1
|
Kumar N, Sharma T, Thakur N, Jain R, Sinha N. Abundant Transition Metal Based Photocatalysts for Red Light-Driven Photocatalysis. Chemistry 2025; 31:e202500365. [PMID: 40135511 DOI: 10.1002/chem.202500365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
Photocatalysis emerges as an efficient and versatile tool for the preparation of organic compounds via the development of new methodologies and new photosensitizers. Mostly UV and blue light irradiation are used for such reactions. Red light is low-energy light, it is less harmful and has more penetration depth. Hence red light-driven photocatalysis would be more suitable for preparing value-added products. Red-absorbing photosensitizers are mostly based on rare and expensive metals. In this review, we describe the recent developments on Earth-abundant transition metal-based photosensitizers (W(0), Mo(0), Cr(0), Fe(III), Cu(I), Zn(II)) and their applications in red light-driven photocatalysis. Photocatalysis using both electron transfer and energy transfer processes is discussed. Three different red light-induced reactions such as direct monophotonic excitation, sensitized triplet-triplet annihilation upconversion (sTTA-UC), and dual red light photocatalysis are presented. Various organic transformations such as reductive dehalogenation and detosylation, reduction of diazonium salts, C─C coupling via C─H activation, oxidation of aryl boronic acids to phenols, polymerization reactions, cross dehydrogenative couplings, α-cyanation of tertiary amines, Barton decarboxylation have been carried out using abundant photosensitizers and red light.
Collapse
Affiliation(s)
- Nitish Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Tanu Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Nirbhay Thakur
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Rahul Jain
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Narayan Sinha
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Fischer AC, Förster C, Kitzmann WR, Heinze K. A Blessing and a Curse: Remote Ligand Functionalization Modulates 3MLCT Relaxation in Group 6 Tricarbonyl Complexes. Inorg Chem 2025; 64:6100-6114. [PMID: 39998430 DOI: 10.1021/acs.inorgchem.4c05383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We recently reported a molecular design for carbonylpyridine molybdenum(0) complexes that unlocks long-lived luminescent and photoactive charge-transfer states. Here, we translate this strategy to chromium(0), and tungsten(0) and report three fully characterized tricarbonyl metal(0) complexes featuring a tripodal ligand with a remote n-butyl substituent in the backbone. All complexes show phosphorescence in the red to near-infrared spectral region from metal-to-ligand charge-transfer excited states. Surprisingly, the alkyl chain significantly affects excited state relaxation: lifetimes are shortened in solution but extended in the solid state by one order of magnitude compared to the molybdenum(0) complex with a methyl substituent. Temperature-dependent luminescence and NMR spectroscopy in combination with quantum chemical calculations reveal the reasons for these disparate effects. The n-butyl substituent distorts the metal coordination geometry. The resulting structural flexibility flattens the potential energy surfaces in solution, which lowers the barrier for the population of distorted metal-centered states and facilitates nonradiative relaxation. In the solid state, the rigidified alkyl chain separates neighboring molecules, which reduces self-quenching. Our study sheds light on the relationship between structure and excited state relaxation to inform the development of photoactive complexes based on earth-abundant metals.
Collapse
Affiliation(s)
- Alexander C Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
3
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
4
|
Jin T, Sinha N, Wagner DS, Prescimone A, Häussinger D, Wenger OS. Making Mo(0) a Competitive Alternative to Ir(III) in Phosphors and Photocatalysts. J Am Chem Soc 2025; 147:4587-4594. [PMID: 39847344 PMCID: PMC11803708 DOI: 10.1021/jacs.4c16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts. Here, we overcome these challenges with a nonprecious second-row transition metal. Tailored coordination spheres for molybdenum(0) lead to photoluminescence quantum yields that rival those of iridium(III) complexes and photochemical reduction reactions not normally achievable with iridium(III) become possible. These developments open new perspectives for replacing noble metals in lighting applications with Earth-abundant metals and for advancing metal-based photocatalysis beyond current limits.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | - Dorothee S. Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Jiang K, Yan P, Shi P, Zhang J, Chai X, Wang Y, Zhu C, Yang C, Lu C, Liu Y, Cao K, Zhuang X. Two-Dimensional Silver-Isocyanide Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417658. [PMID: 39354679 DOI: 10.1002/anie.202417658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow band gaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92 %. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Pu Yan
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xinyu Chai
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Yunfei Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chongqing Yang
- Carbon Capture and Utilization Research Center, College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecheng Cao
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
6
|
Cabanero DC, Rovis T. Low-energy photoredox catalysis. Nat Rev Chem 2025; 9:28-45. [PMID: 39528711 DOI: 10.1038/s41570-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Hammecke H, Fritzler D, Vashistha N, Jin P, Dietzek-Ivanšić B, Wang C. 100 μs Luminescence Lifetime Boosts the Excited State Reactivity of a Ruthenium(II)-Anthracene Complex in Photon Upconversion and Photocatalytic Polymerizations with Red Light. Chemistry 2024; 30:e202402679. [PMID: 39298687 DOI: 10.1002/chem.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
The triplet excited state lifetime of a photosensitizer is an essential parameter for diffusion-controlled energy- and electron-transfer, which occurs usually in a competitive manner to the intrinsic decay of a triplet excited state. Here we show the decisive role of luminescence lifetime in the triplet excited state reactivity toward energy- and electron transfer. Anchoring two phenyl anthracene chromophores to a ruthenium(II) polypyridyl complex (RuII ref) leads to a RuII triad with a luminescence lifetime above 100 μs, which is more than 40 times longer than that of the prototypical complex. The obtained RuII triad sensitizes energy transfer to anthracene-based annihilators more efficiently than RuII ref and enables red-to-blue photon upconversion with a pseudo anti-Stokes shift of 0.94 eV and a moderate upconversion efficiency near 1 % in aerated solution. Particularly, RuII triad allows rapid photoredox catalytic polymerizations of acrylate and acrylamide monomers under aerobic condition with red light, which are kinetically hindered for RuII ref. Our work shows that excited state lifetime of a photosensitizer governs the dynamics of the excited state reactions, which seems an overlooked but important aspect for photochemistry.
Collapse
Affiliation(s)
- Heinrich Hammecke
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Dennis Fritzler
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Nikita Vashistha
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Pengyue Jin
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Benjamin Dietzek-Ivanšić
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Institute for Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Cui Wang
- Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| |
Collapse
|
8
|
DiLuzio S, Baumer M, Guzman R, Kagalwala H, Lopato E, Talledo S, Kangas J, Bernhard S. Exploring the Photophysics and Photocatalytic Activity of Heteroleptic Rh(III) Transition-Metal Complexes Using High-Throughput Experimentation. Inorg Chem 2024; 63:14267-14277. [PMID: 39031763 PMCID: PMC11304382 DOI: 10.1021/acs.inorgchem.4c02420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
High-throughput synthesis and screening (HTSS) methods were used to investigate the photophysical properties of 576 heteroleptic Rh(III) transition-metal complexes through measurement of the UV-visible absorption spectra, deaerated excited-state lifetime, and phosphorescent emission spectra. While 4d transition-metal photophysics are often highly influenced by deleterious metal-centered deactivation channels, the HTSS of structurally diverse cyclometalating and ancillary ligands attached to the metal center facilitated the discovery of photoactive complexes exhibiting long-lived charge-transfer phosphorescence (0.15-0.95 μs) spanning a substantial portion of the visible region (546-620 nm) at room temperature. Further photophysical and electrochemical investigations were then carried out on select complexes with favorable photophysics to understand the underlying features controlling these superior properties. Heteroleptic Ir(III) complexes with identical ligand morphology were also synthesized to compare these features to this family of well understood chromophores. A number of these Rh(III) complexes contained the requisite properties for photocatalytic activity and were consequently tested as photocatalysts (PCs) in a water reduction system using a Pd water reduction cocatalyst. Under certain conditions, the activity of the Rh(III) PC actually surpassed that of the Ir(III) PC, uncovering the potential of this often-overlooked class of transition metals as both efficient photoactive chromophores and PCs.
