1
|
McGhie L, Kortman HM, Rumpf J, Seeberger PH, Molloy JJ. Light-enabled intramolecular [2 + 2] cycloaddition via photoactivation of simple alkenylboronic esters. Beilstein J Org Chem 2025; 21:854-863. [PMID: 40331048 PMCID: PMC12051466 DOI: 10.3762/bjoc.21.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The photoactivation of organic molecules via energy transfer (EnT) catalysis is often limited to conjugated systems that have low-energy triplet excited states, with simple alkenes remaining an intractable challenge. The ability to address this limitation, using high energy sensitizers, would represent an attractive platform for future reaction design. Here, we disclose the photoactivation of simple alkenylboronic esters established using alkene scrambling as a rapid reaction probe to identify a suitable catalyst and boron motif. Cyclic voltammetry, UV-vis analysis, and control reactions support sensitization, enabling an intramolecular [2 + 2] cycloaddition to be realized accessing 3D bicyclic fragments containing a boron handle.
Collapse
Affiliation(s)
- Lewis McGhie
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Hannah M Kortman
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jenna Rumpf
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - John J Molloy
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Natho P, Colella M, Luisi R. Strained spiro heterocycles as potential bioisosteres: an update on the synthesis of heteroatom-containing spiro[2.3]hexanes and spiro[3.3]heptanes. Chem Commun (Camb) 2025; 61:6579-6594. [PMID: 40231647 DOI: 10.1039/d5cc00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The interest of medicinal chemists in strained spiro heterocycles has continuously risen, given their potential as non-classical three-dimensional bioisosteres, as it has been shown that their inherent structural characteristics can impose beneficial physicochemical properties on lead compounds (e.g., metabolic stability, lipophilicity). In particular, strained spiro heterocycles containing at least one four-membered ring are in demand, as the inclusion of a small ring results in a more rigid and denser molecular space, whereas the inclusion of a heteroatom allows for placement of an exit vector orthogonal to the neighbouring carbon-centered exit vectors. The continuous development of new strained spiro heterocycles, their site-specific functionalisation, and their application as bioisostere is thus imperative. This review provides an overview of progress since 2014 with a particular focus on heteroatom-containing spiro[2.3]hexanes and spiro[3.3]heptanes.
Collapse
Affiliation(s)
- Philipp Natho
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, University of Bari "A. Moro", Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
3
|
Chen SS, Zheng Y, Xing ZX, Huang HM. Borylated strain rings synthesis via photorearrangements enabled by energy transfer catalysis. Nat Commun 2025; 16:3724. [PMID: 40253362 PMCID: PMC12009410 DOI: 10.1038/s41467-025-58353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
Borylated carbocycles occupy a pivotal position as essential components in synthetic chemistry, drug discovery, and materials science. Herein, we present a photorearrangement that uniquely involves a boron atom enabled by energy transfer catalysis under visible light conditions. The boron functional group could be translocated through energy transfer mechanism and valuable borylated cyclopropane scaffolds could be generated smoothly. Furthermore, we showcase a 1,5-HAT (hydrogen atom transfer)/cyclization reaction, which is also enhanced by energy transfer catalysis excited by visible light. This method enables the synthesis of borylated cyclobutane frameworks. These boron-involved photorearrangement and cyclization reactions represent two techniques for synthesizing highly desirable borylated strained ring structures, which offering avenues for the synthesis of complex organic molecules with medicinal and material science applications.
Collapse
Affiliation(s)
- Shu-Sheng Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xi Xing
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Ruan J, Lu YL, Hu P, Su CY. Asymmetric Synthesis of Strained Multichiral Spirocyclobutanes through Cage-Confined Cross [2 + 2] Photocycloaddition. J Am Chem Soc 2025; 147:10475-10484. [PMID: 40083237 DOI: 10.1021/jacs.4c18358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Chiral spirocycles possess the ability to undergo diverse modifications in three-dimensional space, offering advantages in terms of physicochemical property and structural variability over conventional organic scaffolds and holding promising potential for the design of biologically active molecules and drugs. Among them, highly strained spirocyclobutanes with multiple chiral center-containing four-membered rings have attracted significant attention, but their viable and efficient synthesis poses a great challenge. By virtue of cage-confined asymmetric photocatalysis, we successfully construct spirocycle and bispirocycle compounds containing multiple quaternary and tertiary chiral carbon centers in cyclobutane rings through cross [2 + 2] photocycloaddition with visible-light-induced and mild reactions. The mechanistic studies unveil that the chiral open pockets of a cage photoreactor facilitate dynamic bimolecular recognition to render preferential heteromolecular cross-cycloaddition with enhanced reactivity, unconventional enantioselectivity, and good substrate tolerance, providing a promising direction for enzyme-mimetic catalyst design for challenging asymmetric photochemical transformations.
Collapse
Affiliation(s)
- Jia Ruan
- GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu-Lin Lu
- GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Peng Hu
- GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng-Yong Su
- GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Keen B, Cong C, Castanedo A, Davies GHM, Knowles RR, Davies HML. Stereoselective Synthesis of Highly Functionalized Bicyclo[2.1.0]pentanes by Sequential [2 + 1] and [2 + 2] Cycloadditions. Org Lett 2025; 27:1673-1678. [PMID: 39928956 PMCID: PMC11852226 DOI: 10.1021/acs.orglett.5c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/12/2025]
Abstract
This study describes a method for the stereoselective synthesis of highly functionalized bicyclo[2.1.0]pentanes (housanes). The approach utilizes a two-step sequence, a silver- or gold-catalyzed cyclopropenation of alkynes followed by an intermolecular [2 + 2] photocycloaddition reaction with electron-deficient alkenes. The cyclopropenation is an established reaction of aryldiazoacetates. A regioselective [2 + 2] cycloaddition of the cyclopropane was developed using blue LED irradiation, a commercially available photocatalyst as a triplet-sensitizer, and low reaction temperature (-40 °C). The [2 + 2] cycloaddition is highly diastereoselective, and when enantioenriched cyclopropenes are used, it proceeds with enantioretention.
