nuclear Magnetic Resonance Strategies for Time-Resolved Atomic-Level Investigation of Crystallization from Solution. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Westerlund AM, Sridhar A, Dahl L, Andersson A, Bodnar AY, Delemotte L. Markov state modelling reveals heterogeneous drug-inhibition mechanism of Calmodulin. PLoS Comput Biol 2022; 18:e1010583. [PMID: 36206305 PMCID: PMC9581412 DOI: 10.1371/journal.pcbi.1010583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/19/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is a calcium sensor which binds and regulates a wide range of target-proteins. This implicitly enables the concentration of calcium to influence many downstream physiological responses, including muscle contraction, learning and depression. The antipsychotic drug trifluoperazine (TFP) is a known CaM inhibitor. By binding to various sites, TFP prevents CaM from associating to target-proteins. However, the molecular and state-dependent mechanisms behind CaM inhibition by drugs such as TFP are largely unknown. Here, we build a Markov state model (MSM) from adaptively sampled molecular dynamics simulations and reveal the structural and dynamical features behind the inhibitory mechanism of TFP-binding to the C-terminal domain of CaM. We specifically identify three major TFP binding-modes from the MSM macrostates, and distinguish their effect on CaM conformation by using a systematic analysis protocol based on biophysical descriptors and tools from machine learning. The results show that depending on the binding orientation, TFP effectively stabilizes features of the calcium-unbound CaM, either affecting the CaM hydrophobic binding pocket, the calcium binding sites or the secondary structure content in the bound domain. The conclusions drawn from this work may in the future serve to formulate a complete model of pharmacological modulation of CaM, which furthers our understanding of how these drugs affect signaling pathways as well as associated diseases. Calmodulin (CaM) is a calcium-sensing protein which makes other proteins dependent on the surrounding calcium concentration by binding to these proteins. Such protein-protein interactions with CaM are vital for calcium to control many physiological pathways within the cell. The antipsychotic drug trifluoperazine (TFP) inhibits CaM’s ability to bind and regulate other proteins. Here, we use molecular dynamics simulations together with Markov state modeling and machine learning to understand the structural and dynamical features by which TFP bound to the one domain of CaM prevents association to other proteins. We find that TFP encourages CaM to adopt a conformation that is like the one stabilized in absence of calcium: depending on the binding orientation of TFP, the drug indeed either affects the CaM hydrophobic binding pocket, the calcium binding sites or the secondary structure content in the domain. Understanding TFP binding is a first step towards designing better drugs targeting CaM.
Collapse
Affiliation(s)
- Annie M. Westerlund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Akshay Sridhar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Leo Dahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Alma Andersson
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- Division of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna-Yaroslava Bodnar
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
- * E-mail:
| |
Collapse
|
16
|
Jeon J, Blake Wilson C, Yau WM, Thurber KR, Tycko R. Time-resolved solid state NMR of biomolecular processes with millisecond time resolution. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107285. [PMID: 35998398 PMCID: PMC9463123 DOI: 10.1016/j.jmr.2022.107285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/21/2023]
Abstract
We review recent efforts to develop and apply an experimental approach to the structural characterization of transient intermediate states in biomolecular processes that involve large changes in molecular conformation or assembly state. This approach depends on solid state nuclear magnetic resonance (ssNMR) measurements that are performed at very low temperatures, typically 25-30 K, with signal enhancements from dynamic nuclear polarization (DNP). This approach also involves novel technology for initiating the process of interest, either by rapid mixing of two solutions or by a rapid inverse temperature jump, and for rapid freezing to trap intermediate states. Initiation by rapid mixing or an inverse temperature jump can be accomplished in approximately-one millisecond. Freezing can be accomplished in approximately 100 microseconds. Thus, millisecond time resolution can be achieved. Recent applications to the process by which the biologically essential calcium sensor protein calmodulin forms a complex with one of its target proteins and the process by which the bee venom peptide melittin converts from an unstructured monomeric state to a helical, tetrameric state after a rapid change in pH or temperature are described briefly. Future applications of millisecond time-resolved ssNMR are also discussed briefly.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Kent R Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
17
|
