1
|
Zhou P, Cheng K, Qu K, Wang L, Hu C, Liu W, Chen H. An Electric Molecular Faraday Cage. J Am Chem Soc 2025. [PMID: 40419950 DOI: 10.1021/jacs.5c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Faraday cages are essential tools for protecting conducting materials from unwanted electromagnetic radiation by redistributing charges around the cage's exterior. When integrated into nanoscale molecular circuits, particularly those with well-defined inner cavity structures, Faraday cages isolate guest molecules from external influences, thereby improving device stability and performance. The design of molecular Faraday cages involves the intersection of molecular electronics and supramolecular chemistry with the goal of safeguarding internal molecules from harmful substances. In this study, we introduce an X-shaped octacationic cyclophane, XCage8+, as an electric molecular Faraday cage. Its spacious binding cavity allows for the encapsulation of perylene diimide molecular wires. The shielding effectiveness of XCage8+ was confirmed through electrochemical gating, demonstrating that electric fields are shielded effectively. The findings of this study provide valuable insights that could inspire the development of innovative strategies for enhancing device stability and performance at the supramolecular level, paving the way for further progress in the fields of molecular electronics and quantum devices.
Collapse
Affiliation(s)
- Ping Zhou
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Kai Cheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Kai Qu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Leng Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Chen Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, P. R. China
| | - Wenqi Liu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, P. R. China
| |
Collapse
|
2
|
Zhao C, Li K, Hao J, Wang Y, He H, Jia C, Guo X. Direct observation and force modulation of single-bond reactions at the ion/metal interface. SCIENCE ADVANCES 2025; 11:eadv4771. [PMID: 40173218 PMCID: PMC11963960 DOI: 10.1126/sciadv.adv4771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Elucidating the mechanisms of ion-involved interfacial reactions at the single-bond level is important for understanding interface science. Here, the reaction between pyridine ions and protons at the solid-liquid interface is studied in situ using a single-molecule conductance measurement technique. By manipulating the interfacial electrostatic potential, an ion/metal interfacial state relying on electrostatic interactions has been discovered, comprising terminal group-hydrogen-gold in specific. The reversible interfacial protonation reaction mechanism is revealed in situ at the single-bond level based on this interfacial state. Experiment results also indicate that external forces can effectively regulate this ion-involved interfacial reaction. This work provides a single-bond approach for in situ investigations of ion-involved interfacial reactions with an ion/metal interfacial state, thus promoting the development of interface science.
Collapse
Affiliation(s)
- Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kun Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Hao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yanlei Wang
- Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, P. R. China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Zhang H, Chen L, Huang Y, Liu X, Moles Quintero S, Hong W, Wang D, Casado J, Zheng Y. Radical-induced single-molecule conductance tuning in 9,9'-bifluorenylidene derivatives. Chem Sci 2025; 16:5099-5108. [PMID: 39975763 PMCID: PMC11833457 DOI: 10.1039/d4sc07256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Single-molecule techniques provide new perspectives for understanding the relationship between spin delocalization of organic radicals and the intramolecular electronic structure. In this study, a series of 9,9'-bifluorenylidene (9,9'-BF) derivatives with four functionalization sites were synthesized, showcasing the orthogonalization of non-conducting (between radical sites) and conducting (between thiomethyl groups) paths. By precisely controlling the amount of radicals, or radical injection, ranging from mono-radical (Mono-PFPR) to diradicals, and among these, varying from medium (Di-PFPRy 0 = 0.66) to small (Di-PFNRy 0 = 0.11) to vanishing (Di-NFNRy 0 = 0) diradical characters (y 0 represents the diradical index), the influence of organic radical spin delocalization on the conducting path can be gradually modulated, transforming linear conjugated conducting channels into cross-conjugated channels and significantly reducing single-molecule conductance. This discovery provides an in-depth understanding of the complex relationship between radicals, spin delocalization, and molecular conductance, which is rather unique in the area of functional stable radical compounds. Ultimately, it provides forward-looking guidance for research on these materials in the field of organic electronic materials.
