1
|
Wang F, Lin W, Hui Yeh C, Lan Y, Zhao Y. Desymmetrization of 1,4-Diynes by Allylic Alcohol-Triggered Redox Enyne Cycloisomerization. Angew Chem Int Ed Engl 2025; 64:e202421153. [PMID: 39908293 DOI: 10.1002/anie.202421153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
We report herein an unprecedented desymmetrization of 1,4-diynes via a Rh-catalyzed asymmetric redox cycloisomerization. This method adopts allylic alcohol-containing diynes and provides efficient access to multi-functional pyrrolidines and tetrahydrofurans in high to excellent stereoselectivities. Mechanistic studies highlighted an innovative catalytic pathway that differs from the classical enyne cycloisomerization and involves initiation at the allylic alcohol moiety. Diverse derivatizations of the heterocyclic products including intriguing skeletal rearrangements have also been demonstrated.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| | - Wenxuan Lin
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Chia Hui Yeh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| | - Yu Lan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Republic of, Singapore, Singapore, 117543
| |
Collapse
|
2
|
Liaw MW, Hirata H, Zou GF, Wu J, Zhao Y. Borrowing Hydrogen/Chiral Enamine Relay Catalysis Enables Diastereo- and Enantioselective β-C-H Functionalization of Alcohols. J Am Chem Soc 2025; 147:7721-7728. [PMID: 39996277 DOI: 10.1021/jacs.4c17355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We report herein an unprecedented borrowing hydrogen/chiral enamine relay catalysis strategy that enables a highly efficient enantioselective formal β-alkylation of simple alcohols using electron-deficient alkenes and especially nitroalkenes. A variety of 1,4-difunctional products such as nitro alcohols are readily accessible in one waste-free step from feedstock alcohols in excellent levels of stereoselectivity. It is important to note that the products are formed in much higher diastereoselectivity than the enamine catalysis step alone under identical conditions, highlighting the unique advantage of cascade borrowing hydrogen catalysis in achieving high efficiency, economy, and stereoselectivity.
Collapse
Affiliation(s)
- Ming Wai Liaw
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
| | - Haruka Hirata
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Gong-Feng Zou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
3
|
Zhang Z, Zhu BK, Yi ZY, Fang T, Jin Z, He L, Chen BB, Qi X, Wang CJ. Catalytic Asymmetric Synthesis and Applications of Stereogenic β'-Methyl Enones and β,β'-Dimethyl Ketones. Angew Chem Int Ed Engl 2025; 64:e202414449. [PMID: 39658841 DOI: 10.1002/anie.202414449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
The "Magic Methyl" effect has received tremendous interest in medicinal chemistry due to the significant pharmacological and physical modification of properties that have been observed upon introducing a methyl group, especially, a stereogenic methyl group into potential chiral drug candidates. The prevalence of stereogenic β-methyl ketone structural motifs in bioactive compounds and natural products has long motivated the development of enantioselective strategies toward their synthesis. Herein, we have rationally designed a Rh-catalyzed asymmetric monohydrogenation of readily-available β'-methylene conjugated enones with high efficiency and remarkable site-selectivity and enantioselectivity control for the practical construction of enantioenriched β'-methyl unsaturated enones that are difficult to access by other methods. Control experiments revealed that the conjugated C=C bond in β'-methylene conjugated enones plays a significant role in enhancing the reactivity of monohydrogenation. This methodology is applicable for the preparation of chiral β,β'-dimethyl ketones through consecutive double asymmetric hydrogenation of β,β'-dimethylene ketones. Detailed mechanistic investigation and DFT studies further provided strong support for a unique processive catalysis pathway for double asymmetric hydrogenation. The synthetic utilities have been demonstrated in the concise synthesis of several key intermediates for bioactive molecules, asymmetric total synthesis of natural products (S)-(+)-ar-Turmerone and (S)-(+)-dihydro-ar-Turmerone, and two C2-symmetric chiral spirocyclic diol frameworks.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bing-Ke Zhu
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Yuan Yi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting Fang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhuan Jin
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling He
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaotian Qi
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Zheng Z, Duan ZC, Hu XP. Tropos Diphenylmethane-Based Phosphine-Phosphoramidite Ligands: Design, Synthesis, and Application in Catalytic Asymmetric Hydrogenation. Org Lett 2025; 27:651-656. [PMID: 39781661 DOI: 10.1021/acs.orglett.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A series of chiral hybrid diphosphorus ligands incorporating a conformationally flexible tropos diphenylmethane-based phosphoramidite unit have been developed and evaluated in the Rh-catalyzed asymmetric hydrogenation of 2-(1-arylvinyl)anilides and α-enamides, leading to up to >99% yield and 99% enantiomeric excess. Preliminary results from comparative studies showcased the extraordinary catalytic performance of these chiral tropos phosphine-phosphoramidite ligands, with a competency essentially superior to those of well-established ligands with a regular rigid backbone.