Yau WM, Blake Wilson C, Jeon J, Tycko R. Nitroxide-based triradical dopants for efficient low-temperature dynamic nuclear polarization in aqueous solutions over a broad pH range. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107284. [PMID: 35986970 PMCID: PMC9463097 DOI: 10.1016/j.jmr.2022.107284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Dynamic nuclear polarization (DNP) can provide substantial sensitivity enhancements in solid state nuclear magnetic resonance (ssNMR) measurements on frozen solutions, thereby enabling experiments that would otherwise be impractical. Previous work has shown that nitroxide-based triradical compounds are particularly effective as dopants in DNP-enhanced measurements at moderate magic-angle spinning frequencies and moderate magnetic field strengths, generally leading to a more rapid build-up of nuclear spin polarizations under microwave irradiation than the more common biradical dopants at the same electron spin concentrations. Here we report the synthesis and DNP performance at 25 K and 9.41 T for two new triradical compounds, sulfoacetyl-DOTOPA and PEG12-DOTOPA. Under our experimental conditions, these compounds exhibit ssNMR signal enhancements and DNP build-up times that are nearly identical to those of previously described triradical dopants. Moreover, these compounds have high solubility in aqueous buffers and water/glycerol mixtures at both acidic and basic pH values, making them useful in a wide variety of experiments on biomolecular systems.
Collapse
Affiliation(s)
- Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States.
| |
Collapse
|
18
|
Nakamuro T, Kamei K, Sun K, Bode JW, Harano K, Nakamura E. Time-Resolved Atomistic Imaging and Statistical Analysis of Daptomycin Oligomers with and without Calcium Ions. J Am Chem Soc 2022; 144:13612-13622. [PMID: 35857028 DOI: 10.1021/jacs.2c03949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daptomycin (DP) is effective against multiple drug-resistant Gram-positive pathogens because of its distinct mechanism of action. An accepted mechanism includes Ca2+-triggered aggregation of the DP molecule to form oligomers. DP and its oligomers have so far defied structural analysis at a molecular level. We studied the ability of DP molecule to aggregate by itself in water, the effects of Ca2+ ions to promote the aggregation, and the connectivity of the DP molecules in the oligomers by the combined use of dynamic light scattering in water and atomic-resolution cinematographic imaging of DP molecules captured on a carbon nanotube on which the DP molecule is installed as a fishhook. We found that the DP molecule aggregates weakly into dimers, trimers, and tetramers in water, and strongly in the presence of calcium ions, and that the tetramer is the largest oligomer in homogeneous aqueous solution. The dimer remains as the major species, and we propose a face-to-face stacked structure based on dynamic imaging using millisecond and angstrom resolution transmission electron microscopy. The tetramer in its cyclic form is the largest oligomer observed, while the trimer forms in its linear form. The study has shown that the DP molecule has an intrinsic property of forming tetramers in water, which is enhanced by the presence of calcium ions. Such experimental structural information will serve as a platform for future drug design. The data also illustrate the utility of cinematographic recording for the study of self-organization processes.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keyi Sun
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Ergun Ayva C, Fiorito MM, Guo Z, Edwardraja S, Kaczmarski JA, Gagoski D, Walden P, Johnston WA, Jackson CJ, Nebl T, Alexandrov K. Exploring Performance Parameters of Artificial Allosteric Protein Switches. J Mol Biol 2022; 434:167678. [PMID: 35709893 DOI: 10.1016/j.jmb.2022.167678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Biological information processing networks rely on allosteric protein switches that dynamically interconvert biological signals. Construction of their artificial analogues is a central goal of synthetic biology and bioengineering. Receptor domain insertion is one of the leading methods for constructing chimeric protein switches. Here we present an in vitro expression-based platform for the analysis of chimeric protein libraries for which traditional cell survival or cytometric high throughput assays are not applicable. We utilise this platform to screen a focused library of chimeras between PQQ-glucose dehydrogenase and calmodulin. Using this approach, we identified 50 chimeras (approximately 23% of the library) that were activated by calmodulin-binding peptides. We analysed performance parameters of the active chimeras and demonstrated that their dynamic range and response times are anticorrelated, pointing to the existence of an inherent thermodynamic trade-off. We show that the structure of the ligand peptide affects both the response and activation kinetics of the biosensors suggesting that the structure of a ligand:receptor complex can influence the chimera's activation pathway. In order to understand the extent of structural changes in the reporter protein induced by the receptor domains, we have analysed one of the chimeric molecules by CD spectroscopy and hydrogen-deuterium exchange mass spectrometry. We concluded that subtle ligand-induced changes in the receptor domain propagated into the GDH domain and affected residues important for substrate and cofactor binding. Finally, we used one of the identified chimeras to construct a two-component rapamycin biosensor and demonstrated that core switch optimisation translated into improved biosensor performance.