Collapse
Affiliation(s)
- Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 611731 People's Republic of China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen Xiamen 361005 People's Republic of China
| | - Yunzhu Huang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 611731 People's Republic of China
| | - Xiaodong Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 611731 People's Republic of China
| | - Sergio Moles Quintero
- Department of Physical Chemistry, University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering Xiamen University Xiamen Xiamen 361005 People's Republic of China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 611731 People's Republic of China
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 611731 People's Republic of China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 People's Republic of China
| |
Collapse
|
4
|
Wang J, Wang X, Yao C, Xu J, Wang D, Zhao X, Li X, Liu J, Hong W. Interface Phenomena in Molecular Junctions through Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5705-5735. [PMID: 40009872 DOI: 10.1021/acs.langmuir.4c04865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Noncovalent interactions, both between molecules and at the molecule-electrode interfaces, play essential roles in enabling dynamic and reversible molecular behaviors, including self-assembly, recognition, and various functional properties. In macroscopic ensemble systems, these interfacial phenomena often exhibit emergent properties that arise from the synergistic interplay of multiple noncovalent interactions. However, at the single-molecule scale, precisely distinguishing, characterizing, and controlling individual noncovalent interactions remains a significant challenge. Molecular electronics offers a unique platform for constructing and characterizing both intermolecular and molecule-electrode interfaces governed by noncovalent interactions, enabling the isolated study of these fundamental interactions. Furthermore, precise control over these interfaces through noncovalent interactions facilitates the development of enhanced molecular devices. This review examines the characterization of interfacial phenomena arising from noncovalent interactions through single-molecule electrical measurements and explores their applications in molecular devices. We begin by discussing the construction of stable molecular junctions through intermolecular and molecule-electrode interfaces, followed by an analysis of electron tunneling mechanisms mediated by key noncovalent interactions and their modulation methods. We then investigate how noncovalent interactions enhance device sensitivity, stability, and functionality, establishing design principles for next-generation molecular electronics. We have also explored the potential of noncovalent interactions for bottom-up self-assembled molecular devices. The review concludes by addressing the opportunities and challenges in scaling up molecular electronics through noncovalent interactions.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chengpeng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Liu X, Yang H, Harb H, Samajdar R, Woods TJ, Lin O, Chen Q, Romo AIB, Rodríguez-López J, Assary RS, Moore JS, Schroeder CM. Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions. Nat Chem 2024; 16:1772-1780. [PMID: 39187723 DOI: 10.1038/s41557-024-01619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Molecular electronic devices require precise control over the flow of current in single molecules. However, the electron transport properties of single molecules critically depend on dynamic molecular conformations in nanoscale junctions. Here we report a unique strategy for controlling molecular conductance using shape-persistent molecules. Chemically diverse, charged ladder molecules, synthesized via a one-pot multicomponent ladderization strategy, show a molecular conductance (d[log(G/G0)]/dx ≈ -0.1 nm-1) that is nearly independent of junction displacement, in stark contrast to the nanogap-dependent conductance (d[log(G/G0)]/dx ≈ -7 nm-1) observed for non-ladder analogues. Ladder molecules show an unusually narrow distribution of molecular conductance during dynamic junction displacement, which is attributed to the shape-persistent backbone and restricted rotation of terminal anchor groups. These principles are further extended to a butterfly-like molecule, thereby demonstrating the strategy's generality for achieving gap-independent conductance. Overall, our work provides important avenues for controlling molecular conductance using shape-persistent molecules.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hao Yang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hassan Harb
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Rajarshi Samajdar
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Toby J Woods
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Oliver Lin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qian Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adolfo I B Romo
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joaquín Rodríguez-López
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rajeev S Assary
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Charles M Schroeder
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Bauland J, Andrieux V, Pignon F, Frath D, Bucher C, Gibaud T. Viologen-based supramolecular crystal gels: gelation kinetics and sensitivity to temperature. SOFT MATTER 2024; 20:8278-8290. [PMID: 39387141 DOI: 10.1039/d4sm00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Supramolecular crystal gels, a subset of molecular gels, are formed through the self-assembly of low molecular weight gelators into interconnecting crystalline fibers, creating a three-dimensional soft solid network. This study focuses on the formation and properties of viologen-based supramolecular crystalline gels. It aims to answer key questions about the tunability of network properties and the origin of these properties through in-depth analyses of the gelation kinetics triggered by thermal quenching. Experimental investigations, including UV-Vis absorption spectroscopy, rheology, microscopy and scattering measurements, contribute to a comprehensive and self-consistent understanding of the system kinetics. We confirm that viologen-based gelators crystallize by forming nanometer radius hollow tubes that assemble into micro to millimetric spherulites. We then show that crystallization follows the Avrami theory and is based on pre-existing nuclei. We also establish that the growth is interface-controlled, leading the hollow tubes to branch into spherulites with fractal structures. Finally, we demonstrate that the gel properties can be tuned depending on the quenching temperature. Lowering the temperature results in the formation of denser and smaller spherulites. In contrast, the gel's elasticity is not significantly affected by the quench temperature, leading us to hypothesize that the densification of spherulites occurs at the expense of connectivity between spherulites.