Collapse
Affiliation(s)
- Brockton Keen
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christina Cong
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Alberto Castanedo
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Geraint H. M. Davies
- PostEra, One Broadway,
14th Floor, Cambridge, Massachusetts 02142, United States
| | - Robert R. Knowles
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Huw M. L. Davies
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Fang H, García-Eguizábal A, Hsueh YJ, Daniliuc CG, Funes-Ardoiz I, Molloy JJ. Energy Transfer (EnT) Catalysis of Non-Symmetrical Borylated Dienes: Origin of Reaction Selectivity in Competing EnT Processes. Angew Chem Int Ed Engl 2025; 64:e202418651. [PMID: 39670356 DOI: 10.1002/anie.202418651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Energy transfer catalysis (EnT) has had a profound impact on contemporary organic synthesis enabling the construction of higher in energy, complex molecules, via efficient access to the triplet excited state. Despite this, intermolecular reactivity, and the unique possibility to access several reaction pathways via a central triplet diradical has rendered control over reaction outcomes, an intractable challenge. Extended chromophores such as non-symmetrical dienes have the potential to undergo [2+2] cycloaddition, [4+2] cycloaddition or geometric isomerisation, which, in combination with other mechanistic considerations (site- and regioselectivity), results in chemical reactions that are challenging to regulate. Herein, we utilise boron as a tool to probe reactivity of non-symmetrical dienes under EnT catalysis, paying particular attention to the impact of boron hybridisation effects on the target reactivity. Through this, a highly site- and regioselective [2+2] cycloaddition was realised with the employed boron motif effecting reaction efficiency. Subtle modifications to the core scaffold enabled a [4+2] cycloaddition, while a counterintuitive regiodivergence was observed in geometric isomerisation versus [2+2] cycloaddition. The observed reactivity was validated via a mechanistic investigation, determining the origin of regiodivergence and reaction selectivity in competing EnT processes.
Collapse
Affiliation(s)
- Hao Fang
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Alejandro García-Eguizábal
- Instituto de Investigación Química de la Universidad de La Rioja (IQUR), Universidad de La Rioja, Madre de Dios 53, 26004, Logroño, Spain
| | - Yu Jen Hsueh
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Ignacio Funes-Ardoiz
- Instituto de Investigación Química de la Universidad de La Rioja (IQUR), Universidad de La Rioja, Madre de Dios 53, 26004, Logroño, Spain
| | - John J Molloy
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Adak S, Hazra PS, Fox CB, Brown MK. Boron Enabled Directed [2+2]- and Dearomative [4+2]-Cycloadditions Initiated by Energy Transfer. Angew Chem Int Ed Engl 2025; 64:e202416215. [PMID: 39508634 PMCID: PMC11753935 DOI: 10.1002/anie.202416215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/15/2024]
Abstract
A strategy for the photosensitized [2+2]-cycloaddition between styrenyl dihaloboranes and unactivated allylamines to access cyclobutylboronates with control of stereochemistry and regiochemistry is presented. The success of the reaction relies on the temporary coordination between in situ generated dihaloboranes and amines under mild reaction conditions. In addition, cyclobutanes with varying substitution patterns have been prepared using N-heterocycles as directing group. Manipulation of the C-B bond allows for the synthesis of a diverse class of cyclobutanes from simple precursors. Moreover, these reactions lead to the synthesis of complex amines and heteroaromatic compounds, which have significant utility in medicinal chemistry. Finally, a dearomative [4+2]-cycloaddition of naphthalenes using a boron-enabled temporary tethering strategy has also been uncovered to synthesize complex 3-dimensional borylated building blocks.
Collapse
Affiliation(s)
- Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - Partha Sarathi Hazra
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - Carter B. Fox
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| | - M. Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, IN 47401, US
| |
Collapse
|
8
|
Symes OL, Ishikura H, Begg CS, Rojas JJ, Speller HA, Cherk AM, Fang M, Leung D, Croft RA, Higham JI, Huang K, Barnard A, Haycock P, White AJP, Choi C, Bull JA. Harnessing Oxetane and Azetidine Sulfonyl Fluorides for Opportunities in Drug Discovery. J Am Chem Soc 2024; 146:35377-35389. [PMID: 39666854 DOI: 10.1021/jacs.4c14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Four-membered heterocycles such as oxetanes and azetidines represent attractive and emergent design options in medicinal chemistry due to their small and polar nature and potential to significantly impact the physiochemical properties of drug molecules. The challenging preparation of these derivatives, especially in a divergent manner, has severely limited their combination with other medicinally and biologically important groups. Consequently, there is a substantial demand for mild and effective synthetic strategies to access new oxetane and azetidine derivatives and molecular scaffolds. Here, we report the development and use of oxetane sulfonyl fluorides (OSFs) and azetidine sulfonyl fluorides (ASFs), which behave as precursors to carbocations in an unusual defluorosulfonylation reaction pathway (deFS). The small-ring sulfonyl fluorides are activated under mild thermal conditions (60 °C), and the generated reactive intermediates couple with a broad range of nucleophiles. Oxetane and azetidine heterocyclic, -sulfoximine, and -phosphonate derivatives are prepared, several of which do not have comparable carbonyl analogs, providing new chemical motifs and design elements for drug discovery. Alternatively, a SuFEx pathway under anionic conditions accesses oxetane-sulfur(VI) derivatives. We demonstrate the synthetic utility of novel OSF and ASF reagents through the synthesis of 11 drug analogs, showcasing their potential for subsequent diversification and facile inclusion into medicinal chemistry programs. Moreover, we propose the application of the OSF and ASF reagents as linker motifs and demonstrate the incorporation of pendant groups suitable for common conjugation reactions. Productive deFS reactions with E3 ligase recruiters such as pomalidomide and related derivatives provide new degrader motifs and potential PROTAC linkers.