Collapse
Affiliation(s)
- Stephen DiLuzio
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Mitchell Baumer
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rafael Guzman
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Husain Kagalwala
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Eric Lopato
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Savannah Talledo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joshua Kangas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stefan Bernhard
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Kuntze K, Isokuortti J, van der Wal JJ, Laaksonen T, Crespi S, Durandin NA, Priimagi A. Detour to success: photoswitching via indirect excitation. Chem Sci 2024; 15:11684-11698. [PMID: 39092110 PMCID: PMC11290455 DOI: 10.1039/d4sc02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Photoswitchable molecules that undergo nanoscopic changes upon photoisomerisation can be harnessed to control macroscopic properties such as colour, solubility, shape, and motion of the systems they are incorporated into. These molecules find applications in various fields of chemistry, physics, biology, and materials science. Until recently, research efforts have focused on the design of efficient photoswitches responsive to low-energy (red or near-infrared) irradiation, which however may compromise other molecular properties such as thermal stability and robustness. Indirect isomerisation methods enable photoisomerisation with low-energy photons without altering the photoswitch core, and also open up new avenues in controlling the thermal switching mechanism. In this perspective, we present the state of the art of five indirect excitation methods: two-photon excitation, triplet sensitisation, photon upconversion, photoinduced electron transfer, and indirect thermal methods. Each impacts our understanding of the fundamental physicochemical properties of photochemical switches, and offers unique application prospects in biomedical technologies and beyond.
Collapse
Affiliation(s)
- Kim Kuntze
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Jussi Isokuortti
- Department of Chemistry, University of Texas at Austin Austin TX USA
| | - Jacob J van der Wal
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
- Faculty of Pharmacy, University of Helsinki Helsinki Finland
| | - Stefano Crespi
- Department of Chemistry, Ångström Laboratory, Uppsala University Uppsala Sweden
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| | - Arri Priimagi
- Faculty of Engineering and Natural Sciences, Tampere University Tampere Finland
| |
Collapse
|
10
|
Liang H, Zhang X, Lu M, Chen X, Li W, Li S, Li MD, Zhao J, Huo Y, Ji S. Novel Photocatalyst Based on Through-Space Charge Transfer Induced Intersystem Crossing Enables Rapid and Efficient Polymerization Under Low-Power Excitation Light. Angew Chem Int Ed Engl 2024; 63:e202402774. [PMID: 38584586 DOI: 10.1002/anie.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Currently, most photoredox catalysis polymerization systems are limited by high excitation power, long polymerization time, or the requirement of electron donors due to the precise design of efficient photocatalysts still poses a great challenge. Herein, we propose a new approach: the creation of efficient photocatalysts having low ground state oxidation potentials and high excited state energy levels, along with through-space charge transfer (TSCT) induced intersystem crossing (ISC) properties. A cabazole-naphthalimide (NI) dyad (NI-1) characterized by long triplet excited state lifetime (τT=62 μs), satisfactory ISC efficiency (ΦΔ=54.3 %) and powerful reduction capacity [Singlet: E1/2 (PC+1/*PC)=-1.93 eV, Triplet: E1/2 (PC+1/*PC)=-0.84 eV] was obtained. An efficient and rapid polymerization (83 % conversion of 1 mM monomer in 30 s) was observed under the conditions of without electron donor, low excitation power (10 mW cm-2) and low catalyst (NI-1) loading (<50 μM). In contrast, the conversion rate was lower at 29 % when the reference catalyst (NI-4) was used for photopolymerization under the same conditions, demonstrating the advantage of the TSCT photocatalyst. Finally, the TSCT material was used as a photocatalyst in practical lithography for the first time, achieving pattern resolutions of up to 10 μm.
Collapse
Affiliation(s)
- Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Manlin Lu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Xi Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Weiqiang Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shangru Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| |
Collapse
|
11
|
Kang X, Wang Z, Shi X, Jiang X, Liu Z, Zhao B. Effective Reduction of CO 2 with Aromatic Amines into N-Formamides Triggered by Noble-Free Metal-Organic Framework Catalysts Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311511. [PMID: 38319022 DOI: 10.1002/smll.202311511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Indexed: 02/07/2024]
Abstract
The reductive transformation of carbon dioxide (CO2) into high-valued N‑formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2N(CH3)2]2{[Ni3(µ3-O)(XN)(BDC)3]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3] cluster interaction with CO2 via η2-C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.
Collapse
Affiliation(s)
- Xiaomin Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhiqiang Wang
- Department of Basic Courses, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Xinlei Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaolei Jiang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Bin Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Kawai G, Nagai Y, Tsuji K, Okayasu Y, Abe J, Kobayashi Y. A Nonlinear Photochromic Reaction Based on Sensitizer-Free Triplet-Triplet Annihilation in a Perylene-Substituted Rhodamine Spirolactam. Angew Chem Int Ed Engl 2024; 63:e202404140. [PMID: 38596881 DOI: 10.1002/anie.202404140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Nonlinear photochromic reactions that work with weak incoherent light are important for molecular operations with high spatial resolution and multiple photofunctions based on single molecules. However, nonlinear photochromic compounds generally require complex molecular design, restricting accessibility in various fields. Herein, we report nonlinear photochromic properties in a perylene-substituted rhodamine spirolactam derivative (Rh-Pe), which is synthesized from rhodamine B in facile procedures. Direct excitation of Rh-Pe produces the triplet excited state via the charge-transfer (CT) state. The triplet excited state causes triplet-triplet annihilation to bring the generation of the intensely colored ring-open form with nonlinear behavior. Furthermore, green- and red-light-induced photochromism was achieved in Rh-Pe using triplet sensitizers, although Rh-Pe can be directly excited only by ultraviolet and blue light. Our findings are expected to contribute to the development of photofunctional materials showing nonlinear behavior and low-energy light responsivity.
Collapse
Affiliation(s)
- Genki Kawai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Yuki Nagai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Kanna Tsuji
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, 252-5258, Sagamihara, Kanagawa, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, 525-8577, Kusatsu, Shiga, Japan
| |
Collapse
|
13
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Huang L, Han G. Triplet-triplet annihilation photon upconversion-mediated photochemical reactions. Nat Rev Chem 2024; 8:238-255. [PMID: 38514833 DOI: 10.1038/s41570-024-00585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Photon upconversion is a method for harnessing high-energy excited states from low-energy photons. Such photons, particularly in the red and near-infrared wavelength ranges, can penetrate tissue deeply and undergo less competitive absorption in coloured reaction media, enhancing the efficiency of large-scale reactions and in vivo phototherapy. Among various upconversion methodologies, the organic-based triplet-triplet annihilation upconversion (TTA-UC) stands out - demonstrating high upconversion efficiencies, requiring low excitation power densities and featuring tunable absorption and emission wavelengths. These factors contribute to improved photochemical reactions for fields such as photoredox catalysis, photoactivation, 3D printing and immunotherapy. In this Review, we explore concepts and design principles of organic TTA-UC-mediated photochemical reactions, highlighting notable advancements in the field, as well as identify challenges and propose potential solutions. This Review sheds light on the potential of organic TTA-UC to advance beyond the traditional photochemical reactions and paves the way for research in various fields and clinical applications.