Collapse
Affiliation(s)
- Julien Bauland
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| | - Vivien Andrieux
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | - Frédéric Pignon
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LRP, F-38000 Grenoble, France
| | - Denis Frath
- ENS de Lyon, CNRS, LCH, UMR 5182, 69342, Lyon cedex 07, France.
| | | | - Thomas Gibaud
- ENS de Lyon, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France.
| |
Collapse
|
7
|
Zhao C, Diao J, Liu Z, Hao J, He S, Li S, Li X, Li G, Fu Q, Jia C, Guo X. Electrical monitoring of single-event protonation dynamics at the solid-liquid interface and its regulation by external mechanical forces. Nat Commun 2024; 15:8835. [PMID: 39397019 PMCID: PMC11471814 DOI: 10.1038/s41467-024-53179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Detecting chemical reaction dynamics at solid-liquid interfaces is important for understanding heterogeneous reactions. However, there is a lack of exploration of interface reaction dynamics from the single-molecule perspective, which can reveal the intrinsic reaction mechanism underlying ensemble experiments. Here, single-event protonation reaction dynamics at a solid-liquid interface are studied in-situ using single-molecule junctions. Molecules with amino terminal groups are used to construct single-molecule junctions. An interfacial cationic state present after protonation is discovered. Real-time electrical measurements are used to monitor the reversible reaction between protonated and deprotonated states, thereby revealing the interfacial reaction mechanism through dynamic analysis. The protonation reaction rate constant has a linear positive correlation with proton concentration, whereas the deprotonation reaction rate constant has a linear negative correlation. In addition, external mechanical forces can effectively regulate the protonation reaction process. This work provides a single-molecule perspective for exploring interface science, which will contribute to the development of heterogeneous catalysis and electrochemistry.
Collapse
Affiliation(s)
- Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Jiazheng Diao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China
| | - Zhao Liu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Shaojia Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Xingxing Li
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Guangwu Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
- Shenzhen Research, Institute of Nankai University, 16th Floor, Yantian Science & Technology Building, Shenzhen, China.
| | - Qiang Fu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Future Technology, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China.
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
8
|
Tang C, Su M, Lu T, Zheng J, Wang J, Zhou Y, Zou YL, Liu W, Huang R, Xu W, Chen L, Zhang Y, Bai J, Yang Y, Shi J, Liu J, Hong W. Massive acceleration of S N2 reaction using the oriented external electric field. Chem Sci 2024; 15:13486-13494. [PMID: 39183916 PMCID: PMC11339978 DOI: 10.1039/d4sc03759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Nucleophilic substitution is one of the most fundamental chemical reactions, and the pursuit of high reaction rates of the reaction is one of the ultimate goals in catalytic and organic chemistry. The reaction barrier of the nucleophilic substitution originates from the highly polar nature of the transition state that can be stabilized under the electric field created by the solvent environment. However, the intensity of the induced solvent-electric field is relatively small due to the random orientation of solvent molecules, which hinders the catalytic effects and restricts the reaction rates. This work shows that oriented external electric fields applied within a confined nanogap between two nanoscopic tips could accelerate the Menshutkin reaction by more than four orders of magnitude (over 39 000 times). The theoretical calculations reveal that the electric field inside the nanogap reduces the energy barrier to increase the reaction rate. Our work suggests the great potential of electrostatic catalysis for green synthesis in the future.
Collapse
Affiliation(s)
- Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Meiling Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Juejun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenqing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Ruiyun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University Xiamen China
| |
Collapse
|
9
|
Bro-Jørgensen W, Hamill JM, Mezei G, Lawson B, Rashid U, Halbritter A, Kamenetska M, Kaliginedi V, Solomon GC. Making the Most of Nothing: One-Class Classification for Single-Molecule Transport Studies. ACS NANOSCIENCE AU 2024; 4:250-262. [PMID: 39184833 PMCID: PMC11342344 DOI: 10.1021/acsnanoscienceau.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 08/27/2024]
Abstract
Single-molecule experiments offer a unique means to probe molecular properties of individual molecules-yet they rest upon the successful control of background noise and irrelevant signals. In single-molecule transport studies, large amounts of data that probe a wide range of physical and chemical behaviors are often generated. However, due to the stochasticity of these experiments, a substantial fraction of the data may consist of blank traces where no molecular signal is evident. One-class (OC) classification is a machine learning technique to identify a specific class in a data set that potentially consists of a wide variety of classes. Here, we examine the utility of two different types of OC classification models on four diverse data sets from three different laboratories. Two of these data sets were measured at cryogenic temperatures and two at room temperature. By training the models solely on traces from a blank experiment, we demonstrate the efficacy of OC classification as a powerful and reliable method for filtering out blank traces from a molecular experiment in all four data sets. On a labeled 4,4'-bipyridine data set measured at 4.2 K, we achieve an accuracy of 96.9 ± 0.3 and an area under the receiver operating characteristic curve of 99.5 ± 0.3 as validated over a fivefold cross-validation. Given the wide range of physical and chemical properties that can be probed in single-molecule experiments, the successful application of OC classification to filter out blank traces is a major step forward in our ability to understand and manipulate molecular properties.