Collapse
Affiliation(s)
- Cagla Ergun Ayva
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Maria M Fiorito
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joe A Kaczmarski
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Patricia Walden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A Johnston
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Colin J Jackson
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia. https://twitter.com/Jackson_Lab
| | - Tom Nebl
- Biology Group, Biomedical Manufacturing Program, CSIRO, Bayview Ave/Research Way, Clayton, VIC 3168, Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia; CSIRO-QUT Synthetic Biology Alliance, Brisbane, QLD 4001, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
20
|
Wilson CB, Tycko R. Millisecond Time-Resolved Solid-State NMR Initiated by Rapid Inverse Temperature Jumps. J Am Chem Soc 2022; 144:9920-9925. [PMID: 35617672 DOI: 10.1021/jacs.2c02704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Elucidation of the detailed mechanisms by which biological macromolecules undergo major structural conversions, such as folding, complex formation, and self-assembly, is a central concern of biophysical chemistry that will benefit from new experimental methods. We describe a simple technique for initiating a structural conversion process by a rapid decrease in the temperature of a solution, i.e., a rapid inverse temperature jump. By pumping solutions through copper capillary tubes that are thermally anchored to heated and cooled blocks, solution temperatures can be switched from 95 to 30 °C (or lower) in about 0.8 ms. For time-resolved solid-state nuclear magnetic resonance (ssNMR), solutions can then be frozen rapidly by spraying into cold isopentane after a variable structural evolution time τe. As an initial demonstration, we use this "inverse T-jump" technique to characterize the kinetics and mechanism by which the 26-residue peptide melittin converts from its primarily disordered, monomeric state at 95 °C to its α-helical, tetrameric state at 30 °C. One- and two-dimensional ssNMR spectra of frozen solutions with various values of τe, recorded at 25 K with signal enhancements from dynamic nuclear polarization, show that both helical secondary structure and intermolecular contacts develop on the same time scale of about 6 ms. The dependences on τe of both intraresidue crosspeak patterns and inter-residue crosspeak volumes in two-dimensional spectra can be fit with a unidirectional dimerization model, consistent with dimerization being the rate-limiting step for melittin tetramer formation.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
21
|
Chow WY, De Paëpe G, Hediger S. Biomolecular and Biological Applications of Solid-State NMR with Dynamic Nuclear Polarization Enhancement. Chem Rev 2022; 122:9795-9847. [PMID: 35446555 DOI: 10.1021/acs.chemrev.1c01043] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid-state NMR spectroscopy (ssNMR) with magic-angle spinning (MAS) enables the investigation of biological systems within their native context, such as lipid membranes, viral capsid assemblies, and cells. However, such ambitious investigations often suffer from low sensitivity due to the presence of significant amounts of other molecular species, which reduces the effective concentration of the biomolecule or interaction of interest. Certain investigations requiring the detection of very low concentration species remain unfeasible even with increasing experimental time for signal averaging. By applying dynamic nuclear polarization (DNP) to overcome the sensitivity challenge, the experimental time required can be reduced by orders of magnitude, broadening the feasible scope of applications for biological solid-state NMR. In this review, we outline strategies commonly adopted for biological applications of DNP, indicate ongoing challenges, and present a comprehensive overview of biological investigations where MAS-DNP has led to unique insights.