Collapse
Affiliation(s)
- Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, China
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
15
|
Maity A, Mishra VK, Dolai S, Mishra S, Patra SK. Design, Synthesis, and Characterization of Organometallic BODIPY-Ru(II) Dyads: Redox and Photophysical Properties with Singlet Oxygen Generation Capability†. Inorg Chem 2024; 63:4839-4854. [PMID: 38433436 DOI: 10.1021/acs.inorgchem.3c03610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A series of Ru(II)-acetylide complexes (Ru1, Ru2, and Ru1m) with alkynyl-functionalized borondipyrromethene (BODIPY) conjugates were designed by varying the position of the linker that connects the BODIPY unit to the Ru(II) metal center through acetylide linkage at either the 2-(Ru1) and 2,6-(Ru2) or the meso-phenyl (Ru1m) position of the BODIPY scaffold. The Ru(II) organometallic complexes were characterized by various spectroscopic methods, including nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, CHN, and high-resolution mass spectrometry (HRMS) analyses. The Ru(II)-BODIPY conjugates exhibit fascinating electrochemical and photophysical properties. All BODIPY-Ru(II) complexes exhibit strong absorption (εmax = 29,000-72,000 M-1 cm-1) in the visible region (λmax = 502-709 nm). Fluorescence is almost quenched for Ru1 and Ru2, whereas Ru1m shows the residual fluorescence of the corresponding BODIPY core at 517 nm. The application of the BODIPY-Ru(II) dyads as nonporphyrin-based triplet photosensitizers was explored by a method involving the singlet oxygen (1O2)-mediated photo-oxidation of diphenylisobenzofuran. Effective π-conjugation between the BODIPY chromophore and Ru(II) center in the case of Ru1 and Ru2 was found to be necessary to improve intersystem crossing (ISC) and hence the 1O2-sensitizing ability. In addition, electrochemical studies indicate electronic interplay between the metal center and the redox-active BODIPY in the BODIPY-Ru(II) dyads.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Vipin Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Dolai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
16
|
Jin T, Wagner D, Wenger OS. Luminescent and Photoredox-Active Molybdenum(0) Complexes Competitive with Isoelectronic Ruthenium(II) Polypyridines. Angew Chem Int Ed Engl 2024; 63:e202314475. [PMID: 37885363 DOI: 10.1002/anie.202314475] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Ruthenium(II) complexes with chelating polypyridine ligands are among the most frequently investigated compounds in photophysics and photochemistry, owing to their favorable luminescence and photoredox properties. Equally good photoluminescence performance and attractive photocatalytic behavior is now achievable with isoelectronic molybdenum(0) complexes. The zero-valent oxidation state of molybdenum is stabilized by carbonyl or isocyanide ligands, and metal-to-ligand charge transfer (MLCT) excited states analogous to those in ruthenium(II) complexes can be established. Microsecond MLCT excited-state lifetimes and photoluminescence quantum yields up to 0.2 have been achieved in solution at room temperature, and the emission wavelength has become tunable over a large range. The molybdenum(0) complexes are stronger photoreductants than ruthenium(II) polypyridines and can therefore perform more challenging chemical reductions. The triplet nature of their luminescent MLCT states allows sensitization of photon upconversion via triplet-triplet annihilation, to convert low-energy input radiation into higher-energy output fluorescence. This review summarizes the current state of the art concerning luminescent molybdenum(0) complexes and highlights their application potential. Molybdenum is roughly 140 times more abundant and far cheaper than ruthenium, hence this research is relevant in the greater context of finding more sustainable alternatives to using precious and rare transition metals in photophysics and photochemistry.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
17
|
Wegeberg C, Häussinger D, Kupfer S, Wenger OS. Controlling the Photophysical Properties of a Series of Isostructural d 6 Complexes Based on Cr 0, Mn I, and Fe II. J Am Chem Soc 2024; 146:4605-4619. [PMID: 38334415 PMCID: PMC10885143 DOI: 10.1021/jacs.3c11580] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Development of first-row transition metal complexes with similar luminescence and photoredox properties as widely used RuII polypyridines is attractive because metals from the first transition series are comparatively abundant and inexpensive. The weaker ligand field experienced by the valence d-electrons of first-row transition metals challenges the installation of the same types of metal-to-ligand charge transfer (MLCT) excited states as in precious metal complexes, due to rapid population of energetically lower-lying metal-centered (MC) states. In a family of isostructural tris(diisocyanide) complexes of the 3d6 metals Cr0, MnI, and FeII, the increasing effective nuclear charge and ligand field strength allow us to control the energetic order between the 3MLCT and 3MC states, whereas pyrene decoration of the isocyanide ligand framework provides control over intraligand (ILPyr) states. The chromium(0) complex shows red 3MLCT phosphorescence because all other excited states are higher in energy. In the manganese(I) complex, a microsecond-lived dark 3ILPyr state, reminiscent of the types of electronic states encountered in many polyaromatic hydrocarbon compounds, is the lowest and becomes photoactive. In the iron(II) complex, the lowest MLCT state has shifted to so much higher energy that 1ILPyr fluorescence occurs, in parallel to other excited-state deactivation pathways. Our combined synthetic-spectroscopic-theoretical study provides unprecedented insights into how effective nuclear charge, ligand field strength, and ligand π-conjugation affect the energetic order between MLCT and ligand-based excited states, and under what circumstances these individual states become luminescent and exploitable in photochemistry. Such insights are the key to further developments of luminescent and photoredox-active first-row transition metal complexes.