Collapse
Affiliation(s)
- William Bro-Jørgensen
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
| | - Joseph M. Hamill
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
| | - Gréta Mezei
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | - Brent Lawson
- Department
of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Umar Rashid
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - András Halbritter
- Department
of Physics, Institute of Physics, Budapest
University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- ELKH-BME
Condensed Matter Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | - Maria Kamenetska
- Department
of Physics, Chemistry and Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Veerabhadrarao Kaliginedi
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Gemma C. Solomon
- Department
of Chemistry and Nano-Science Center, University
of Copenhagen, Universitetsparken
5, Copenhagen Ø DK-2100, Denmark
- NNF
Quantum
Computing Programme, Niels Bohr Institute, University of Copenhagen, Jagtvej 155 A, Copenhagen N DK-2200, Denmark
| |
Collapse
|
10
|
Xu X, Gao C, Emusani R, Jia C, Xiang D. Toward Practical Single-Molecule/Atom Switches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400877. [PMID: 38810145 PMCID: PMC11304318 DOI: 10.1002/advs.202400877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Electronic switches have been considered to be one of the most important components of contemporary electronic circuits for processing and storing digital information. Fabricating functional devices with building blocks of atomic/molecular switches can greatly promote the minimization of the devices and meet the requirement of high integration. This review highlights key developments in the fabrication and application of molecular switching devices. This overview offers valuable insights into the switching mechanisms under various stimuli, emphasizing structural and energy state changes in the core molecules. Beyond the molecular switches, typical individual metal atomic switches are further introduced. A critical discussion of the main challenges for realizing and developing practical molecular/atomic switches is provided. These analyses and summaries will contribute to a comprehensive understanding of the switch mechanisms, providing guidance for the rational design of functional nanoswitch devices toward practical applications.
Collapse
Affiliation(s)
- Xiaona Xu
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chunyan Gao
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Ramya Emusani
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Chuancheng Jia
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule SciencesNankai UniversityTianjin Key Laboratory of Micro‐scale Optical Information Science and TechnologyTianjin300350China
| |
Collapse
|
11
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Chen Y, Bâldea I, Yu Y, Liang Z, Li MD, Koren E, Xie Z. CP-AFM Molecular Tunnel Junctions with Alkyl Backbones Anchored Using Alkynyl and Thiol Groups: Microscopically Different Despite Phenomenological Similarity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4410-4423. [PMID: 38348971 PMCID: PMC10906003 DOI: 10.1021/acs.langmuir.3c03759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
Collapse
Affiliation(s)
- Yuhong Chen
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ioan Bâldea
- Theoretical
Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Yongxin Yu
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Zining Liang
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Elad Koren
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Zuoti Xie
- Department
of Materials Science and Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Department
of Materials Science and Engineering, Guangdong Provincial Key Laboratory
of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum
Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology
Park, No. 3 Binglang
Road, Futian District, Shenzhen, Guangdong 518048, China
| |
Collapse
|
13
|
Chen L, Yang Z, Lin Q, Li X, Bai J, Hong W. Evolution of Single-Molecule Electronic Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1988-2004. [PMID: 38227964 DOI: 10.1021/acs.langmuir.3c03104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Single-molecule electronics can fabricate single-molecule devices via the construction of molecule-electrode interfaces and also provide a unique tool to investigate single-molecule scale physicochemical processes at these interfaces. To investigate single-molecule electronic devices with desired functionalities, an understanding of the interface evolution processes in single-molecule devices is essential. In this review, we focus on the evolution of molecule-electrode interface properties, including the background of interface evolution in single-molecule electronics, the construction of different types of single-molecule interfaces, and the regulation methods. Finally, we discuss the perspective of future characterization techniques and applications for single-molecule electronic interfaces.
Collapse
Affiliation(s)
- Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Qichao Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & College of Materials & IKKEM, Xiamen University, Xiamen 361000, China
| |
Collapse
|
14
|
Saito E, Yamakado R, Yasuhara T, Yamaguchi H, Okada S, Yoshida T. Formation of charge-transfer complexes in ionic crystals composed of 1,3-bis(dicyanomethylidene)indan anion and viologens bearing alkyl chains. RSC Adv 2023; 13:32039-32044. [PMID: 37920201 PMCID: PMC10618938 DOI: 10.1039/d3ra06782c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
The relationship between charge-transfer (CT) properties and the molecular arrangement formed from π-electronic ion pairs remains unclear because of the limited variety of π-electron anions. This study addressed this issue by synthesising a series of ion pair assemblies composed of viologen dications with diverse alkyl chains as π-electron cations and 1,3-bis(dicyanomethilidene)indan anion (CMI-) as a stable π-electron anion. We obtained seven ionic crystals and identified their assembled structures using single-crystal X-ray analysis. These structures are categorized into three types: "columnar", "slipped columnar" and "independent". The CT properties were characterised using UV-Vis absorption spectroscopy, which revealed that the CT absorption bands were dependent on the alkyl chain length. This intriguing variation in the CT transitions can be explained by the differences in the type of assembled structure.