Collapse
Affiliation(s)
- Zhong Zheng
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zheng-Chao Duan
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
5
|
Zheng J, Peters BBC, Mallick RK, Andersson PG. Stereocontrolled Hydrogenation of Conjugated Enones to Alcohols via Dual Iridium-Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415171. [PMID: 39320171 DOI: 10.1002/anie.202415171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The concept of dual catalysis is an emerging area holding high potential in terms of preparative efficiency, yet faces severe challenges in compatibility of reaction conditions and interference of catalysts. The transition-metal catalyzed stereoselective hydrogenation of olefins and ketones typically proceeds under different reaction conditions and/or uses a different reductant. As a result, these two types of hydrogenations can normally not be performed in the same pot. Herein, the stereocontrolled hydrogenation of enones to saturated alcohols is described, enabled by orthogonal dual iridium catalysis, using molecular hydrogen for both reductions. In this one-pot procedure, N,P-iridium catalysts (hydrogenation active towards olefins) and NHC,P-iridium catalysts (hydrogenation active towards ketones) operated independently of one another allowing the construction of two contiguous stereogenic centers up to 99 % ee, 99/1 d.r. Ultimately, by simple selection of the chirality of either ligands, the enone could be efficiently reduced to all four stereoisomers of the saturated alcohol in equally high stereopurity. This degree of stereocontrol for the synthesis of different stereoisomers by dual transition-metal catalyzed hydrogenation was previously not attained. The generality in substituted enones (alkyl, aryl, heteroaryl) demonstrate the wide applicability of this concept.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Rajendra K Mallick
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
6
|
Diao H, Liu K, Yu R, Chen J, Liu Y, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Construction of Piperidines and Tetrahydroisoquinolines from Racemic 1,5-Diols. J Am Chem Soc 2025; 147:610-618. [PMID: 39688857 DOI: 10.1021/jacs.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report herein a one-step synthesis of valuable enantioenriched piperidines and tetrahydroisoquinolines from readily available racemic 1,5-diols. Key to the success is the development of new iridacycle catalysts that enable efficient redox-neutral construction of two C-N bonds between diols and amines in an enantioconvergent fashion. Mechanistic studies identified an intriguing preferential oxidation of secondary versus primary alcohol in the diol substrate by the iridacycle catalyst, which set a challenging intermolecular amination of aryl-alkyl-substituted alcohol as the enantiodetermining step for this catalytic N-heterocycle synthesis. Application of this catalytic method to the preparation of important drugs and bioactive compounds is also demonstrated.
Collapse
Affiliation(s)
- Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Kexin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Rong Yu
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Jilin Chen
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| |
Collapse
|
7
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024; 63:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
8
|
Meng X, Lan S, Chen T, Luo H, Zhu L, Chen N, Liu J, Yang S, Cotman AE, Zhang Q, Fang X. Catalytic Asymmetric Transfer Hydrogenation of Acylboronates: BMIDA as the Privileged Directing Group. J Am Chem Soc 2024; 146:20357-20369. [PMID: 38869937 DOI: 10.1021/jacs.4c05924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Developing a general, highly efficient, and enantioselective catalytic method for the synthesis of chiral alcohols is still a formidable challenge. We report in this article the asymmetric transfer hydrogenation (ATH) of N-methyliminodiacetyl (MIDA) acylboronates as a general substrate-independent entry to enantioenriched secondary alcohols. ATH of acyl-MIDA-boronates with (het)aryl, alkyl, alkynyl, alkenyl, and carbonyl substituents delivers a variety of enantioenriched α-boryl alcohols. The latter are used in a range of stereospecific transformations based on the boron moiety, enabling the synthesis of carbinols with two closely related α-substituents, which cannot be obtained with high enantioselectivities using direct asymmetric hydrogenation methods, such as the (R)-cloperastine intermediate. Computational studies illustrate that the BMIDA group is a privileged enantioselectivity-directing group in Noyori-Ikariya ATH compared to the conventionally used aryl and alkynyl groups due to the favorable CH-O attractive electrostatic interaction between the η6-arene-CH of the catalyst and the σ-bonded oxygen atoms in BMIDA. The work expands the domain of conventional ATH and shows its huge potential in addressing challenges in symmetric synthesis.