Collapse
Affiliation(s)
- Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
18
|
Glaser F, Schmitz M, Kerzig C. Coulomb interactions for mediator-enhanced sensitized triplet-triplet annihilation upconversion in solution. NANOSCALE 2023; 16:123-137. [PMID: 38054748 DOI: 10.1039/d3nr05265f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion offers an attractive possibility to replace a high-energy photon by two photons with lower energy through the combination of a light-harvesting triplet sensitizer and an annihilator for the formation of a fluorescent singlet state. Typically, high annihilator concentrations are required to achieve an efficient initial energy transfer and as a direct consequence the most highly energetic emission is often not detectable due to intrinsic reabsorption by the annihilator itself. Herein, we demonstrate that the addition of a charge-adapted mediator drastically improves the energy transfer efficiency at low annihilator concentrations via an energy transfer cascade. Inspired by molecular dyads and recent developments in nanocrystal-sensitized upconversion, our system exploits a concept to minimize intrinsic filter effects, while boosting the upconversion quantum yield in solution. A sensitizer-annihilator combination consisting of a ruthenium-based complex and 9,10-diphenylanthracene (DPA) is explored as model system and a sulfonated pyrene serves as mediator. The impact of opposite charges between sensitizer and mediator - to induce coulombic attraction and subsequently result in accelerated energy transfer rate constants - is analyzed in detail by different spectroscopic methods. Ion pairing and the resulting static energy transfer in both directions is a minor process, resulting in an improved overall performance. Finally, the more intense upconverted emission in the presence of the mediator is used to drive two catalytic photoreactions in a two-chamber setup, illustrating the advantages of our approach, in particular for photoreactions requiring oxygen that would interfere with the upconversion system.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
19
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
20
|
Long K, Lv W, Wang Z, Zhang Y, Chen K, Fan N, Li F, Zhang Y, Wang W. Near-infrared light-triggered prodrug photolysis by one-step energy transfer. Nat Commun 2023; 14:8112. [PMID: 38062051 PMCID: PMC10703928 DOI: 10.1038/s41467-023-43805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Prodrug photolysis enables spatiotemporal control of drug release at the desired lesions. For photoactivated therapy, near-infrared (NIR) light is preferable due to its deep tissue penetration and low phototoxicity. However, most of the photocleavable groups cannot be directly activated by NIR light. Here, we report a upconversion-like process via only one step of energy transfer for NIR light-triggered prodrug photolysis. We utilize a photosensitizer (PS) that can be activated via singlet-triplet (S-T) absorption and achieve photolysis of boron-dipyrromethene (BODIPY)-based prodrugs via triplet-triplet energy transfer. Using the strategy, NIR light can achieve green light-responsive photolysis with a single-photon process. A wide range of drugs and bioactive molecules are designed and demonstrated to be released under low-irradiance NIR light (100 mW/cm2, 5 min) with high yields (up to 87%). Moreover, a micellar nanosystem encapsulating both PS and prodrug is developed to demonstrate the practicality of our strategy in normoxia aqueous environment for cancer therapy. This study may advance the development of photocleavable prodrugs and photoresponsive drug delivery systems for photo-activated therapy.
Collapse
Affiliation(s)
- Kaiqi Long
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wen Lv
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yaming Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ni Fan
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Feiyang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Weiping Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
21
|
Sinha N, Wegeberg C, Häussinger D, Prescimone A, Wenger OS. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat Chem 2023; 15:1730-1736. [PMID: 37580444 PMCID: PMC10695827 DOI: 10.1038/s41557-023-01297-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
Coordination complexes of precious metals with the d6 valence electron configuration such as Ru(II), Os(II) and Ir(III) are used for lighting applications, solar energy conversion and photocatalysis. Until now, d6 complexes made from abundant first-row transition metals with competitive photophysical and photochemical properties have been elusive. While previous research efforts focused mostly on Fe(II), we disclose that isoelectronic Cr(0) gives access to higher photoluminescence quantum yields and excited-state lifetimes when compared with any other first-row d6 metal complex reported so far. The luminescence behaviour of the metal-to-ligand charge transfer excited states of these Cr(0) complexes is competitive with Os(II) polypyridines. With these Cr(0) complexes, the metal-to-ligand charge transfer states of first-row d6 metal complexes become exploitable in photoredox catalysis, and benchmark chemical reductions proceed efficiently under low-energy red illumination. Here we demonstrate that appropriate molecular design strategies open up new perspectives for photophysics and photochemistry with abundant first-row d6 metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | | | | | - Oliver S Wenger
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Barker M, Whittemore TJ, London HC, Sledesky JM, Harris EA, Smith Pellizzeri TM, McMillen CD, Wagenknecht PS. Design Strategies for Luminescent Titanocenes: Improving the Photoluminescence and Photostability of Arylethynyltitanocenes. Inorg Chem 2023; 62:17870-17882. [PMID: 37831503 PMCID: PMC10618925 DOI: 10.1021/acs.inorgchem.3c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 10/14/2023]
Abstract
Complexes that undergo ligand-to-metal charge transfer (LMCT) to d0 metals are of interest as possible photocatalysts. Cp2Ti(C2Ph)2 (where C2Ph = phenylethynyl) was reported to be weakly emissive in room-temperature (RT) fluid solution from its phenylethynyl-to-Ti 3LMCT state but readily photodecomposes. Coordination of CuX between the alkyne ligands to give Cp2Ti(C2Ph)2CuX (X = Cl, Br) has been shown to significantly increase the photostability, but such complexes are not emissive in RT solution. Herein, we investigate whether inhibition of alkyne-Ti-alkyne bond compression might be responsible for the increased photostability of the CuX complexes by investigating the decomposition of a structurally constrained analogue, Cp2Ti(OBET) (OBET = o-bis(ethynyl)tolane). To investigate the mechanism of nonradiative decay from the 3LMCT states in Cp2Ti(C2Ph)2CuX, the photophysical properties were investigated both upon deuteration and upon rigidifying in a poly(methyl methacrylate) film. These investigations suggested that inhibition of structural rearrangement may play a dominant role in increasing emission lifetimes and quantum yields. The bulkier Cp*2Ti(C2Ph)2CuBr was prepared and is emissive at 693 nm in RT THF solution with a photoluminescent quantum yield of 1.3 × 10-3 (τ = 0.18 μs). Time-dependent density functional theory (TDDFT) calculations suggest that emission occurs from a 3LMCT state dominated by Cp*-to-Ti charge transfer.
Collapse
Affiliation(s)
- Matilda Barker
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Thomas J. Whittemore
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Henry C. London
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Jack M. Sledesky
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Elizabeth A. Harris
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Tiffany M. Smith Pellizzeri
- Department
of Chemistry and Biochemistry, Eastern Illinois
University, Charleston, Illinois 61920, United States
| | - Colin D. McMillen
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S. Wagenknecht
- Department
of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
23
|
Wang C, Wegeberg C, Wenger OS. First-Row d 6 Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light. Angew Chem Int Ed Engl 2023; 62:e202311470. [PMID: 37681516 DOI: 10.1002/anie.202311470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/09/2023]
Abstract
Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d6 metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr0 photosensitizer featuring equally good photophysical properties as an OsII benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm2 . These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d6 metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.
Collapse
Affiliation(s)
- Cui Wang
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Department of Biology and Chemistry, Osnabrück University, Barbarastraße 7, 49076, Osnabrück, Germany
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Current address: Division of Chemical Physics, Department of Chemistry, Lund University Box 124, 22100, Lund, Sweden
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
24
|
Pfund B, Hutskalova V, Sparr C, Wenger OS. Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chem Sci 2023; 14:11180-11191. [PMID: 37860649 PMCID: PMC10583676 DOI: 10.1039/d3sc02768f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Metal-based photosensitizers commonly undergo quantitative intersystem crossing into photoactive triplet excited states. In contrast, organic photosensitizers often feature weak spin-orbit coupling and low intersystem crossing efficiencies, leading to photoactive singlet excited states. By modifying the well-known acridinium dyes, we obtained a new family of organic photocatalysts, the isoacridones, in which both singlet- and triplet-excited states are simultaneously photoactive. These new isoacridone dyes are synthetically readily accessible and show intersystem crossing efficiencies of up to 52%, forming microsecond-lived triplet excited states (T1), storing approximately 1.9 eV of energy. Their photoactive singlet excited states (S1) populated in parallel have only nanosecond lifetimes, but store ∼0.4 eV more energy and act as strong oxidants. Consequently, the new isoacridone dyes are well suited for applications requiring parallel triplet-triplet energy transfer and photoinduced electron transfer elementary steps, which have become increasingly important in modern photocatalysis. In proof-of-principle experiments, the isoacridone dyes were employed for Birch-type arene reductions and C-C couplings via sensitization-initiated electron transfer, substituting the commonly used iridium or ruthenium based photocatalysts. Further, in combination with a pyrene-based annihilator, sensitized triplet-triplet annihilation upconversion was achieved in an all-organic system, where the upconversion quantum yield correlated with the intersystem crossing quantum yield of the photosensitizer. This work seems relevant in the greater contexts of developing new applications that utilize biphotonic photophysical and photochemical behavior within metal-free systems.