Collapse
Affiliation(s)
- Wing Ying Chow
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, Inst. Biol. Struct. IBS, 38044 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, Interdisciplinary Research Institute of Grenoble (IRIG), Modeling and Exploration of Materials Laboratory (MEM), 38054 Grenoble, France
| |
Collapse
|
22
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
23
|
Time-resolved DEER EPR and solid-state NMR afford kinetic and structural elucidation of substrate binding to Ca 2+-ligated calmodulin. Proc Natl Acad Sci U S A 2022; 119:2122308119. [PMID: 35105816 PMCID: PMC8833187 DOI: 10.1073/pnas.2122308119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
Complex formation between calmodulin and target proteins underlies numerous calcium signaling processes in biology, yet structural and mechanistic details, which entail major conformational changes in both calmodulin and its substrates, have been unclear. We show that a combination of time-resolved electron paramagnetic and NMR measurements can elucidate the molecular mechanism, at the quantitative kinetic and structural levels, of the binding pathway of a peptide substrate from skeletal muscle myosin light-chain kinase to calcium-loaded calmodulin. The mechanism involves coupled folding and binding and comprises a bifurcated process, with rapid, direct complex formation when the peptide interacts first with the C-terminal domain of calmodulin or a slower, two-step complex formation when the peptide interacts initially with the N-terminal domain. Recent advances in rapid mixing and freeze quenching have opened the path for time-resolved electron paramagnetic resonance (EPR)-based double electron-electron resonance (DEER) and solid-state NMR of protein–substrate interactions. DEER, in conjunction with phase memory time filtering to quantitatively extract species populations, permits monitoring time-dependent probability distance distributions between pairs of spin labels, while solid-state NMR provides quantitative residue-specific information on the appearance of structural order and the development of intermolecular contacts between substrate and protein. Here, we demonstrate the power of these combined approaches to unravel the kinetic and structural pathways in the binding of the intrinsically disordered peptide substrate (M13) derived from myosin light-chain kinase to the universal eukaryotic calcium regulator, calmodulin. Global kinetic analysis of the data reveals coupled folding and binding of the peptide associated with large spatial rearrangements of the two domains of calmodulin. The initial binding events involve a bifurcating pathway in which the M13 peptide associates via either its N- or C-terminal regions with the C- or N-terminal domains, respectively, of calmodulin/4Ca2+ to yield two extended “encounter” complexes, states A and A*, without conformational ordering of M13. State A is immediately converted to the final compact complex, state C, on a timescale τ ≤ 600 μs. State A*, however, only reaches the final complex via a collapsed intermediate B (τ ∼ 1.5 to 2.5 ms), in which the peptide is only partially ordered and not all intermolecular contacts are formed. State B then undergoes a relatively slow (τ ∼ 7 to 18 ms) conformational rearrangement to state C.