Collapse
Affiliation(s)
- Erika Saito
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| | - Ryohei Yamakado
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| | - Taichi Yasuhara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| | - Hiroto Yamaguchi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| | - Shuji Okada
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| | - Tsukasa Yoshida
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University Yonezawa 992-8510 Japan
| |
Collapse
|
15
|
Zhou P, Fu Y, Wang M, Qiu R, Wang Y, Stoddart JF, Wang Y, Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interactions. J Am Chem Soc 2023; 145:18800-18811. [PMID: 37590178 DOI: 10.1021/jacs.3c03282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Supramolecular electronics provide an opportunity to introduce molecular assemblies into electronic devices through a combination of noncovalent interactions such as [π···π] and hydrogen-bonding interactions. The fidelity and dynamics of noncovalent interactions hold considerable promise when it comes to building devices with controllable and reproducible switching functions. Here, we demonstrate a strategy for building electronically robust switches by harnessing two different noncovalent interactions between a couple of pyridine derivatives. The single-supermolecule switch is turned ON when compressing the junction enabling [π···π] interactions to dominate the transport, while the switch is turned OFF by stretching the junction to form hydrogen-bonded dimers, leading to a dramatic decrease in conductance. The robustness and reproducibility of these single-supermolecule switches were achieved by modulating the junction with Ångström precision at frequencies of up to 190 Hz while obtaining high ON/OFF ratios of ∼600. The research presented herein opens up an avenue for designing robust bistable mechanoresponsive devices which will find applications in the building of integrated circuits for microelectromechanical systems.
Collapse
Affiliation(s)
- Ping Zhou
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yanjun Fu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Renhui Qiu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuwei Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
16
|
Lv J, Sun R, Yang Q, Gan P, Yu S, Tan Z. Research on Electric Field-Induced Catalysis Using Single-Molecule Electrical Measurement. Molecules 2023; 28:4968. [PMID: 37446629 DOI: 10.3390/molecules28134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The role of catalysis in controlling chemical reactions is crucial. As an important external stimulus regulatory tool, electric field (EF) catalysis enables further possibilities for chemical reaction regulation. To date, the regulation mechanism of electric fields and electrons on chemical reactions has been modeled. The electric field at the single-molecule electronic scale provides a powerful theoretical weapon to explore the dynamics of individual chemical reactions. The combination of electric fields and single-molecule electronic techniques not only uncovers new principles but also results in the regulation of chemical reactions at the single-molecule scale. This perspective focuses on the recent electric field-catalyzed, single-molecule chemical reactions and assembly, and highlights promising outlooks for future work in single-molecule catalysis.
Collapse
Affiliation(s)
- Jieyao Lv
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ruiqin Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Qifan Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Pengfei Gan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shiyong Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Zhibing Tan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
17
|
Daaoub A, Morris JMF, Béland VA, Demay‐Drouhard P, Hussein A, Higgins SJ, Sadeghi H, Nichols RJ, Vezzoli A, Baumgartner T, Sangtarash S. Not So Innocent After All: Interfacial Chemistry Determines Charge-Transport Efficiency in Single-Molecule Junctions. Angew Chem Int Ed Engl 2023; 62:e202302150. [PMID: 37029093 PMCID: PMC10953449 DOI: 10.1002/anie.202302150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/09/2023]
Abstract
Most studies in molecular electronics focus on altering the molecular wire backbone to tune the electrical properties of the whole junction. However, it is often overlooked that the chemical structure of the groups anchoring the molecule to the metallic electrodes influences the electronic structure of the whole system and, therefore, its conductance. We synthesised electron-accepting dithienophosphole oxide derivatives and fabricated their single-molecule junctions. We found that the anchor group has a dramatic effect on charge-transport efficiency: in our case, electron-deficient 4-pyridyl contacts suppress conductance, while electron-rich 4-thioanisole termini promote efficient transport. Our calculations show that this is due to minute changes in charge distribution, probed at the electrode interface. Our findings provide a framework for efficient molecular junction design, especially valuable for compounds with strong electron withdrawing/donating backbones.