Collapse
Affiliation(s)
- Xiangjian Meng
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350007, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Haotian Luo
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lixuan Zhu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Nanchu Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia
| | - Qi Zhang
- Hefei University of Technology, Hefei 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
9
|
Young YA, Nguyen HTH, Nguyen HD, Ganguly T, Nguyen YH, Do LH. A ratiometric substrate for rapid evaluation of transfer hydrogenation efficiency in solution. Dalton Trans 2024; 53:8887-8892. [PMID: 38757518 PMCID: PMC11160331 DOI: 10.1039/d4dt00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A cyclometalated iridium(III) complex bearing a self-immolative quinolinium moiety was developed as a ratiometric substrate for transfer hydrogenation studies. This photoluminescent probe allowed the rapid screening of a variety of Ir catalysts using a microplate reader, offering a convenient method to assess activity using a minimum amount of catalyst sample.
Collapse
Affiliation(s)
- Yen-An Young
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | - Huong T H Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | - Hieu D Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | - Tuhin Ganguly
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | - Yennie H Nguyen
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| |
Collapse
|
10
|
Swann WA, Yadav A, Colvin NB, Freundl NK, Li CW. Diastereoselective Hydrogenation of Tetrasubstituted Olefins using a Heterogeneous Pt-Ni Alloy Catalyst. Angew Chem Int Ed Engl 2024; 63:e202317710. [PMID: 38407502 PMCID: PMC11098551 DOI: 10.1002/anie.202317710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Stereoselective hydrogenation of tetrasubstituted olefins is an attractive method to access compounds with two contiguous stereocenters. However, homogeneous catalysts for enantio- and diastereoselective hydrogenation exhibit low reactivity toward tetrasubstituted olefins due to steric crowding between the ligand scaffold and the substrate. Monometallic heterogeneous catalysts, on the other hand, provide accessible surface active sites for hindered olefins but exhibit unpredictable and inconsistent stereoinduction. In this work, we develop a Pt-Ni bimetallic alloy catalyst that can diastereoselectively hydrogenate unactivated, sterically-bulky tetrasubstituted olefins, utilizing the more oxophilic Ni atoms to adsorb a hydroxyl directing group and direct facially-selective hydrogen addition to the olefin via the Pt atoms. Structure-activity studies on several Pt-Ni compositions underscore the importance of exposing a uniform PtNi alloy surface to achieve high diastereoselectivity and minimize side reactions. The optimized Pt-Ni/SiO2 catalyst exhibits good functional group tolerance and broad scope for tetrasubstituted olefins in a cyclopentene scaffold, generating cyclopentanol products with three contiguous stereocenters. The synthetic utility of the method is demonstrated in a four-step synthesis of (1R,2S)-(+)-cis-methyldihydrojasmonate with high yield and enantiopurity.
Collapse
Affiliation(s)
- William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Anish Yadav
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas B. Colvin
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nicole K. Freundl
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Xu L, Yang T, Sun H, Zeng J, Mu S, Zhang X, Chen GQ. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3-Dipolar Nitrones. Angew Chem Int Ed Engl 2024; 63:e202319662. [PMID: 38366812 DOI: 10.1002/anie.202319662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liren Xu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Tilong Yang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Hao Sun
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Zeng
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Shuo Mu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Xumu Zhang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Rong N, Zhou A, Liang M, Wang SG, Yin Q. Asymmetric Hydrogenation of Racemic 2-Substituted Indoles via Dynamic Kinetic Resolution: An Easy Access to Chiral Indolines Bearing Vicinal Stereogenic Centers. J Am Chem Soc 2024; 146:5081-5087. [PMID: 38358355 DOI: 10.1021/jacs.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The asymmetric hydrogenation (AH) of N-unprotected indoles is a straightforward, yet challenging method to access biologically interesting NH chiral indolines. This method has for years been limited to 2/3-monosubstituted or 2,3-disubstituted indoles, which produce chiral indolines bearing endocyclic chiral centers. Herein, we have reported an innovative Pd-catalyzed AH of racemic α-alkyl or aryl-substituted indole-2-acetates using an acid-assisted dynamic kinetic resolution (DKR) process, affording a range of structurally fascinating chiral indolines that contain exocyclic stereocenters with excellent yields, diastereoselectivities, and enantioselectivities. Mechanistic studies support that the DKR process relies on a rapid interconversion of each enantiomer of racemic substrates, leveraged by an acid-promoted isomerization between the aromatic indole and nonaromatic exocyclic enamine intermediate. The reaction can be performed on a gram scale, and the products can be derivatized into non-natural β-amino acids via facile debenzylation and amino alcohol upon reduction.