Collapse
Affiliation(s)
- Björn Pfund
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Valeriia Hutskalova
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
25
|
Olesund A, Ghasemi S, Moth-Poulsen K, Albinsson B. Bulky Substituents Promote Triplet-Triplet Annihilation Over Triplet Excimer Formation in Naphthalene Derivatives. J Am Chem Soc 2023; 145:22168-22175. [PMID: 37766514 PMCID: PMC10571077 DOI: 10.1021/jacs.3c08115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/29/2023]
Abstract
Visible-to-ultraviolet (UV) triplet-triplet annihilation photochemical upconversion (TTA-UC) has gained a lot of attention recently due to its potential for driving demanding high-energy photoreactions using low-intensity visible light. The efficiency of this process has rapidly improved in the past few years, in part thanks to the recently discovered annihilator compound 1,4-bis((triisopropylsilyl)ethynyl)naphthalene (N-2TIPS). Despite its beneficial TTA-UC characteristics, the success of N-2TIPS in this context is not yet fully understood. In this work, we seek to elucidate what role the specific type and number of substituents in naphthalene annihilator compounds play to achieve the characteristics sought after for TTA-UC. We show that the type of substituent attached to the naphthalene core is crucial for its performance as an annihilator. More specifically, we argue that the choice of substituent dictates to what degree the sensitized triplets form excimer complexes with ground state annihilators of the same type, which is a process competing with that of TTA. The addition of more bulky substituents positively impacts the upconverting ability by impeding excimer formation on the triplet surface, an effect that is enhanced with the number of substituents. The presence of triplet excimers is confirmed from transient absorption measurements, and the excimer formation rate is quantified, showing several orders of magnitude differences between different derivatives. These insights will aid in the further development of annihilator compounds for solar energy applications for which the behavior at low incident powers is of particular significance.
Collapse
Affiliation(s)
- Axel Olesund
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Shima Ghasemi
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, Barcelona 08193, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
- Department
of Chemical Engineering, Universitat Politècnica
de Catalunya, EEBE, Eduard
Maristany 10−14, Barcelona 08019, Spain
| | - Bo Albinsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
26
|
Kitzmann WR, Bertrams MS, Boden P, Fischer AC, Klauer R, Sutter J, Naumann R, Förster C, Niedner-Schatteburg G, Bings NH, Hunger J, Kerzig C, Heinze K. Stable Molybdenum(0) Carbonyl Complex for Upconversion and Photoredox Catalysis. J Am Chem Soc 2023. [PMID: 37478053 DOI: 10.1021/jacs.3c03832] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Photoactive complexes with earth-abundant metals have attracted increasing interest in the recent years fueled by the promise of sustainable photochemistry. However, sophisticated ligands with complicated syntheses are oftentimes required to enable photoactivity with nonprecious metals. Here, we combine a cheap metal with simple ligands to easily access a photoactive complex. Specifically, we synthesize the molybdenum(0) carbonyl complex Mo(CO)3(tpe) featuring the tripodal ligand 1,1,1-tris(pyrid-2-yl)ethane (tpe) in two steps with a high overall yield. The complex shows intense deep-red phosphorescence with excited state lifetimes of several hundred nanoseconds. Time-resolved infrared spectroscopy and laser flash photolysis reveal a triplet metal-to-ligand charge-transfer (3MLCT) state as the lowest excited state. Temperature-dependent luminescence complemented by density functional theory (DFT) calculations suggest thermal deactivation of the 3MLCT state via higher lying metal-centered states in analogy to the well-known photophysics of [Ru(bpy)3]2+. Importantly, we found that the title compound is very photostable due to the lack of labilized Mo-CO bonds (as caused by trans-coordinated CO) in the facial configuration of the ligands. Finally, we show the versatility of the molybdenum(0) complex in two applications: (1) green-to-blue photon upconversion via a triplet-triplet annihilation mechanism and (2) photoredox catalysis for a green-light-driven dehalogenation reaction. Overall, our results establish tripodal carbonyl complexes as a promising design strategy to access stable photoactive complexes of nonprecious metals avoiding tedious multistep syntheses.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pit Boden
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Alexander C Fischer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - René Klauer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Sutter
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gereon Niedner-Schatteburg
- Department of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern-Landau, Germany
| | - Nicolas H Bings
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
27
|
Barth AT, Fajardo J, Sattler W, Winkler JR, Gray HB. Electronic Structures and Photoredox Chemistry of Tungsten(0) Arylisocyanides. Acc Chem Res 2023. [PMID: 37384787 DOI: 10.1021/acs.accounts.3c00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
ConspectusThe high energy barriers associated with the reaction chemistry of inert substrates can be overcome by employing redox-active photocatalysts. Research in this area has grown exponentially over the past decade, as transition metal photosensitizers have been shown to mediate challenging organic transformations. Critical for the advancement of photoredox catalysis is the discovery, development, and study of complexes based on earth-abundant metals that can replace and/or complement established noble-metal-based photosensitizers.Recent work has focused on redox-active complexes of 3d metals, as photosensitizers containing these metals most likely would be scalable. Although low lying spin doublet ("spin flip") excited states of chromium(III) and metal-to-ligand charge transfer (MLCT) excited states of copper(I) have relatively long lifetimes, the electronic excited states of many other 3d metal complexes fall on dissociative potential energy surfaces, owing to the population of highly energetic σ-antibonding orbitals. Indeed, we and other investigators have shown that low lying spin singlet and triplet excited states of robust closed-shell metal complexes are too short-lived at room temperature to engage in bimolecular reactions in solutions. In principle, this problem could be overcome by designing and constructing 3d metal complexes containing strong field π-acceptor ligands, where thermally equilibrated MLCT or intraligand charge transfer excited states might fall well below the upper surfaces of dissociative 3d-3d states. Notably, such design elements have been exploited by investigators in very recent work on redox-active iron(II) systems. Another approach, one we have actively pursued, is to design and construct closed-shell complexes of earth-abundant 5d metals containing very strong π-acceptor ligands, where vertical excitation of 5d-5d excited states at the ground state geometry would require energies far above minima in the potential surfaces of MLCT excited states. As this requirement is met by tungsten(0) arylisocyanides, these complexes have been the focus of our work aimed at the development of robust redox-active photosensitizers.In the following Account, we review recent work on homoleptic tungsten(0) arylisocyanides. Originally reported by our group 45 years ago, W(CNAr)6 complexes have exceptionally large one- and two-photon absorption cross-sections. One- or two-photon excitation produces relatively long-lived (hundreds of nanoseconds to microsecond) MLCT excited states in high yields. These MLCT excited states, which are very strong reductants with E°(W+/*W0) = -2.2 to -3.0 V vs Fc[+/0], mediate photocatalysis of organic reactions with both visible and near-infrared (NIR) light. Here, we highlight design principles that led to the development of three generations of W(CNAr)6 photosensitizers; and we discuss likely steps in the mechanism of a prototypal W(CNAr)6-catalyzed base-promoted homolytic aromatic substitution reaction. Among the many potential applications of these very bright luminophores, two-photon imaging and two-photon-initiated polymerization are ones we plan to pursue.