Collapse
Affiliation(s)
- Abdalghani Daaoub
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - James M. F. Morris
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Vanessa A. Béland
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Paul Demay‐Drouhard
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Amaar Hussein
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Hatef Sadeghi
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - Thomas Baumgartner
- Department of ChemistryYork University4700 Keele StreetTorontoON, M3J 1P3Canada
| | - Sara Sangtarash
- Device Modelling GroupSchool of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
18
|
Tong L, Yu Z, Gao YJ, Li XC, Zheng JF, Shao Y, Wang YH, Zhou XS. Local cation-tuned reversible single-molecule switch in electric double layer. Nat Commun 2023; 14:3397. [PMID: 37296181 DOI: 10.1038/s41467-023-39206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The nature of molecule-electrode interface is critical for the integration of atomically precise molecules as functional components into circuits. Herein, we demonstrate that the electric field localized metal cations in outer Helmholtz plane can modulate interfacial Au-carboxyl contacts, realizing a reversible single-molecule switch. STM break junction and I-V measurements show the electrochemical gating of aliphatic and aromatic carboxylic acids have a conductance ON/OFF behavior in electrolyte solution containing metal cations (i.e., Na+, K+, Mg2+ and Ca2+), compared to almost no change in conductance without metal cations. In situ Raman spectra reveal strong molecular carboxyl-metal cation coordination at the negatively charged electrode surface, hindering the formation of molecular junctions for electron tunnelling. This work validates the critical role of localized cations in the electric double layer to regulate electron transport at the single-molecule level.
Collapse
Affiliation(s)
- Ling Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004, Jinhua, China
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004, Jinhua, China.
| |
Collapse
|
19
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
20
|
Tang A, Li Y, Wang R, Yang J, Ma C, Li Z, Zou Q, Li H. Charge transport of F4TCNQ with different electronic states in single-molecule junctions. Chem Commun (Camb) 2023; 59:1305-1308. [PMID: 36633258 DOI: 10.1039/d2cc06341g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular conductance of 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyano-quinodimethane (F4TCNQ) with different electronic states (neutral, radical anion, and dianion) was investigated by the scanning tunneling microscope break junction (STM-BJ) technique. These electronic states have distinct conductance, and the conductance decreases in the order of neutral > radical anion > dianion. Surprisingly, the molecular conductance of the neutral F4TCNQ junction reaches 10-1.17G0, attributed to its LUMO energy level being close to the Fermi level of the gold electrode. Moreover, we found that neutral F4TCNQ can be gradually reduced to radical anions under a relatively low bias voltage of 100 mV. These results will advance the development of organic optoelectronic devices and molecule electronics.
Collapse
Affiliation(s)
- Ajun Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yunpeng Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Rui Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Jiawei Yang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Chaoqi Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Zhi Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Qi Zou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
21
|
Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes (Basel) 2022. [DOI: 10.3390/pr10122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring the electrical current through single molecules has received an increasing amount of attention and has witnessed tremendous advances in recent years. Research efforts in this direction have opened a new route for probing chemical and physical processes with single-molecule precision. This review presents detailed advancements in probing single-molecule chemical reactions using SMJ techniques. We specifically highlight recent progress in investigating electric-field-driven reactions, reaction dynamics and kinetics, host–guest interactions, and redox reactions of different molecular systems. Finally, we discuss the potential of single-molecule detection using SMJs across various future applications.
Collapse
|
22
|
Ma W, Zhang S, Xu L, Zhang B, Li G, Rao B, Zhang M, He G. Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
24
|
Duan P, Wang Y, Chen L, Qu K, Liu J, Zhang QC, Chen ZN, Hong W. Transport Modulation Through Electronegativity Gating in Multiple Nitrogenous Circuits. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200361. [PMID: 35481610 DOI: 10.1002/smll.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Investigating the correlations of electron transport between multiple channels shows vital promises for the design of molecule-scale circuits with logic operations. To control the electron transport through multiple channels, the modulation of electronegativity shows an effective frontier orbit control method with high universality to explore the interactions between transport channels. Here, two series of compounds with a single nitrogenous conductive channel (Sg) and dual-channels (Db) are designed to explore the influence of electronegativity on electron tunneling transport. Single-molecule conductance measured via the scanning tunneling microscope break junction technique (STM-BJ) reveals that the conductance of Db series is significantly suppressed as the electronegativity of nitrogen becomes negative, while the suppression on Sg is less obvious. Theoretical calculations confirm that the effect of electronegativity extends to a dispersive range of molecular frameworks owing to the delocalized orbital distribution from the dual-channel structure, resulting in a more significant conductance suppression effect than that on the single-channel. This study provides the experimental and theoretical potentials of electronegativity gating for molecular circuits.