Collapse
Affiliation(s)
- Oliver L Symes
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Hikaru Ishikura
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Callum S Begg
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Harry A Speller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Anson M Cherk
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Marco Fang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Domingo Leung
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Rosemary A Croft
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Joe I Higham
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Kaiyun Huang
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Anna Barnard
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Peter Haycock
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Medicine Design, Pfizer Research and Development, Groton, Connecticut 06340, United States
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
9
|
Popescu MV, Paton RS. Dynamic Vertical Triplet Energies: Understanding and Predicting Triplet Energy Transfer. Chem 2024; 10:3428-3443. [PMID: 39935516 PMCID: PMC11810125 DOI: 10.1016/j.chempr.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
A computational approach for modeling and predicting triplet energy sensitization of organic molecules is described, which involves sampling the instantaneous, vertical energy gaps over molecular vibrational motions. This approach provides new theoretical support for the hot-band mechanism of energy transfer, in which the energy difference between donor and acceptor can be lessened by geometric distortions. We demonstrate excellent predictive performance against experimental triplet energies, with R2 = 0.97 and a mean absolute error (MAE) of 1.7 kcal/mol, for a collection of 24 small organic molecules, whereas a static, adiabatic description performs significantly worse (R2 = 0.51, MAE = 9.5 kcal/mol). Using this approach, it is possible to quantitatively predict the correct E/Z-isomerism of alkenes under energy transfer, for which adiabatic calculations predict the wrong outcome.
Collapse
Affiliation(s)
- Mihai V. Popescu
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| | - Robert S. Paton
- Department of Chemistry, Colorado State University, Ft. Collins, Colorado 80523-1872, United States
| |
Collapse
|
10
|
Xu Z, Peng W, Huang J, Shen J, Guo JJ, Hu A. Photoinduced formal [4 + 2] cycloaddition of two electron-deficient olefins and its application to the synthesis of lucidumone. Nat Commun 2024; 15:9748. [PMID: 39528531 PMCID: PMC11555068 DOI: 10.1038/s41467-024-54117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Electronically mismatched Diels-Alder reaction between two electron-deficient components is synthetically useful and yet underdeveloped under thermal conditions. Herein, a photoinduced formal [4 + 2] cycloaddition of enone with a variety of electron-deficient dienes is described. Key to the success of this stepwise methodology relies on a C - C bond cleavage/rearrangement of the cyclobutane based overbred intermediate via diversified mechanistic pathways. Based on this annulation method, total synthesis of lucidumone is achieved in nine steps.
Collapse
Affiliation(s)
- Zhezhe Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Weibo Peng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jiarui Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jinhui Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Jing-Jing Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Anhua Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| |
Collapse
|
11
|
Gu XW, Zhao YH, Wu XF. Ligand-controlled regiodivergent aminocarbonylation of cyclobutanols toward 1,1- and 1,2-substituted cyclobutanecarboxamides. Nat Commun 2024; 15:9412. [PMID: 39482305 PMCID: PMC11528034 DOI: 10.1038/s41467-024-53571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Four-membered carbocycles are among the most sought-after backbones which are commonly found in biologically active molecules. However, difficulties on their producing are existing due to its highly strained ring system. On the other hand, cyclobutanols can be straightforwardly prepared and can serves as precursors for synthesizing cyclobutane derivatives. Here we report an example of regioselective aminocarbonylation of cyclobutanols in which the cyclobutane core remained intact. The method exhibits good functional group compatibility, as well as high regio- and stereoselectivity, offering new pathways for synthesizing several pharmaceuticals. Furthermore, this strategy enables the rapid installation of cyclobutane as a conformational restricted skeleton, greatly facilitating direct access to valuable drug molecules that require conformational restriction.
Collapse
Affiliation(s)
- Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Yan-Hua Zhao
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., 18059, Rostock, Germany.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.
| |
Collapse
|
12
|
Shimose A, Ishigaki S, Sato Y, Nogami J, Toriumi N, Uchiyama M, Tanaka K, Nagashima Y. Dearomative Construction of 2D/3D Frameworks from Quinolines via Nucleophilic Addition/Borate-Mediated Photocycloaddition. Angew Chem Int Ed Engl 2024; 63:e202403461. [PMID: 38803130 DOI: 10.1002/anie.202403461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Dearomative construction of multiply-fused 2D/3D frameworks, composed of aromatic two-dimensional (2D) rings and saturated three-dimensional (3D) rings, from readily available quinolines has greatly contributed to drug discovery. However, dearomative cycloadditions of quinolines in the presence of photocatalysts usually afford 5,6,7,8-tetrahydroquinoline (THQ)-based polycycles, and dearomative access to 1,2,3,4-THQ-based structures remains limited. Herein, we present a chemo-, regio-, diastereo-, and enantioselective dearomative transformation of quinolines into 1,2,3,4-THQ-based 6-6-4-membered rings without any catalyst, through a combination of nucleophilic addition and borate-mediated [2+2] photocycloaddition. Detailed mechanistic studies revealed that the photoexcited borate complex, generated from quinoline, organolithium, and HB(pin), accelerates the cycloaddition and suppresses the rearomatization that usually occurs in conventional photocycloaddition. Based on our mechanistic analysis, we also developed further photoinduced cycloadditions affording other types of 2D/3D frameworks from isoquinoline and phenanthrene.
Collapse
Affiliation(s)
- Asuha Shimose
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Sato
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
13
|
Han X, Hou J, Zhang H, Wang Z, Yao W. Phosphine-catalyzed enantioselective and diastereodivergent [3+2] cyclization for the construction of oxetane dispirooxindole skeletons. Chem Commun (Camb) 2024; 60:10736-10739. [PMID: 39246022 DOI: 10.1039/d4cc03610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed a phosphine catalyzed asymmetric [3+2] cyclization of 3-oxetanone derived MBH carbonates with activated methyleneoxindole, to construct oxetane dispirooxindole skeletons. Diastereodivergent synthesis was realized via the control of the phosphine catalyst. The (-)-DIOP provides the syn diastereoisomers, while the spiro phosphine (R)-SITCP achieves the anti-epimers.