Collapse
Affiliation(s)
- Nianxin Rong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingrong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
13
|
Zheng J, Peters BBC, Jiang W, Suàrez LA, Ahlquist MSG, Singh T, Andersson PG. The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones. Chemistry 2023:e202303406. [PMID: 38109038 DOI: 10.1002/chem.202303406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Jiang
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lluís Artús Suàrez
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
14
|
Huynh MT, Buchanan E, Chirayil S, Adebesin AM, Kovacs Z. StereoPHIP: Stereoselective Parahydrogen-Induced Polarization. Angew Chem Int Ed Engl 2023; 62:e202311669. [PMID: 37714818 PMCID: PMC10842948 DOI: 10.1002/anie.202311669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Parahydrogen-induced polarization (PHIP) followed by polarization transfer to 13 C is a rapidly developing technique for the generation of 13 C-hyperpolarized substrates. Chirality plays an essential role in living systems and differential metabolism of enantiomeric pairs of metabolic substrates is well documented. Inspired by asymmetric hydrogenation, here we report stereoPHIP, which involves the addition of parahydrogen to a prochiral substrate with a chiral catalyst followed by polarization transfer to 13 C spins. We demonstrate that parahydrogen could be rapidly added to the prochiral precursor to both enantiomers of lactic acid (D and L), with both the (R,R) and (S,S) enantiomers of a chiral rhodium(I) catalyst to afford highly 13 C-hyperpolarized (over 20 %) L- and D-lactate ester derivatives, respectively, with excellent stereoselectivity. We also show that the hyperpolarized 1 H signal decays obtained with the (R,R) and (S,S) catalysts were markedly different. StereoPHIP expands the scope of conventional PHIP to the production of 13 C hyperpolarized chiral substrates with high stereoselectivity.
Collapse
Affiliation(s)
- Mai T Huynh
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Emily Buchanan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Sara Chirayil
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Adeniyi M Adebesin
- Department Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
15
|
Sterle M, Huš M, Lozinšek M, Zega A, Cotman AE. Hydrogen-Bonding Ability of Noyori-Ikariya Catalysts Enables Stereoselective Access to CF 3-Substituted syn-1,2-Diols via Dynamic Kinetic Resolution. ACS Catal 2023; 13:6242-6248. [PMID: 37180962 PMCID: PMC10167654 DOI: 10.1021/acscatal.3c00980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Stereopure CF3-substituted syn-1,2-diols were prepared via the reductive dynamic kinetic resolution of the corresponding racemic α-hydroxyketones in HCO2H/Et3N. (Het)aryl, benzyl, vinyl, and alkyl ketones are tolerated, delivering products with ≥95% ee and ≥87:13 syn/anti. This methodology offers rapid access to stereopure bioactive molecules. Furthermore, DFT calculations for three types of Noyori-Ikariya ruthenium catalysts were performed to show their general ability of directing stereoselectivity via the hydrogen bond acceptor SO2 region and CH/π interactions.