Collapse
Affiliation(s)
- Ping Duan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yaping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Kai Qu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
25
|
Using automated synthesis to understand the role of side chains on molecular charge transport. Nat Commun 2022; 13:2102. [PMID: 35440635 PMCID: PMC9019014 DOI: 10.1038/s41467-022-29796-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
The development of next-generation organic electronic materials critically relies on understanding structure-function relationships in conjugated polymers. However, unlocking the full potential of organic materials requires access to their vast chemical space while efficiently managing the large synthetic workload to survey new materials. In this work, we use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport. Our results show that molecular junctions with long alkyl side chains exhibit a concentration-dependent bimodal conductance with an unexpectedly high conductance state that arises due to surface adsorption and backbone planarization, which is supported by a series of control experiments using asymmetric, planarized, and sterically hindered molecules. Density functional theory simulations and experiments using different anchors and alkoxy side chains highlight the role of side chain chemistry on charge transport. Overall, this work opens new avenues for using automated synthesis for the development and understanding of organic electronic materials. Development of organic electronic materials relies on understanding structure-function relationships in conjugated polymers but the synthetic workload to make large numbers of new compounds presents a practical barrier to properly survey conjugated organic derivatives. Here, the authors use automated synthesis to prepare a library of conjugated oligomers with systematically varied side chain composition followed by single-molecule characterization of charge transport.
Collapse
|
26
|
Tong L, Bao SY, Jiang CC, Li XC, Li JJ, Huang-Fu XN, Zheng JF, Shao Y, Wang YH, Gao YJ, Zhou XS. Tuning the binding configurations of single-molecule junctions by molecular co-assembly. Chem Commun (Camb) 2022; 58:4962-4965. [PMID: 35388389 DOI: 10.1039/d2cc00406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significant variability issues in metal-molecule contacts, such as adsorption geometry, lead to characteristic variability in the electrical responses of individual molecules. Herein, co-assembling 1-ethylimidazole (EIM) on Au(111) has been shown to be a feasible and effective strategy for tuning the binding configurations of pyridine-linked molecular junctions in the most common aqueous environments and atmospheric environments. The single-molecule conductance measurements clearly show a transition from multiple conductance peaks to a single conductance peak with increasing EIM concentration. Raman spectroscopy and DFT calculations suggest that the thermodynamically favorable EIM adsorbate results in the vertical orientation of the bipyridine.
Collapse
Affiliation(s)
- Ling Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Shu-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Chen-Chen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Jia-Jie Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xu-Nan Huang-Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China. .,Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
27
|
Yu H, Li J, Li S, Liu Y, Jackson NE, Moore JS, Schroeder CM. Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes. J Am Chem Soc 2022; 144:3162-3173. [PMID: 35148096 DOI: 10.1021/jacs.1c12741] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermolecular charge transport through π-conjugated molecules plays an essential role in biochemical redox processes and energy storage applications. In this work, we observe highly efficient intermolecular charge transport upon dimerization of pyridinium molecules in the cavity of a synthetic host (cucurbit[8]uril, CB[8]). Stable, homoternary complexes are formed between pyridinium molecules and CB[8] with high binding affinity, resulting in an offset stacked geometry of two pyridiniums inside the host cavity. The charge transport properties of free and dimerized pyridiniums are characterized using a scanning tunneling microscope-break junction (STM-BJ) technique. Our results show that π-stacked pyridinium dimers exhibit comparable molecular conductance to isolated, single pyridinium molecules, despite a longer transport pathway and a switch from intra- to intermolecular charge transport. Control experiments using a CB[8] homologue (cucurbit[7]uril, CB[7]) show that the synthetic host primarily serves to facilitate dimer formation and plays a minimal role on molecular conductance. Molecular modeling using density functional theory (DFT) reveals that pyridinium molecules are planarized upon dimerization inside the host cavity, which facilitates charge transport. In addition, the π-stacked pyridinium dimers possess large intermolecular LUMO-LUMO couplings, leading to enhanced intermolecular charge transport. Overall, this work demonstrates that supramolecular assembly can be used to control intermolecular charge transport in π-stacked molecules.
Collapse
Affiliation(s)
| | - Jialing Li
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | | | - Jeffrey S Moore
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Charles M Schroeder
- Joint Center for Energy Storage Research, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
28
|
Behera RK, Mishra L, Panigrahi A, Sahoo PK, Sarangi MK. Tunable Conductance of MoS 2 and WS 2 Quantum Dots by Electron Transfer with Redox-Active Quinone. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5750-5761. [PMID: 35049294 DOI: 10.1021/acsami.1c18092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to their uniqueness in tunable photophysics, transition metal dichalcogenide (TMD) based quantum dots (QDs) have emerged as the next-generation quantum materials for technology-based semiconductor applications. This demands frontline research on the rational synthesis of the TMD QDs with controlled shape, size, nature of charge migration at the interface, and their easy integration in optoelectronic devices. In this article, with a controlled solution-processed synthesis of MoS2 and WS2 QDs, we demonstrate the disparity in their structural, optical, and electrical characteristics in bulk and confinement. With a series of steady-state and time-resolved spectroscopic measurements in different media, we explore the uncommon photophysics of MoS2 and WS2 QDs such as excitation-dependent photoluminescence and assess their excited state charge transfer kinetics with a redox-active biomolecule, menadione (MQ). In comparison to the homogeneous aqueous medium, photoinduced charge transfer between the QDs and MQ becomes more plausible in encapsulated cetyltrimethylammonium bromide (CTAB) micelles. Current sensing atomic force microscopy (CS-AFM) measurements at a single molecular level reveal that the facilitated charge transfer of QDs with MQ strongly correlates with an enhancement in their charge transport behavior. An increase in charge transport further depends on the density of states of the QDs directing a change in Schottky emission to Fowler-Nordheim (FN) type of tunneling across the metal-QD-metal junction. The selective response of the TMD QDs while in proximity to external molecules can be used to design advanced optoelectronic devices and applications involving rectifiers and tunnel diodes for future quantum technology.