Collapse
Affiliation(s)
- Xiao Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
14
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Zhang QB, Li F, Pan B, Yu L, Yue XG. Visible-Light-Mediated [2+2] Photocycloadditions of Alkynes. Chemistry 2024; 30:e202401501. [PMID: 38806409 DOI: 10.1002/chem.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Visible-light-mediated [2+2] photocycloaddition reaction can be considered an ideal solution due to its green and sustainable properties, and is one of the most efficient methods to synthesize four-membered ring motifs. Although research on the [2+2] photocycloaddition of alkynes is challenging because of the diminished reactivity of alkynes, and the more significant ring strain of the products, remarkable achievements have been made in this field. In this article, we highlight the recent advances in visible-light-mediated [2+2] photocycloaddition reactions of alkynes, with focus on the reaction mechanism and the late-stage synthetic applications. Advances in obtaining cyclobutenes, azetines, and oxetene active intermediates continue to be breakthroughs in this fascinating field of research.
Collapse
Affiliation(s)
- Qing-Bao Zhang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Lei Yu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| | - Xiang-Guo Yue
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, CN, 262700, People's Republic of China
| |
Collapse
|
16
|
Prysiazhniuk K, Polishchuk O, Shulha S, Gudzikevych K, Datsenko OP, Kubyshkin V, Mykhailiuk PK. Borylated cyclobutanes via thermal [2 + 2]-cycloaddition. Chem Sci 2024; 15:3249-3254. [PMID: 38425521 PMCID: PMC10901489 DOI: 10.1039/d3sc06600b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
A one-step approach to borylated cyclobutanes from amides of carboxylic acids and vinyl boronates is elaborated. The reaction proceeds via the thermal [2 + 2]-cycloaddition of in situ-generated keteniminium salts.
Collapse
Affiliation(s)
- Kateryna Prysiazhniuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Oleksandr Polishchuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Stanislav Shulha
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Kyrylo Gudzikevych
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Oleksandr P Datsenko
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Vladimir Kubyshkin
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| | - Pavel K Mykhailiuk
- Enamine Ltd Winston Churchill St. 78 02094 Kyiv Ukraine https://www.mykhailiukchem.org
| |
Collapse
|
17
|
Prysiazhniuk K, Datsenko OP, Polishchuk O, Shulha S, Shablykin O, Nikandrova Y, Horbatok K, Bodenchuk I, Borysko P, Shepilov D, Pishel I, Kubyshkin V, Mykhailiuk PK. Spiro[3.3]heptane as a Saturated Benzene Bioisostere. Angew Chem Int Ed Engl 2024; 63:e202316557. [PMID: 38251921 DOI: 10.1002/anie.202316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The spiro[3.3]heptane core, with the non-coplanar exit vectors, was shown to be a saturated benzene bioisostere. This scaffold was incorporated into the anticancer drug sonidegib (instead of the meta-benzene), the anticancer drug vorinostat (instead of the phenyl ring), and the anesthetic drug benzocaine (instead of the para-benzene). The patent-free saturated analogs obtained showed a high potency in the corresponding biological assays.
Collapse
Affiliation(s)
| | | | | | | | - Oleh Shablykin
- Enamine Ltd., Winston Churchill Str. 78, 02094, Kyiv, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094, Kyiv, Ukraine
| | | | | | | | - Petro Borysko
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | - Iryna Pishel
- Bienta, Winston Churchill Str. 78, 02094, Kyiv, Ukraine
| | | | | |
Collapse
|
18
|
Feng YL, Zhang BW, Xu Y, Jin S, Mazzarella D, Cao ZY. The reactivity of alkenyl boron reagents in catalytic reactions: recent advances and perspectives. Org Chem Front 2024; 11:7249-7277. [DOI: 10.1039/d4qo01703j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Recent advances focusing on novel reactivity of alkenyl boron reagents in polar or radical pathways within catalytic reactions by employing transition metal catalysis, organocatalysis have been summarized and discussed.
Collapse
Affiliation(s)
- Ya-Li Feng
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Bo-Wen Zhang
- Engineering Research Center for Water Environment and Health of Henan, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China
- Faculty of Biology and Chemistry, Arabaev Kyrgyz State University, Bishkek 720026, Kyrgyzstan
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Shengnan Jin
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Daniele Mazzarella
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
19
|
Uchikura T, Takahashi K, Oishi T, Akiyama T. Visible-light-driven enantioselective intermolecular [2 + 2] photocyclization utilizing bathochromic excitation mediated by a chiral phosphoric acid. Org Biomol Chem 2023; 21:9138-9142. [PMID: 37975203 DOI: 10.1039/d3ob01425h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We report herein an enantioselective intermolecular [2 + 2] photocyclization of alkenyl 2-pyrrolyl ketones using the bathochromic shift mediated by a chiral phosphoric acid. This synthetic method provides access to cyclobutanes with up to 98% ee. According to the UV-Vis spectra, the bathochromic effect was observed by mixing alkenyl 2-pyrrolyl ketones and a chiral phosphoric acid. A non-linear correlation was observed between the ee of the catalyst and the ee of the cycloadduct, suggesting that both substrates bind to the chiral phosphoric acid and form a dimer complex before photocycloaddition.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Kazuki Takahashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Tatsushi Oishi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan.