Collapse
Affiliation(s)
- Maša Sterle
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Matej Huš
- National
Institute of Chemistry, Department of Catalysis
and Chemical Reaction Engineering, Hajdrihova ulica 19, SI-1000 Ljubljana, Slovenia
- Association
for Technical Culture of Slovenia, Zaloška cesta 65, SI-1000 Ljubljana, Slovenia
- Institute
for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia
| | - Matic Lozinšek
- Jožef
Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Liu Y, Diao H, Hong G, Edward J, Zhang T, Yang G, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. J Am Chem Soc 2023; 145:5007-5016. [PMID: 36802615 DOI: 10.1021/jacs.2c09958] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present an enantioconvergent access to chiral N-heterocycles directly from simple racemic diols and primary amines, through a highly economical borrowing hydrogen annulation. The identification of a chiral amine-derived iridacycle catalyst was the key for achieving high efficiency and enantioselectivity in the one-step construction of two C-N bonds. This catalytic method enabled a rapid access to a wide range of diversely substituted enantioenriched pyrrolidines including key precursors to valuable drugs such as aticaprant and MSC 2530818.
Collapse
Affiliation(s)
- Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guorong Hong
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Jonathan Edward
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Guoqiang Yang
- Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.,Department of Chemistry, National University of Singapore, Singapore 117544, Republic of Singapore
| |
Collapse
|
17
|
Kaithal A, Sasmal HS, Dutta S, Schäfer F, Schlichter L, Glorius F. cis-Selective Hydrogenation of Aryl Germanes: A Direct Approach to Access Saturated Carbo- and Heterocyclic Germanes. J Am Chem Soc 2023; 145:4109-4118. [PMID: 36781169 PMCID: PMC9951224 DOI: 10.1021/jacs.2c12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 02/15/2023]
Abstract
A catalytic approach of synthesizing the cis-selective saturated carbo- and heterocyclic germanium compounds (3D framework) is reported via the hydrogenation of readily accessible aromatic germanes (2D framework). Among the numerous catalysts tested, Nishimura's catalyst (Rh2O3/PtO2·H2O) exhibited the best hydrogenation reactivity with an isolated yield of up to 96%. A broad range of substrates including the synthesis of unprecedented saturated heterocyclic germanes was explored. This selective hydrogenation strategy could tolerate several functional groups such as -CF3, -OR, -F, -Bpin, and -SiR3 groups. The synthesized products demonstrated the applications in coupling reactions including the newly developed strategy of aza-Giese-type addition reaction (C-N bond formation) from the saturated cyclic germane product. These versatile motifs can have a substantial value in organic synthesis and medicinal chemistry as they show orthogonal reactivity in coupling reactions while competing with other coupling partners such as boranes or silanes, acquiring a three-dimensional structure with high stability and robustness.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Himadri Sekhar Sasmal
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Felix Schäfer
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| | - Lisa Schlichter
- Westfälische
Wilhelms-Universität Münster, Center for Soft Nanoscience
(SoN) and Organisch-Chemisches Institut, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische
Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
18
|
Jia F, Zhang B. Computational Mechanism Investigation of C=C Bond Hydrogenation Catalyzed by Rhodium Hydride. Chemphyschem 2023; 24:e202200562. [PMID: 36148802 DOI: 10.1002/cphc.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Indexed: 02/03/2023]
Abstract
The hydrogenation of unsaturated carbons is a commonly used synthetic tool in pharmaceutical and industrial production. Recently, the Norton group realized highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. Despite the great efforts made by experimentalists, details regarding the mechanism remained unclear. In this work, detailed DFT calculations were carried out to elucidate the principal features of this transformation. For enones we find that two possible competing mechanisms proposed by the experimental groups are computationally excluded, our proposed alternative mechanism with a total barrier of 20.0 kcal mol-1 is theoretically feasible, solvent methanol to also plays a crucial role in assisting β-hydrogenation in addition to being the hydrogen source for α-hydrogenation, and the cross-polarization of the substrate enone-conjugated system to result in an enhanced charge density of the α-carbon, which favors being hydrogenated first. For isolated alkenes, neither of the two possible competing mechanisms can be excluded computationally and which carbon atom is first hydrogenated depends on the electronic properties of the substrate itself. The combination of rhodium and C=C bonds changes the electronic properties of H on the rhodium hydride and enhances its hydrogenation activity.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, 637100, Nanchong, Sichuan, P. R. China