Collapse
|
24
|
Jaiswal S, He Y, Lu HP. Probing functional conformation-state fluctuation dynamics in recognition binding between calmodulin and target peptide. J Chem Phys 2022; 156:055102. [DOI: 10.1063/5.0074277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Yufan He
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
25
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen H, Huang S. Allosteric Switching of Calmodulin in a
Mycobacterium smegmatis
porin A (MspA) Nanopore‐Trap. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Tiezheng Pan
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
26
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen HY, Huang S. Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porin A (MspA) Nanopore-Trap. Angew Chem Int Ed Engl 2021; 60:23863-23870. [PMID: 34449124 DOI: 10.1002/anie.202110545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Recent developments concerning large protein nanopores suggest a new approach to structure profiling of native folded proteins. In this work, the large vestibule of Mycobacterium smegmatis porin A (MspA) and calmodulin (CaM), a Ca2+ -binding protein, were used in the direct observation of the protein structure. Three conformers, including the Ca2+ -free, Ca2+ -bound, and target peptide-bound states of CaM, were unambiguously distinguished. A disease related mutant, CaM D129G was also discriminated by MspA, revealing how a single amino acid replacement can interfere with the Ca2+ -binding capacity of the whole protein. The binding capacity and aggregation effect of CaM induced by different ions (Mg2+ /Sr2+ /Ba2+ /Ca2+ /Pb2+ /Tb3+ ) were also investigated and the stability of MspA in extreme conditions was evaluated. This work demonstrates the most systematic single-molecule investigation of different allosteric conformers of CaM, acknowledging the high sensing resolution offered by the MspA nanopore trap.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Tiezheng Pan
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
27
|
Juramy M, Chèvre R, Cerreia Vioglio P, Ziarelli F, Besson E, Gastaldi S, Viel S, Thureau P, Harris KDM, Mollica G. Monitoring Crystallization Processes in Confined Porous Materials by Dynamic Nuclear Polarization Solid-State Nuclear Magnetic Resonance. J Am Chem Soc 2021; 143:6095-6103. [PMID: 33856790 PMCID: PMC8154530 DOI: 10.1021/jacs.0c12982] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Establishing mechanistic understanding of crystallization processes at the molecular level is challenging, as it requires both the detection of transient solid phases and monitoring the evolution of both liquid and solid phases as a function of time. Here, we demonstrate the application of dynamic nuclear polarization (DNP) enhanced NMR spectroscopy to study crystallization under nanoscopic confinement, revealing a viable approach to interrogate different stages of crystallization processes. We focus on crystallization of glycine within the nanometric pores (7-8 nm) of a tailored mesoporous SBA-15 silica material with wall-embedded TEMPO radicals. The results show that the early stages of crystallization, characterized by the transition from the solution phase to the first crystalline phase, are straightforwardly observed using this experimental strategy. Importantly, the NMR sensitivity enhancement provided by DNP allows the detection of intermediate phases that would not be observable using standard solid-state NMR experiments. Our results also show that the metastable β polymorph of glycine, which has only transient existence under bulk crystallization conditions, remains trapped within the pores of the mesoporous SBA-15 silica material for more than 200 days.
Collapse
Affiliation(s)
- Marie Juramy
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | - Romain Chèvre
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Fabio Ziarelli
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, 13397 Marseille, France
| | - Eric Besson
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France
| | | | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.,Institut Universitaire de France, 75231 Paris, France
| | | | - Kenneth D M Harris
- School of Chemistry, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, U. K
| | | |
Collapse
|
28
|
Jakdetchai O, Eberhardt P, Asido M, Kaur J, Kriebel CN, Mao J, Leeder AJ, Brown LJ, Brown RCD, Becker-Baldus J, Bamann C, Wachtveitl J, Glaubitz C. Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR. SCIENCE ADVANCES 2021; 7:7/11/eabf4213. [PMID: 33712469 PMCID: PMC7954446 DOI: 10.1126/sciadv.abf4213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/29/2021] [Indexed: 06/10/2023]
Abstract
The functional mechanism of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) raises fundamental questions since the transfer of cations must differ from the better-known principles of rhodopsin-based proton pumps. Addressing these questions must involve a better understanding of its photointermediates. Here, dynamic nuclear polarization-enhanced solid-state nuclear magnetic resonance spectroscopy on cryo-trapped photointermediates shows that the K-state with 13-cis retinal directly interconverts into the subsequent L-state with distinct retinal carbon chemical shift differences and an increased out-of-plane twist around the C14-C15 bond. The retinal converts back into an all-trans conformation in the O-intermediate, which is the key state for sodium transport. However, retinal carbon and Schiff base nitrogen chemical shifts differ from those observed in the KR2 dark state all-trans conformation, indicating a perturbation through the nearby bound sodium ion. Our findings are supplemented by optical and infrared spectroscopy and are discussed in the context of known three-dimensional structures.
Collapse
Affiliation(s)
- Orawan Jakdetchai
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Peter Eberhardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Jiafei Mao
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Alexander J Leeder
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Lynda J Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, Great Britain
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Christian Bamann
- Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Strasse 7, 60438 Frankfurt am Main, Germany.
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max von Laue Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|