Collapse
Affiliation(s)
- Alexandra T Barth
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Javier Fajardo
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Wesley Sattler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
29
|
Schade AH, Mei L. Applications of red light photoredox catalysis in organic synthesis. Org Biomol Chem 2023; 21:2472-2485. [PMID: 36880439 DOI: 10.1039/d3ob00107e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Photoredox catalysis has emerged as an efficient and versatile approach for developing novel synthetic methodologies. Particularly, red light photocatalysis has attracted more attention due to its intrinsic advantages of low energy, few health risks, few side reactions, and high penetration depth through various media. Impressive progress has been made in this field. In this review, we outline the applications of different photoredox catalysts in a wide range of red light-mediated reactions including direct red light photoredox catalysis, red light photoredox catalysis through upconversion, and dual red light photoredox catalysis. Due to the similarities between near-infrared (NIR) and red light, an overview of NIR-induced reactions is also presented. Lastly, current evidence showing the advantages of red light and NIR photoredox catalysis is also described.
Collapse
Affiliation(s)
- Alexander H Schade
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| | - Liangyong Mei
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| |
Collapse
|
30
|
Sinha N, Wenger OS. Photoactive Metal-to-Ligand Charge Transfer Excited States in 3d 6 Complexes with Cr 0, Mn I, Fe II, and Co III. J Am Chem Soc 2023; 145:4903-4920. [PMID: 36808978 PMCID: PMC9999427 DOI: 10.1021/jacs.2c13432] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Many coordination complexes and organometallic compounds with the 4d6 and 5d6 valence electron configurations have outstanding photophysical and photochemical properties, which stem from metal-to-ligand charge transfer (MLCT) excited states. This substance class makes extensive use of the most precious and least abundant metal elements, and consequently there has been a long-standing interest in first-row transition metal compounds with photoactive MLCT states. Semiprecious copper(I) with its completely filled 3d subshell is a relatively straightforward and well explored case, but in 3d6 complexes the partially filled d-orbitals lead to energetically low-lying metal-centered (MC) states that can cause undesirably fast MLCT excited state deactivation. Herein, we discuss recent advances made with isoelectronic Cr0, MnI, FeII, and CoIII compounds, for which long-lived MLCT states have become accessible over the past five years. Furthermore, we discuss possible future developments in the search for new first-row transition metal complexes with partially filled 3d subshells and photoactive MLCT states for next-generation applications in photophysics and photochemistry.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Larsson W, Morimoto M, Irie M, Andréasson J, Albinsson B. Diarylethene Isomerization by Using Triplet-Triplet Annihilation Photon Upconversion. Chemistry 2023; 29:e202203651. [PMID: 36524776 DOI: 10.1002/chem.202203651] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Green-to-blue triplet-triplet annihilation photon upconversion with the well-studied upconversion pair 9,10-diphenylanthracene (DPA)/platinum octaethylporphyrin (PtOEP) was used to reversibly drive the photoisomerization of diarylethene (DAE) photoswitches by using visible light. By carefully selecting the kinetic and spectral properties of the molecular system as well as the experimental geometry, a single green light source can be used to selectively trigger both the ring-opening and the ring-closing reactions, whilst also inducing fluorescence from the colored closed isomer that can be used as a readout to monitor the isomerization process in situ. The upconversion solution and the DAE solution are kept physically separated, allowing them to be characterized both concomitantly and individually without further separation processes. The ring-closing reaction using upconverted photons was quantified and compared to the efficiency of direct isomerization with ultraviolet light.
Collapse
Affiliation(s)
- Wera Larsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Masakazu Morimoto
- Department of Chemistry and, Research Center for Smart Molecules, Rikkyo University, 171-8501, Tokyo, Japan
| | - Masahiro Irie
- Department of Chemistry and, Research Center for Smart Molecules, Rikkyo University, 171-8501, Tokyo, Japan
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| |
Collapse
|
32
|
Zähringer TJB, Moghtader JA, Bertrams MS, Roy B, Uji M, Yanai N, Kerzig C. Blue-to-UVB Upconversion, Solvent Sensitization and Challenging Bond Activation Enabled by a Benzene-Based Annihilator. Angew Chem Int Ed Engl 2023; 62:e202215340. [PMID: 36398891 PMCID: PMC10108172 DOI: 10.1002/anie.202215340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Several energy-demanding photoreactions require harsh UV light from inefficient light sources. The conversion of low-energy visible light to high-energy singlet states via triplet-triplet annihilation upconversion (TTA-UC) could offer a solution for driving such reactions under mild conditions. We present the first annihilator with an emission maximum in the UVB region that, combined with an organic sensitizer, is suitable for blue-to-UVB upconversion. The annihilator singlet was successfully employed as an energy donor in subsequent FRET activations of aliphatic carbonyls. This hitherto unreported UC-FRET reaction sequence was directly monitored using laser spectroscopy and applied to mechanistic irradiation experiments demonstrating the feasibility of Norrish chemistry. Our results provide clear evidence for a novel blue light-driven substrate or solvent activation strategy, which is important in the context of developing more sustainable light-to-chemical energy conversion systems.
Collapse
Affiliation(s)
- Till J B Zähringer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Julian A Moghtader
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Maria-Sophie Bertrams
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bibhisan Roy
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masanori Uji
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
33
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
34
|
Kübler J, Pfund B, Wenger OS. Zinc(II) Complexes with Triplet Charge-Transfer Excited States Enabling Energy-Transfer Catalysis, Photoinduced Electron Transfer, and Upconversion. JACS AU 2022; 2:2367-2380. [PMID: 36311829 PMCID: PMC9597861 DOI: 10.1021/jacsau.2c00442] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 05/28/2023]
Abstract
Many CuI complexes have luminescent triplet charge-transfer excited states with diverse applications in photophysics and photochemistry, but for isoelectronic ZnII compounds, this behavior is much less common, and they typically only show ligand-based fluorescence from singlet π-π* states. We report two closely related tetrahedral ZnII compounds, in which intersystem crossing occurs with appreciable quantum yields and leads to the population of triplet excited states with intraligand charge-transfer (ILCT) character. In addition to showing fluorescence from their initially excited 1ILCT states, these new compounds therefore undergo triplet-triplet energy transfer (TTET) from their 3ILCT states and consequently can act as sensitizers for photo-isomerization reactions and triplet-triplet annihilation upconversion from the blue to the ultraviolet spectral range. The photoactive 3ILCT state furthermore facilitates photoinduced electron transfer. Collectively, our findings demonstrate that mononuclear ZnII compounds with photophysical and photochemical properties reminiscent of well-known CuI complexes are accessible with suitable ligands and that they are potentially amenable to many different applications. Our insights seem relevant in the greater context of obtaining photoactive compounds based on abundant transition metals, complementing well-known precious-metal-based luminophores and photosensitizers.