| | - Bo Zhang
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, 637100, Nanchong, Sichuan, P. R. China
| |
Collapse
|
19
|
Chen T, Liu W, Gu W, Niu S, Lan S, Zhao Z, Gong F, Liu J, Yang S, Cotman AE, Song J, Fang X. Dynamic Kinetic Resolution of β-Substituted α-Diketones via Asymmetric Transfer Hydrogenation. J Am Chem Soc 2023; 145:585-599. [PMID: 36563320 DOI: 10.1021/jacs.2c11149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing innovative dynamic kinetic resolution (DKR) modes and achieving the highly regio- and enantioselective semihydrogenation of unsymmetrical α-diketones are two formidable challenges in the field of contemporary asymmetric (transfer) hydrogenation. In this work, we report the highly regio- and stereoselective asymmetric semi-transfer hydrogenation of unsymmetrical α-diketones through a unique DKR mode, which features the reduction of the carbonyl group distal from the labile stereocenter, while the proximal carbonyl remains untouched. Moreover, the protocol affords a variety of enantioenriched acyclic ketones with α-hydroxy-α'-C(sp2)-functional groups, which represent a new product class that has not been furnished in known arts. The utilities of the products have been demonstrated in a series of further transformations including the rapid synthesis of drug molecules. Density functional theory calculations and plenty of control experiments have also been conducted to gain more mechanistic insights into the highly selective semihydrogenation.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wenjun Liu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Wei Gu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shengtong Niu
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Fan Gong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana SI-1000, Slovenia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
20
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
21
|
Biocatalytic hydrogen-transfer to access enantiomerically pure proxyphylline, xanthinol, and diprophylline. Bioorg Chem 2022; 127:105967. [DOI: 10.1016/j.bioorg.2022.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
|
22
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space:
cis
‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022; 61:e202206687. [PMID: 35612895 PMCID: PMC9400866 DOI: 10.1002/anie.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/08/2022]
Abstract
A new class of saturated boron‐incorporated cyclic molecules has been synthesized employing an arene‐hydrogenation methodology. cis‐Selective hydrogenation of easily accessible, and biologically important molecules comprising benzoxaborole, benzoxaborinin, and benzoxaboripin derivatives is reported. Among the various catalysts tested, rhodium cyclic(alkyl)(amino)carbene [Rh‐CAAC] (1) pre‐catalyst revealed the best hydrogenation activity confirming turnover number up to 1400 with good to high diastereoselectivity. A broad range of functional groups was tolerated including sensitive substituents such as −F, −CF3, and −silyl groups. The utility of the synthesized products was demonstrated by the recognition of diols and sugars under physiological conditions. These motifs can have a substantial importance in medicinal chemistry as they possess a three‐dimensional structure, are highly stable, soluble in water, form hydrogen bonds, and interact with diols and sugars.
Collapse
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster Westfälische Center for Soft Nanoscience (SoN) and Organisch-Chemisches Institut Busso-Peus-Str.10 48149 Münster Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
23
|
Jin Y, Zou Y, Hu Y, Han Y, Zhang Z, Zhang W. Azole-Directed Cobalt-Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry 2022; 28:e202201517. [PMID: 35622378 DOI: 10.1002/chem.202201517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/11/2022]
Abstract
The azole-directed cobalt-catalyzed asymmetric hydrogenation of alkenes has been developed with high efficiency. With this approach, chiral pyrazole compounds were obtained in quantitative yields and excellent enantioselectivities (up to 99 % ee) under mild conditions, and the hydrogenation was conducted on a gram scale with up to 2000 TON. Several useful applications were demonstrated including the convenient introduction of β-chirality to a drug intermediate containing an azole ring.