| |
Collapse
|
20
|
Liu Y, Brown MK. Photosensitized [2 + 2]-Cycloadditions of Dioxaborole: Reactivity Enabled by Boron Ring Constraint Strategy. J Am Chem Soc 2023; 145:25061-25067. [PMID: 37939224 PMCID: PMC11041673 DOI: 10.1021/jacs.3c08105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A strategy to achieve photosensitized [2 + 2] cycloadditions by means of temporary ring constraint is reported. Specifically, a dioxaborole is prepared that undergoes [2 + 2] cycloadditions with a wide variety of alkenes. This strategy overcomes some challenges with the cycloaddition of acyclic substrates. The products can be easily transformed into cyclobutyl diols or 1,4-dicarbonyl compounds; the latter represents a formal alkene vicinal diacylation. The synthetic utility of this method is shown in the synthesis of valuable heterocycles and biatriosporin D.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Eckart-Frank IK, Wilkerson-Hill SM. Palladium-Catalyzed Trans-Selective Synthesis of Spirocyclic Cyclobutanes Using α,α-Dialkylcrotyl- and Allylhydrazones. J Am Chem Soc 2023; 145:18591-18597. [PMID: 37552631 DOI: 10.1021/jacs.3c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Herein, we demonstrate the use of E/Z mixtures of α,α-disubstituted crotylhydrazones to obtain spirocyclic vinylcyclobutanes in a diastereoselective fashion. We show 24 examples of a 1,1-insertion/4-exo-trig tandem process to produce these motifs. Additionally, spirocyclic alkylidene cyclobutanes can be obtained by using α,α-disubstituted allylated hydrazones (11 examples). In this study, we show that the aryl migrating group has a dramatic impact on the course of the reaction. Specifically, allylic C-H insertion products can be obtained in good yields using bromoenones as reaction partners. When Pd(0) is used with no aryl or alkenyl bromide, an intramolecular cyclopropanation reaction takes place to afford [2.1.0]-bicycles.
Collapse
Affiliation(s)
- Isaiah K Eckart-Frank
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Lee W, Koo Y, Jung H, Chang S, Hong S. Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides. Nat Chem 2023:10.1038/s41557-023-01258-2. [PMID: 37365339 DOI: 10.1038/s41557-023-01258-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Photocycloaddition is a powerful reaction to enable the conversion of alkenes into high-value synthetic materials that are normally difficult to obtain under thermal conditions. Lactams and pyridines, both prominent in pharmaceutical applications, currently lack effective synthetic strategies to combine them within a single molecular structure. Here we describe an efficient approach to diastereoselective pyridyl lactamization via a photoinduced [3+2] cycloaddition, based on the unique triplet-state reactivity of N-N pyridinium ylides in the presence of a photosensitizer. The corresponding triplet diradical intermediates allow the stepwise radical [3+2] cycloaddition with a broad range of activated and unactivated alkenes under mild conditions. This method exhibits excellent efficiency, diastereoselectivity and functional group tolerance, providing a useful synthon for ortho-pyridyl γ- and δ-lactam scaffolds with syn-configuration in a single step. Combined experimental and computational studies reveal that the energy transfer process leads to a triplet-state diradical of N-N pyridinium ylides, which promotes the stepwise cycloaddition.
Collapse
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Korea.
| |
Collapse
|
23
|
Chattapadhyay D, Aydogan A, Doktor K, Maity A, Wu JW, Michaudel Q. Harnessing Sulfur(VI) Fluoride Exchange Click Chemistry and Photocatalysis for Deaminative Benzylic Arylation. ACS Catal 2023; 13:7263-7268. [PMID: 37655265 PMCID: PMC10468006 DOI: 10.1021/acscatal.3c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/07/2023] [Indexed: 09/02/2023]
Abstract
While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.
Collapse
Affiliation(s)
| | | | - Katarzyna Doktor
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Arunava Maity
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jiun Wei Wu
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
24
|
Li L, Matsuo B, Levitre G, McClain EJ, Voight EA, Crane EA, Molander GA. Dearomative intermolecular [2 + 2] photocycloaddition for construction of C(sp 3)-rich heterospirocycles on-DNA. Chem Sci 2023; 14:2713-2720. [PMID: 36908969 PMCID: PMC9993886 DOI: 10.1039/d3sc00144j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
DNA-encoded library (DEL) screens have significantly impacted new lead compound identification efforts within drug discovery. An advantage of DELs compared to traditional screening methods is that an exponentially broader chemical space can be effectively screened using only nmol quantities of billions of DNA-tagged, drug-like molecules. The synthesis of DELs containing diverse, sp3-rich spirocycles, an important class of molecules in drug discovery, has not been previously reported. Herein, we demonstrate the synthesis of complex and novel spirocyclic cores via an on-DNA, visible light-mediated intermolecular [2 + 2] cycloaddition of olefins with heterocycles, including indoles, azaindoles, benzofurans, and coumarins. The DNA-tagged exo-methylenecyclobutane substrates were prepared from easily accessible alkyl iodides and styrene derivatives. Broad reactivity with many other DNA-conjugated alkene substrates was observed, including unactivated and activated alkenes, and the process is tolerant of various heterocycles. The cycloaddition was successfully scaled from 10 to 100 nmol without diminished yield, indicative of this reaction's suitability for DNA-encoded library production. Evaluation of DNA compatibility with the developed reaction in a mock-library format showed that the DNA barcode was maintained with high fidelity, with <1% mutated sequences and >99% amplifiable DNA from quantitative polymerase chain reaction (PCR) and next generation sequencing (NGS).