Collapse
|
35
|
Wang Z, Ding R, Zhang J, Chen L, Wang Y, Liu J, Zou Z. Biomimetic control of charge transfer in MOFs by solvent coordination for boosting photocatalysis. Chem Commun (Camb) 2022; 58:9830-9833. [PMID: 35975677 DOI: 10.1039/d2cc03333j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of the coordination solvent in MOFs with photocatalysis can't be ignored. Novel [Ni(PTCA)·sol]-MOFs with a 3D open wavy-layered structure are selected for in-depth study by imitating the internal environment of a chameleon. The results confirm that the coordination solvent can modulate the band structure and the polarity is the key to accelerate the formation of intermediate H*.
Collapse
Affiliation(s)
- Zejin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, P. R. China. .,Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing, 210093, P. R. China
| | - Rui Ding
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, P. R. China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, P. R. China. .,Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing, 210093, P. R. China
| | - Linrong Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, P. R. China.
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210033, P. R. China. .,Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing, 210093, P. R. China
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing, 210093, P. R. China.,College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, P. R. China
| |
Collapse
|
36
|
Connell TU. The forgotten reagent of photoredox catalysis. Dalton Trans 2022; 51:13176-13188. [PMID: 35997070 DOI: 10.1039/d2dt01491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible light powers an ever-expanding suite of reactions to both make and break chemical bonds under otherwise mild conditions. As a reagent in photochemical synthesis, light is obviously critical for reactivity but rarely optimized other than in light/dark controls. This Frontier Article presents an overview of recent research that investigates the unique ways light may be manipulated, and its unusual interactions with homogeneous transition metal and organic photocatalysts.
Collapse
Affiliation(s)
- Timothy U Connell
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
37
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
38
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Wang C, Reichenauer F, Kitzmann WR, Kerzig C, Heinze K, Resch‐Genger U. Efficient Triplet-Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angew Chem Int Ed Engl 2022; 61:e202202238. [PMID: 35344256 PMCID: PMC9322448 DOI: 10.1002/anie.202202238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Sensitized triplet-triplet annihilation upconversion (sTTA-UC) mainly relies on precious metal complexes thanks to their high intersystem crossing (ISC) efficiencies, excited state energies, and lifetimes, while complexes of abundant first-row transition metals are only rarely utilized and with often moderate UC quantum yields. [Cr(bpmp)2 ]3+ (bpmp=2,6-bis(2-pyridylmethyl)pyridine) containing earth-abundant chromium possesses an absorption band suitable for green light excitation, a doublet excited state energy matching the triplet energy of 9,10-diphenyl anthracene (DPA), a close to millisecond excited state lifetime, and high photostability. Combined ISC and doublet-triplet energy transfer from excited [Cr(bpmp)2 ]3+ to DPA gives 3 DPA with close-to-unity quantum yield. TTA of 3 DPA furnishes green-to-blue UC with a quantum yield of 12.0 % (close to the theoretical maximum). Sterically less-hindered anthracenes undergo a [4+4] cycloaddition with [Cr(bpmp)2 ]3+ and green light.
Collapse
Affiliation(s)
- Cui Wang
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Strasse 1112489BerlinGermany
- Institute of Chemistry and BiochemistryFree University of BerlinArnimallee 2214195BerlinGermany
| | - Florian Reichenauer
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Winald R. Kitzmann
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Christoph Kerzig
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Katja Heinze
- Department of ChemistryJohannes Gutenberg University of MainzDuesbergweg 10–1455128MainzGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for Materials Research and Testing (BAM)Richard-Willstätter-Strasse 1112489BerlinGermany
| |
Collapse
|
40
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
41
|
Millet A, Cesana PT, Sedillo K, Bird MJ, Schlau-Cohen GS, Doyle AG, MacMillan DWC, Scholes GD. Bioinspired Supercharging of Photoredox Catalysis for Applications in Energy and Chemical Manufacturing. Acc Chem Res 2022; 55:1423-1434. [PMID: 35471814 DOI: 10.1021/acs.accounts.2c00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFor more than a decade, photoredox catalysis has been demonstrating that when photoactive catalysts are irradiated with visible light, reactions occur under milder, cheaper, and environmentally friendlier conditions. Furthermore, this methodology allows for the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. The photoredox approach, however, has been primarily used for pharmaceutical applications, where its implementation has been highly effective, but typically with a more rudimentary understanding of the mechanisms involved in these transformations. From a global perspective, the manufacture of everyday chemicals by the chemical industry as a whole currently accounts for 10% of total global energy consumption and generates 7% of the world's greenhouse gases annually. In this context, the Bio-Inspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center (EFRC) was founded to supercharge the photoredox approach for applications in chemical manufacturing aimed at reducing its energy consumption and emissions burden, by using bioinspired schemes to harvest multiple electrons to drive endothermically uphill chemical reactions. The Center comprises a diverse group of researchers with expertise that includes synthetic chemistry, biophysics, physical chemistry, and engineering. The team works together to gain a deeper understanding of the mechanistic details of photoredox reactions while amplifying the applications of these light-driven methodologies.In this Account, we review some of the major advances in understanding, approach, and applicability made possible by this collaborative Center. Combining sophisticated spectroscopic tools and photophysics tactics with enhanced photoredox reactions has led to the development of novel techniques and reactivities that greatly expand the field and its capabilities. The Account is intended to highlight how the interplay between disciplines can have a major impact and facilitate the advance of the field. For example, techniques such as time-resolved dielectric loss (TRDL) and pulse radiolysis are providing mechanistic insights not previously available. Hypothesis-driven photocatalyst design thus led to broadening of the scope of several existing transformations. Moreover, bioconjugation approaches and the implementation of triplet-triplet annihilation mechanisms created new avenues for the exploration of reactivities. Lastly, our multidisciplinary approach to tackling real-world problems has inspired the development of efficient methods for the depolymerization of lignin and artificial polymers.
Collapse
Affiliation(s)
- Agustin Millet
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul T. Cesana
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kassandra Sedillo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J. Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Abigail G. Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - David W. C. MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Wang C, Reichenauer F, Kitzmann WR, Kerzig C, Heinze K, Resch‐Genger U. Efficient Triplet‐Triplet Annihilation Upconversion Sensitized by a Chromium(III) Complex via an Underexplored Energy Transfer Mechanism. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cui Wang
- Division Biophotonics Federal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Strasse 11 12489 Berlin Germany
- Institute of Chemistry and Biochemistry Free University of Berlin Arnimallee 22 14195 Berlin Germany
| | - Florian Reichenauer
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Winald R. Kitzmann
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Christoph Kerzig
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Katja Heinze
- Department of Chemistry Johannes Gutenberg University of Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Ute Resch‐Genger
- Division Biophotonics Federal Institute for Materials Research and Testing (BAM) Richard-Willstätter-Strasse 11 12489 Berlin Germany
| |
Collapse
|
43
|
Heavy atom-free triplet photosensitizer based on thermally activated delayed fluorescence material for NIR-to-blue triplet-triplet annihilation upconversion. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Barth AT, Morales M, Winkler JR, Gray HB. Photoredox Catalysis Mediated by Tungsten(0) Arylisocyanides in 1,2-Difluorobenzene. Inorg Chem 2022; 61:7251-7255. [PMID: 35486113 DOI: 10.1021/acs.inorgchem.1c03767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the photochemical cyclization of 1-(2-iodobenzyl)-pyrrole (IBP) and 1-(2-bromobenzyl)-pyrrole (BBP) to 5H-pyrrolo[2,1-a]isoindol catalyzed by W(CNDipp)6 (CNDipp = 2,6-diisopropylphenylisocyanide) in 1,2-difluorobenzene (DFB). Irradiation (445 nm) of W(CNDipp)6 (5 mol %) in DFB solution converted 78% of IBP (50 mM) to product after 1 h (16 turnovers). Addition of tetra-n-butyl ammonium hexafluorophosphate (TBAPF6) (0.2 M) to the DFB solution led to rapid photoinduced disappearance of W(CNDipp)6 but, remarkably, did not inhibit photochemical cyclization of IBP, indicating that IBP cyclization could be driven by a nonluminescent photocatalyst.