Collapse
Affiliation(s)
- Ranjan Kumar Behera
- Department of Physics, Indian Institute of Technology Patna, Bihta, Kanpa Road, Patna, Bihar 801106, India
| | - Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Bihta, Kanpa Road, Patna, Bihar 801106, India
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Bihta, Kanpa Road, Patna, Bihar 801106, India
| | - Prasana Kumar Sahoo
- Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Bihta, Kanpa Road, Patna, Bihar 801106, India
| |
Collapse
|
29
|
Yu Z, Li JQ, Wang YH, Su JQ, Fu JY, Zou JW, Zheng JF, Shao Y, Zhou XS. Visualizing an Electrochemically Induced Radical Cation of Bipyridine at Au(111)/Ionic Liquid Interfaces toward a Single-Molecule Switch. Anal Chem 2022; 94:1823-1830. [PMID: 35020360 DOI: 10.1021/acs.analchem.1c04707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Room-temperature ionic liquids (RTILs) emerged as ideal solvents, and bipyridine as one of the most used ligands have been widely employed in surface science, catalysis, and molecular electronics. Herein, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and STM break junction (STM-BJ) technique has been employed to probe the electrochemical process of bipyridine at Au(111)/IL interfaces. It is interestingly found that these molecules undertake a redox process with a pair of well-defined reversible peaks in cyclic voltammograms (CVs). The spectroscopic evidence shows a radical cation generated with rising new Raman peaks related to parallel CC stretching of a positively charged pyridyl ring. Furthermore, these electrochemically charged bipyridine is also confirmed by electrochemical STM-BJ at the single-molecule level, which displays a binary conductance switch ratio of about 400% at the redox potentials. This present work offers a molecular-level insight into the pyridine-mediated reaction process and electron transport in RTILs.
Collapse
Affiliation(s)
- Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jie-Qiong Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jun-Qing Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Ying Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Wei Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
30
|
Wang R, Li Y, Tang A, Li Y, Li H. Gating the Conductance of Single - Molecule Junction with Ion-π Interaction. Chem Commun (Camb) 2022; 58:8290-8293. [DOI: 10.1039/d2cc02755k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The single molecular conductance of viologen derivative VSMe and supramolecular compound VSMe-PA[5] (pillararene[5]) was investigated. The difference of their conductance demonstrated the gating effect of cation-π interaction. Theoretical calculations showed...
Collapse
|
31
|
Liu Y, Yang AA, Wang Y, Li WZ, Zhang XS, Luan J, Liu HZ, Wang ZG. Synthesis of two polymorphic Cu-based coordination polymers of 1,2,4-benzenetricarboxylic acid along with a carbon-coated composite for the selective degradation of organic dyes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Chen H, Jiang F, Hu C, Jiao Y, Chen S, Qiu Y, Zhou P, Zhang L, Cai K, Song B, Chen XY, Zhao X, Wasielewski MR, Guo H, Hong W, Stoddart JF. Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. J Am Chem Soc 2021; 143:8476-8487. [PMID: 34043344 DOI: 10.1021/jacs.1c03141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating how electrons propagate through a single molecule is one of the missions of molecular electronics. Electrons, however, are also efficient catalysts for conducting radical reactions, a property that is often overlooked by chemists. Special attention should be paid to electron catalysis when interpreting single-molecule conductance results for the simple reason that an unexpected reaction mediated or triggered by electrons might take place in the single-molecule junction. Here, we describe a counterintuitive structure-property relationship that molecules, both linear and cyclic, employing a saturated bipyridinium-ethane backbone, display a similar conductance signature when compared to junctions formed with molecules containing conjugated bipyridinium-ethene backbones. We describe an ethane-to-ethene transformation, which proceeds in the single-molecule junction by an electron-catalyzed dehydrogenation. Electrochemically based ensemble experiments and theoretical calculations have revealed that the electrons trigger the redox process, and the electric field promotes the dehydrogenation. This finding not only demonstrates the importance of electron catalysis when interpreting experimental results, but also charts a pathway to gaining more insight into the mechanism of electrocatalytic hydrogen production at the single-molecule level.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Feng Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Hu
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Su Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hong Guo
- Center for the Physics of Materials and Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|