Collapse
Affiliation(s)
- Longbo Li
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Guillaume Levitre
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Edward J McClain
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA.,Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Eric A Voight
- Drug Discovery Science & Technology, Discovery Research & Development, AbbVie, Inc., 1 North Waukegan Rd North Chicago Illinois 60064-1802 USA
| | - Erika A Crane
- Drug Hunter, Inc. 13203 SE 172nd Ave, Suite 166 PMB 2019 Happy Valley Oregon 97086 USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
25
|
Dubois MAJ, Rojas JJ, Sterling AJ, Broderick HC, Smith MA, White AJP, Miller PW, Choi C, Mousseau JJ, Duarte F, Bull JA. Visible Light Photoredox-Catalyzed Decarboxylative Alkylation of 3-Aryl-Oxetanes and Azetidines via Benzylic Tertiary Radicals and Implications of Benzylic Radical Stability. J Org Chem 2023; 88:6476-6488. [PMID: 36868184 DOI: 10.1021/acs.joc.3c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
Collapse
Affiliation(s)
- Maryne A J Dubois
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Hannah C Broderick
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Milo A Smith
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - James J Mousseau
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
26
|
Golfmann M, Glagow L, Giakoumidakis A, Golz C, Walker JCL. Organophotocatalytic [2+2] Cycloaddition of Electron-Deficient Styrenes. Chemistry 2023; 29:e202202373. [PMID: 36282627 PMCID: PMC10100360 DOI: 10.1002/chem.202202373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/05/2022]
Abstract
A visible-light organophotocatalytic [2+2] cycloaddition of electron-deficient styrenes is described. Photocatalytic [2+2] cycloadditions are typically performed with electron-rich styrene derivatives or α,β-unsaturated carbonyl compounds, and with transition-metal-based catalysts. We have discovered that an organic cyanoarene photocatalyst is able to deliver high-value cyclobutane products bearing electron-deficient aryl substituents in good yields. A range of electron-deficient substituents are tolerated, and both homodimerisations and intramolecular [2+2] cycloadditions to fused bicyclic systems are available by using this methodology.
Collapse
Affiliation(s)
- Maxim Golfmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Louis Glagow
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Antonios Giakoumidakis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
27
|
Skolia E, Kokotos CG. Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides. ACS ORGANIC & INORGANIC AU 2022; 3:96-103. [PMID: 37035280 PMCID: PMC10080724 DOI: 10.1021/acsorginorgau.2c00053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on N-aliphatic maleimides or using metal catalysts for visible-light driven reactions of N-aromatic maleimides. Herein, we identify the differences in reactivity between N-alkyl and N-aryl maleimides. For our optimized protocols, in the case of N-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of N-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
28
|
Nguyen QH, Um TW, Shin S. α-Carbonyl Radicals from N-Enoxybenzotriazoles: De Novo Synthesis of 9-Phenanthrols. Org Lett 2022; 24:8337-8342. [DOI: 10.1021/acs.orglett.2c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Quynh H. Nguyen
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
29
|
Liang Y, Kleinmans R, Daniliuc CG, Glorius F. Synthesis of Polysubstituted 2-Oxabicyclo[2.1.1]hexanes via Visible-Light-Induced Energy Transfer. J Am Chem Soc 2022; 144:20207-20213. [DOI: 10.1021/jacs.2c09248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yujie Liang
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Roman Kleinmans
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
30
|
Liu Y, Ni D, Brown MK. Boronic Ester Enabled [2 + 2]-Cycloadditions by Temporary Coordination: Synthesis of Artochamin J and Piperarborenine B. J Am Chem Soc 2022; 144:18790-18796. [PMID: 36200833 PMCID: PMC9832331 DOI: 10.1021/jacs.2c08777] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A strategy for the photosensitized cycloaddition of alkenylboronates and allylic alcohols by a temporary coordination is presented. The process allows for the synthesis of a diverse range of cyclobutylboronates. Key to development of these reactions is the temporary coordination of the allylic alcohol to the Bpin unit. This not only allows for the reaction to proceed in an intramolecular manner but also allows for high levels of stereo and regiocontrol. A key aspect of these studies is the utility of the cycloadducts in the synthesis of complex natural products artochamin J and piperarborenine B.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
31
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
32
|
Marotta A, Adams CE, Molloy JJ. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022; 61:e202207067. [PMID: 35748797 PMCID: PMC9544826 DOI: 10.1002/anie.202207067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 12/16/2022]
Abstract
Recently the fruitful merger of organoboron chemistry and photocatalysis has come to the forefront of organic synthesis, resulting in the development of new technologies to access complex (non)borylated frameworks. Central to the success of this combination is control of boron hybridisation. Contingent on the photoactivation mode, boron as its neutral planar form or tetrahedral boronate can be used to regulate reactivity. This Minireview highlights the current state of the art in photocatalytic processes utilising organoboron compounds, paying particular attention to the role of boron hybridisation for the target transformation.
Collapse
Affiliation(s)
- Alessandro Marotta
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Callum E. Adams
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - John J. Molloy
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
33
|
Nakayama K, Kamiya H, Okada Y. Radical cation Diels–Alder reactions of arylidene cycloalkanes. Beilstein J Org Chem 2022; 18:1100-1106. [PMID: 36105722 PMCID: PMC9443414 DOI: 10.3762/bjoc.18.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
TiO2 photoelectrochemical and electrochemical radical cation Diels–Alder reactions of arylidene cycloalkanes are described, leading to the construction of spiro ring systems. Although the mechanism remains an open question, arylidene cyclobutanes are found to be much more effective in the reaction than other cycloalkanes. Since the reaction is completed with a substoichiometric amount of electricity, a radical cation chain pathway is likely to be involved.