Collapse
Affiliation(s)
- Alexandra T Barth
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Maryann Morales
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Pérez-Ruiz R. Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Top Curr Chem (Cham) 2022; 380:23. [PMID: 35445872 DOI: 10.1007/s41061-022-00378-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
Photon upconversion (UC) based on triplet-triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA-UC systems are found to be suitable photosensitizers for several chemical transformations.
Collapse
Affiliation(s)
- Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
46
|
Herr P, Schwab A, Kupfer S, Wenger OS. Deep‐Red Luminescent Molybdenum(0) Complexes with Bi‐ and Tridentate Isocyanide Chelate Ligands. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Herr
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Alexander Schwab
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Stephan Kupfer
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Physical Chemistry GERMANY
| | - Oliver S. Wenger
- Universität Basel Departement für Chemie St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
47
|
Chong J, Besnard C, Cruz CM, Piguet C, Jiménez JR. Heteroleptic mer-[Cr(N ∩N ∩N)(CN) 3] complexes: synthetic challenge, structural characterization and photophysical properties. Dalton Trans 2022; 51:4297-4309. [PMID: 35195140 PMCID: PMC8922558 DOI: 10.1039/d2dt00126h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The substitution of three water molecules around trivalent chromium in CrBr3·6H2O with the tridentate 2,2′:6′,2′′-terpyridine (tpy), N,N′-dimethyl-N,N′-di(pyridine-2-yl)pyridine-2,6-diamine (ddpd) or 2,6-di(quinolin-8-yl)pyridine (dqp) ligands gives the heteroleptic mer-[Cr(L)Br3] complexes. Stepwise treatments with Ag(CF3SO3) and KCN under microwave irradiations provide mer-[Cr(L)(CN)3] in moderate yields. According to their X-ray crystal structures, the associated six-coordinate meridional [CrN3C3] chromophores increasingly deviate from a pseudo-octahedral arrangement according to L = ddpd ≈ dpq ≪ tpy; a trend in line with the replacement of six-membered with five-membered chelate rings around CrIII. Room-temperature ligand-centered UV-excitation at 18 170 cm−1 (λexc = 350 nm), followed by energy transfer and intersystem crossing eventually yield microsecond metal-centered Cr(2E → 4A2) phosphorescence in the red to near infrared domain 13 150–12 650 cm−1 (760 ≤ λem ≤ 790 nm). Decreasing the temperature to liquid nitrogen (77 K) extends the emission lifetimes to reach the millisecond regime with a record of 4.02 ms for mer-[Cr(dqp)(CN)3] in frozen acetonitrile. The heteroleptic mer-[Cr(L)(CN)3] (L = tpy, ddpd, dqp) complexes with their C2v-symmetrical [CrC3N3] luminescent chromophores represent the missing links between pseudo-octahedral [CrN6] and [CrC6] units found in their well-known homoleptic parents.![]()
Collapse
Affiliation(s)
- Julien Chong
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, CH-1211 Geneva 4, Switzerland
| | - Carlos M Cruz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Juan-Ramón Jiménez
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, CH-1211 Geneva 4, Switzerland. .,Department of Inorganic Chemistry, University of Granada and "Unidad de Excelencia en Química" (UEQ), Avda. Fuentenueva, E-18071 Granada, España.
| |
Collapse
|
48
|
Olesund A, Johnsson J, Edhborg F, Ghasemi S, Moth-Poulsen K, Albinsson B. Approaching the Spin-Statistical Limit in Visible-to-Ultraviolet Photon Upconversion. J Am Chem Soc 2022; 144:3706-3716. [PMID: 35175751 PMCID: PMC8895402 DOI: 10.1021/jacs.1c13222] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 02/08/2023]
Abstract
Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence. We report a record-setting internal TTA-UC quantum yield (ΦUC,g) of 16.8% (out of a 50% maximum) for 1,4-bis((triisopropylsilyl)ethynyl)naphthalene, demonstrating the first example of a visible-to-UV TTA-UC system approaching the classical spin-statistical limit of 20%. Three other annihilators, of which 2,5-diphenylfuran has never been used for TTA-UC previously, also showed impressive performances with ΦUC,g above 12%. In addition, a new method to determine the rate constant of TTA is proposed, in which only time-resolved emission measurements are needed, circumventing the need for more challenging transient absorption measurements. The results reported herein represent an important step toward highly efficient visible-to-UV TTA-UC systems that hold great potential for driving high-energy photochemical reactions.
Collapse
Affiliation(s)
- Axel Olesund
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Jessica Johnsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Fredrik Edhborg
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Shima Ghasemi
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
- Institute
of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193 Barcelona, Spain
- Catalan
Institution for Research and Advanced Studies ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Bo Albinsson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
49
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
50
|
Tang M, Cameron L, Poland EM, Yu LJ, Moggach SA, Fuller RO, Huang H, Sun J, Thickett SC, Massi M, Coote ML, Ho CC, Bissember AC. Photoactive Metal Carbonyl Complexes Bearing N-Heterocyclic Carbene Ligands: Synthesis, Characterization, and Viability as Photoredox Catalysts. Inorg Chem 2022; 61:1888-1898. [PMID: 35025492 DOI: 10.1021/acs.inorgchem.1c02964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report details the synthesis and characterization of a small family of previously unreported, structurally related chromium, molybdenum, tungsten, manganese, and iron complexes bearing N-heterocyclic carbene and carbonyl supporting ligands. These complexes have the general form [ML(CO)3X] or [ML(CO)3], where X = CO or Br and L = 1-phenyl-3-(2-pyridyl)imidazolin-2-ylidene. Where possible, the solid-state, spectroscopic, electrochemical, and photophysical properties of these molecules were studied using a combination of experiment and theory. Photophysical studies reveal that decarbonylation occurs when these complexes are exposed to ultraviolet light, with the CO ligand being replaced with a labile acetonitrile solvent molecule. To obtain insights into the potential utility, scope, and applications of these complexes in visible-light-mediated photoredox catalysis, their capacity to facilitate a range of photoinduced reactions via the reductive or oxidative functionalization of organic molecules was investigated. These chromium, molybdenum, and manganese catalysts efficiently facilitated atom-transfer radical addition processes. In light of their photolability, these types of catalysts may potentially allow for the development of photoinduced reactions involving less conventional inner-sphere electron-transfer pathways.
Collapse
Affiliation(s)
- Meiqiong Tang
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| | - Lee Cameron
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia6102, Australia
| | - Eve M Poland
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| | - Li-Juan Yu
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Stephen A Moggach
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia6009, Australia
| | - Rebecca O Fuller
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou213164, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Stuart C Thickett
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia6102, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Curtis C Ho
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| | - Alex C Bissember
- School of Natural Sciences-Chemistry, University of Tasmania (UTAS), Hobart, Tasmania7001, Australia
| |
Collapse
|