Collapse
Affiliation(s)
- Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanhua Hu
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yunxi Han
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Kaithal A, Wagener T, Bellotti P, Daniliuc CG, Schlichter L, Glorius F. Access to Unexplored 3D Chemical Space: cis‐Selective Arene Hydrogenation for the Synthesis of Saturated Cyclic Boronic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akash Kaithal
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry Münster GERMANY
| | - Tobias Wagener
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Peter Bellotti
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Lisa Schlichter
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry GERMANY
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
25
|
Carr CR, Vesto JI, Xing X, Fettinger JC, Berben LA. Aluminum‐Ligand Cooperative O−H Bond Activation Initiates Catalytic Transfer Hydrogenation. ChemCatChem 2022. [DOI: 10.1002/cctc.202101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cody R. Carr
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - James I. Vesto
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Xiujing Xing
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - James C. Fettinger
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| | - Louise A. Berben
- Department of Chemistry University of California, Davis Davis CA 95616 USA
| |
Collapse
|
26
|
Cao MY, Ma BJ, Gu QX, Fu B, Lu HH. Concise Enantioselective Total Synthesis of Daphenylline Enabled by an Intramolecular Oxidative Dearomatization. J Am Chem Soc 2022; 144:5750-5755. [PMID: 35289615 DOI: 10.1021/jacs.2c01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Daphenylline is a structurally unique member of the triterpenoid Daphniphyllum natural alkaloids, which exhibit intriguing biological activities. Six total syntheses have been reported, five of which utilize aromatization approaches. Herein, we report a concise protecting-group-free total synthesis by means of a novel intramolecular oxidative dearomatization reaction, which concurrently generates the critical seven-membered ring and the quaternary-containing vicinal stereocenters. Other notable transformations include a tandem reductive amination/amidation double cyclization reaction, to assemble the cage-like architecture, and installation of the other two chiral stereocenters via a highly enantioselective rhodium-catalyzed challenging hydrogenation of the diene intermediate (90% e.e.) and an unprecedented remote acid-directed Mukaiyama-Michael reaction of the complex benzofused cyclohexanone (13:1 d.r.).
Collapse
Affiliation(s)
- Meng-Yue Cao
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Qing-Xiu Gu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Bei Fu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hai-Hua Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
27
|
Goralski ST, Rose MJ. Emerging artificial metalloenzymes for asymmetric hydrogenation reactions. Curr Opin Chem Biol 2021; 66:102096. [PMID: 34879303 DOI: 10.1016/j.cbpa.2021.102096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
Artificial metalloenzymes (ArMs) utilize the best properties of homogenous transition metal catalysts and naturally occurring proteins. While synthetic metal complexes offer high tunability and broad-scope reactivity with a variety of substrates, enzymes further endow these complexes with enhanced aqueous stability and stereoselectivity. For these reasons, dozens of ArMs have been designed to perform catalytic asymmetric hydrogenation reactions, and hydrogenase ArMs are, in fact, the oldest class of ArMs. Herein, we report recent advances in the design of hydrogenase ArMs, including (i) the modification of natural [Fe]-hydrogenase by insertion of artificial metallocofactors, (ii) design of a novel ArM system from the tractable and inexpensive protein β-lactoglobulin to afford a high-performing transfer hydrogenase, and (iii) the design of chimeric streptavidin scaffolds that drastically alter the secondary coordination sphere of previously reported streptavidin/biotin transfer hydrogenase ArMs.
Collapse
Affiliation(s)
- Sean T Goralski
- Department of Chemistry, University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, TX, 78712, USA
| | - Michael J Rose
- Department of Chemistry, University of Texas at Austin, 105 E. 24th St. Stop A5300, Austin, TX, 78712, USA.
| |
Collapse
|
28
|
Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chem Sci 2021; 12:15061-15066. [PMID: 34909146 PMCID: PMC8612400 DOI: 10.1039/d1sc04288b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds. 2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.![]()
Collapse
Affiliation(s)
- Mingxu Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengfan Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China .,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
29
|
Maddigan-Wyatt JT, Blyth MT, Ametovski J, Coote ML, Hooper JF, Lupton DW. Redox Isomerization/(3+2) Allenoate Annulation by Auto-Tandem Phosphine Catalysis. Chemistry 2021; 27:16232-16236. [PMID: 34596926 DOI: 10.1002/chem.202103224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/25/2023]
Abstract
A phosphine-catalyzed approach to pyrrolines has been developed that involves two mechanistically unlinked catalytic processes. The first involves the redox isomerization of amino crotonates to provide access to aliphatic tosyl imines, which then engage in a (3+2) annulation with various allenoates. The reaction shows generality, with 24 examples established, along with a low yielding and moderately enantioselective variant. Mechanistic studies indicate that the viability of the process is linked to the selection of catalysts with similar propensity to add to the two coupling partners.