Collapse
Affiliation(s)
- Kaii Nakayama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
34
|
Marotta A, Adams CE, Molloy J. The Impact of Boron Hybridisation on Photocatalytic Processes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alessandro Marotta
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems GERMANY
| | - Callum E. Adams
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung biomolecular systems department GERMANY
| | - John Molloy
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Biomolecular Sytems Am Mühlenberg 1 14476 Potsdam GERMANY
| |
Collapse
|
35
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]-Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022; 61:e202200725. [PMID: 35446458 DOI: 10.1002/anie.202200725] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 12/17/2022]
Abstract
A new strategy for the synthesis of highly versatile cyclobutylboronates via the photosensitized [2+2]-cycloaddition of alkenylboronates and alkenes is presented. The process is mechanistically different from other processes in that energy transfer occurs with the alkenylboronate as opposed to the other alkene. This strategy allows for the synthesis of an array of diverse cyclobutylboronates. The conversion of these adducts to other compounds as well as their utility in the synthesis of melicodenine C is demonstrated.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Dongshun Ni
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Bernard G Stevenson
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - Vikrant Tripathy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Sarah E Braley
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| | - John R Swierk
- Department of Chemistry, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47401, USA
| |
Collapse
|
36
|
Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Intermolecular [2π+2σ]-photocycloaddition enabled by triplet energy transfer. Nature 2022; 605:477-482. [PMID: 35314833 DOI: 10.1038/s41586-022-04636-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 12/23/2022]
Abstract
For more than one century, photochemical [2+2]-cycloadditions have been used by synthetic chemists to make cyclobutanes, four-membered carbon-based rings. In this reaction, typically two olefin subunits (two π-electrons per olefin) cyclize to form two new C-C σ-bonds. Although the development of photochemical [2+2]-cycloadditions has made enormous progress within the last century, research has been focused on such [2π+2π]-systems, in which two π-bonds are converted into two new σ-bonds1,2. Here we report an intermolecular [2+2]-photocycloaddition that uses bicyclo[1.1.0]butanes as 2σ-electron reactants3-7. This strain-release-driven [2π+2σ]-photocycloaddition reaction was realized by visible-light-mediated triplet energy transfer catalysis8,9. A simple, modular and diastereoselective synthesis of bicyclo[2.1.1]hexanes from heterocyclic olefin coupling partners, namely coumarins, flavones and indoles, is disclosed. Given the increasing importance of bicyclo[2.1.1]hexanes as bioisosteres-groups that convey similar biological properties to those they replace-in pharmaceutical research and considering their limited access10,11, there remains a need for new synthetic methodologies. Applying this strategy enabled us to extend the intermolecular [2+2]-photocycloadditions to σ-bonds and provides previously inaccessible structural motifs.
Collapse
Affiliation(s)
- Roman Kleinmans
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Tiffany O Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hyeyun Keum
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon, South Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
37
|
Liu Y, Ni D, Stevenson BG, Tripathy V, Braley SE, Raghavachari K, Swierk JR, Brown MK. Photosensitized [2+2]‐Cycloadditions of Alkenylboronates and Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanyao Liu
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Dongshun Ni
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Bernard G. Stevenson
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - Vikrant Tripathy
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Sarah E. Braley
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Krishnan Raghavachari
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - John R. Swierk
- Department of Chemistry Binghamton University 4400 Vestal Parkway East Binghamton NY 13902 USA
| | - M. Kevin Brown
- Department of Chemistry Indiana University 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
38
|
Triandafillidi I, Nikitas NF, Gkizis PL, Spiliopoulou N, Kokotos CG. Hexafluoroisopropanol-Promoted or Brønsted Acid-Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. CHEMSUSCHEM 2022; 15:e202102441. [PMID: 34978379 DOI: 10.1002/cssc.202102441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although the use of light stimulating organic transformations has been known for more than a century, there is an increasing research interest on expanding the established knowledge. While [2+2] cycloadditions are promoted photochemically, literature precedent on the reaction between alkynes and maleimides is limited and only a handful of examples exist, focusing mainly on N-aliphatic maleimides. Herein, the differences in reactivity between N-alkyl and N-aryl maleimides were identified, and the use of hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA) as viable solutions was proposed in order to achieve high yields. In the case of N-alkyl maleimides, both HFIP-mediated or TFA-promoted reactions were established using LED 370 nm irradiation, without the use of an external photocatalyst. In the case of N-aryl maleimides, thioxanthone (THX) was employed as the energy transfer photocatalyst along with LED 427 nm irradiation and HFIP. Mechanistic studies were performed, supporting the pivotal role of HFIP or TFA, in acquiring good to high yields in both classes of maleimides.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
39
|
Schmid L, Glaser F, Schaer R, Wenger OS. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. J Am Chem Soc 2022; 144:963-976. [PMID: 34985882 DOI: 10.1021/jacs.1c11667] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclometalated Ir(III) complexes are often chosen as catalysts for challenging photoredox and triplet-triplet-energy-transfer (TTET) catalyzed reactions, and they are of interest for upconversion into the ultraviolet spectral range. However, the triplet energies of commonly employed Ir(III) photosensitizers are typically limited to values around 2.5-2.75 eV. Here, we report on a new Ir(III) luminophore, with an unusually high triplet energy near 3.0 eV owing to the modification of a previously reported Ir(III) complex with isocyanoborato ligands. Compared to a nonborylated cyanido precursor complex, the introduction of B(C6F5)3 units in the second coordination sphere results in substantially improved photophysical properties, in particular a high luminescence quantum yield (0.87) and a long excited-state lifetime (13.0 μs), in addition to the high triplet energy. These favorable properties (including good long-term photostability) facilitate exceptionally challenging organic triplet photoreactions and (sensitized) triplet-triplet annihilation upconversion to a fluorescent singlet excited state beyond 4 eV, unusually deep in the ultraviolet region. The new Ir(III) complex photocatalyzes a sigmatropic shift and [2 + 2] cycloaddition reactions that are unattainable with common transition metal-based photosensitizers. In the presence of a sacrificial electron donor, it furthermore is applicable to demanding photoreductions, including dehalogenations, detosylations, and the degradation of a lignin model substrate. Our study demonstrates how rational ligand design of transition-metal complexes (including underexplored second coordination sphere effects) can be used to enhance their photophysical properties and thereby broaden their application potential in solar energy conversion and synthetic photochemistry.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Raoul Schaer
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
40
|
Michalland J, Casaretto N, Zard SZ. A Modular Access to 1,2‐ and 1,3‐Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jean Michalland
- Laboratoire de Synthèse Organique CNRS UMR 7652 Ecole polytechnique 91128 Palaiseau Cedex France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moleculaire CNRS UMR 9168 Ecole polytechnique 91128 Palaiseau Cedex France
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique CNRS UMR 7652 Ecole polytechnique 91128 Palaiseau Cedex France
| |
Collapse
|
41
|
Deeprose MJ, Lowe M, Noble A, Booker-Milburn KI, Aggarwal VK. Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Org Lett 2021; 24:137-141. [PMID: 34882426 DOI: 10.1021/acs.orglett.1c03746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of densely functionalized cyclobutanes containing all-carbon quaternary stereocenters in high regio- and diastereoselectivity remains synthetically challenging. Herein, we show that this can be achieved by using a sequential photocatalysis strategy, wherein 3-chloromaleimides undergo triplet sensitized [2 + 2] photocycloadditions with alkynes or alkenes followed by photoredox-catalyzed dechlorinative C-C bond forming reactions to install quaternary stereocenters. This allows the rapid assembly of structurally complex and sterically congested 3-azabicyclo[3.2.0]heptane scaffolds from readily available starting materials.