Collapse
Affiliation(s)
| | - Mitchell T Blyth
- Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| | - Jhi Ametovski
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| | - Joel F Hooper
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
30
|
Hajiloo Shayegan M, Li ZY, Cui X. Ligand-Controlled Regiodivergence for Catalytic Stereoselective Semireduction of Allenamides. Chemistry 2021; 28:e202103402. [PMID: 34693580 DOI: 10.1002/chem.202103402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Ligand-controlled regiodivergence has been developed for catalytic semireduction of allenamides with excellent chemo- and stereocontrol. This system also provides an example of catalytic regiodivergent semireduction of allenes for the first time. The divergence of the semireduction is enabled by ligand switch with the same palladium pre-catalyst under operationally simple and mild conditions. Monodentate ligand XPhos exclusively promotes selective 1,2-semireduction to afford allylic amides, while bidentate ligand BINAP completely switched the regioselectivity to 2,3-semireduction, producing (E)-enamide derivatives.
Collapse
Affiliation(s)
| | - Zhong-Yuan Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xin Cui
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
31
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site- and Enantioselective Iridium-Catalyzed Desymmetric Mono-Hydrogenation of 1,4-Dienes. Angew Chem Int Ed Engl 2021; 60:19428-19434. [PMID: 34137493 PMCID: PMC8456900 DOI: 10.1002/anie.202107267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/22/2023]
Abstract
The control of site selectivity in asymmetric mono-hydrogenation of dienes or polyenes remains largely underdeveloped. Herein, we present a highly efficient desymmetrization of 1,4-dienes via iridium-catalyzed site- and enantioselective hydrogenation. This methodology demonstrates the first iridium-catalyzed hydrogenative desymmetriation of meso dienes and provides a concise approach to the installation of two vicinal stereogenic centers adjacent to an alkene. High isolated yields (up to 96 %) and excellent diastereo- and enantioselectivities (up to 99:1 d.r. and 99 % ee) were obtained for a series of divinyl carbinol and divinyl carbinamide substrates. DFT calculations reveal that an interaction between the hydroxy oxygen and the reacting hydride is responsible for the stereoselectivity of the desymmetrization of the divinyl carbinol. Based on the calculated energy profiles, a model that simulates product distribution over time was applied to show an intuitive kinetics of this process. The usefulness of the methodology was demonstrated by the synthesis of the key intermediates of natural products zaragozic acid A and (+)-invictolide.
Collapse
Affiliation(s)
- Haibo Wu
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Hao Su
- School of BiotechnologyKTH Royal Institute of Technology10691StockholmSweden
| | - Erik J. Schulze
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Bram B. C. Peters
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Mark D. Nolan
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Jianping Yang
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Thishana Singh
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| | | | - Pher G. Andersson
- Department of Organic ChemistryStockholm University10691StockholmSweden
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalPrivate Bag X54001Durban4000South Africa
| |
Collapse
|
32
|
Wu H, Su H, Schulze EJ, Peters BBC, Nolan MD, Yang J, Singh T, Ahlquist MSG, Andersson PG. Site‐ and Enantioselective Iridium‐Catalyzed Desymmetric Mono‐Hydrogenation of 1,4‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haibo Wu
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Hao Su
- School of Biotechnology KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Erik J. Schulze
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Bram B. C. Peters
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Mark D. Nolan
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Jianping Yang
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
| | - Thishana Singh
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| | | | - Pher G. Andersson
- Department of Organic Chemistry Stockholm University 10691 Stockholm Sweden
- School of Chemistry and Physics University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
33
|
Gu Y, Norton JR, Salahi F, Lisnyak VG, Zhou Z, Snyder SA. Highly Selective Hydrogenation of C═C Bonds Catalyzed by a Rhodium Hydride. J Am Chem Soc 2021; 143:9657-9663. [PMID: 34142805 DOI: 10.1021/jacs.1c04683] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under mild conditions (room temperature, 80 psi of H2) Cp*Rh(2-(2-pyridyl)phenyl)H catalyzes the selective hydrogenation of the C═C bond in α,β-unsaturated carbonyl compounds, including natural product precursors with bulky substituents in the β position and substrates possessing an array of additional functional groups. It also catalyzes the hydrogenation of many isolated double bonds. Mechanistic studies reveal that no radical intermediates are involved, and the catalyst appears to be homogeneous, thereby affording important complementarity to existing protocols for similar hydrogenation processes.
Collapse
Affiliation(s)
- Yiting Gu
- Department of Chemistry, Columbia University, 3000 Broadway, New York City, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York City, New York 10027, United States
| | - Farbod Salahi
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Vladislav G Lisnyak
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Zhiyao Zhou
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|