Collapse
Affiliation(s)
- Mark J Deeprose
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Martin Lowe
- Medicinal Chemistry Department, UCB, 216 Bath Road, Slough, SL1 3WE, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | | | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
42
|
Gao L, Bu Y. Molecular dynamics insights into electron-catalyzed dissociation repair of cyclobutane pyrimidine dimer. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
43
|
Transfer of photochemistry from UV to visible: An expedient access to a bridged pyrrolidine. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Michalland J, Casaretto N, Zard SZ. A Modular Access to 1,2- and 1,3-Disubstituted Cyclobutylboronic Esters by Consecutive Radical Additions. Angew Chem Int Ed Engl 2021; 61:e202113333. [PMID: 34716652 DOI: 10.1002/anie.202113333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 01/22/2023]
Abstract
A modular approach to substituted cyclobutylboronic esters is described. It proceeds by successive intermolecular radical additions of xanthates to pinacolato 1-cyclobutenylboronate and to pinacolato bicyclo[1.1.0]but-1-ylboronate. Success hinges on tuning the stability of the α-boryl radical by exploiting the stabilizing influence of the trivalent boronic ester and the slightly destabilizing cyclobutane, which increases the σ-character of the radical. Reductive removal of the xanthate group finally provides a range of 1,2- and 1,3-disubstituted cyclobutylboronic esters. The contrast with cyclopropylboronic esters is striking, since the strong destabilization by the highly strained cyclopropane ring allows the first radical addition to take place but not the second. Furthermore, the first adducts are geminal xanthyl boronic esters that can be converted into cyclobutanones. This chemistry furnishes cyclobutylboronic esters that would be quite difficult to obtain otherwise and thus complements existing methods.
Collapse
Affiliation(s)
- Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moleculaire, CNRS UMR 9168, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
45
|
Simlandy AK, Lyu MY, Brown MK. Catalytic Arylboration of Spirocyclic Cyclobutenes: Rapid Access to Highly Substituted Spiro[3.n]alkanes. ACS Catal 2021; 11:12815-12820. [PMID: 35464106 DOI: 10.1021/acscatal.1c03491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method to achieve the synthesis of highly substituted spirocyclic cyclobutanes is disclosed. The reaction involves the catalytic arylboration of cyclobutenes. Depending on the substitution pattern of the cyclobutene, either a Cu/Pd- or a Ni-catalyzed reaction was utilized. In the case of the Cu/Pd catalyzed reactions, the identification of a Cu-complex for arylboration was crucial to observe high selectivity. The synthetic utility of the products is demonstrated, and the mechanistic details are discussed.
Collapse
Affiliation(s)
- Amit Kumar Simlandy
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, Indiana 47405, United States
| | - Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, Indiana 47405, United States
| | - M. Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave. Bloomington, Indiana 47405, United States
| |
Collapse
|
46
|
Schmid L, Kerzig C, Prescimone A, Wenger OS. Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis. JACS AU 2021; 1:819-832. [PMID: 34467335 PMCID: PMC8395604 DOI: 10.1021/jacsau.1c00137] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 05/28/2023]
Abstract
Ruthenium(II) polypyridine complexes are among the most popular sensitizers in photocatalysis, but they face some severe limitations concerning accessible excited-state energies and photostability that could hamper future applications. In this study, the borylation of heteroleptic ruthenium(II) cyanide complexes with α-diimine ancillary ligands is identified as a useful concept to elevate the energies of photoactive metal-to-ligand charge-transfer (MLCT) states and to obtain unusually photorobust compounds suitable for thermodynamically challenging energy transfer catalysis as well as oxidative and reductive photoredox catalysis. B(C6F5)3 groups attached to the CN - ligands stabilize the metal-based t2g-like orbitals by ∼0.8 eV, leading to high 3MLCT energies (up to 2.50 eV) that are more typical for cyclometalated iridium(III) complexes. Through variation of their α-diimine ligands, nonradiative excited-state relaxation pathways involving higher-lying metal-centered states can be controlled, and their luminescence quantum yields and MLCT lifetimes can be optimized. These combined properties make the respective isocyanoborato complexes amenable to photochemical reactions for which common ruthenium(II)-based sensitizers are unsuited, due to a lack of sufficient triplet energy or excited-state redox power. Specifically, this includes photoisomerization reactions, sensitization of nickel-catalyzed cross-couplings, pinacol couplings, and oxidative decarboxylative C-C couplings. Our work is relevant in the greater context of tailoring photoactive coordination compounds to current challenges in synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Lucius Schmid
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
47
|
Gu X, Wei Y, Shi M. Construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine promoted by visible-light-induced photosensitization. Org Chem Front 2021. [DOI: 10.1039/d1qo01373d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light-induced intramolecular [2 + 2] cycloaddition of methylenecyclopropanes (MCPs) for the rapid construction of polysubstituted spiro[2.3] or [3.3] cyclic frameworks fused with a tosylated pyrrolidine.
Collapse
Affiliation(s)
- Xintao Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|