1
|
Zeng J, Yu W, Xu H, Zhang X, Xu Q, Lu J, Loh KP, Wu J. Benzophenone-Based Polymers and Covalent Organic Framework for Photocatalytic Molecular Oxygen Activation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27275-27288. [PMID: 40276880 DOI: 10.1021/acsami.5c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Photosensitization by photoactive materials requires well-designed molecular engineering to enable continuous photochemical processes. However, developing a heavy-atom-free (HAF) strategy to enhance the photoactivity of photosensitizers remains a significant challenge. In this study, we introduce a novel strategy to enhance photosensitization by incorporating benzophenone-rich components into 3D polymers (BQP1 and BQP2) and the 2D covalent organic framework (BQ-TMT COF). This incorporation accelerates both charge carrier separation and intersystem crossing, thereby significantly improving photo-to-chemical energy conversion and electron transfer reactions. Notably, the crystalline BQ-TMT COF enables efficient photocatalytic molecular O2 activation, producing both 1O2 and O2·- with high efficiency and recyclability. It demonstrates selective photocatalytic oxidation in 1O2-mediated sulfide transformations. Moreover, the material performs well in O2·--mediated oxidation, including the hydroxylation of boronic acids and oxidation of amines to imines. The BQ-TMT COF-based photoelectrode generates a photocurrent of approximately 20.7 μA·cm-2 at 0.4 V vs RHE and achieves a high photocatalytic hydrogen production rate. Our study demonstrates a HAF heterogeneous photosensitizer with efficient photoactive small molecule activation through molecular engineering.
Collapse
Affiliation(s)
- Jian Zeng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiangyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qinghua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Đorđević L, Jaynes TJ, Sai H, Barbieri M, Kupferberg JE, Sather NA, Weigand S, Stupp SI. Mechanical and Light Activation of Materials for Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418137. [PMID: 40072297 PMCID: PMC12016744 DOI: 10.1002/adma.202418137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Indexed: 04/24/2025]
Abstract
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur. It is reported here on a hybrid hydrogel that combines light-activated supramolecular polymers for superoxide production with thermal mechanical actuation of a covalent polymer. Superoxide production is important in organic synthesis and environmental remediation, and is a potential precursor to hydrogen peroxide liquid fuel. It is shown that the closing of pores in the hybrid hydrogel results in a substantial decrease in photocatalysis, but cycles of swollen and contracted states enhance photocatalysis. The observations motivate the development of biomimetic photosynthetic materials that integrate large scale motion and chemical reactions.
Collapse
Affiliation(s)
- Luka Đorđević
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Tyler J. Jaynes
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Hiroaki Sai
- Center for Regenerative NanomedicineNorthwestern University303 E SuperiorChicagoIL60611USA
| | - Marianna Barbieri
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Jacob E. Kupferberg
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Nicholas A. Sather
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Steven Weigand
- DuPont‐Northwestern‐Dow Collaborative Access Team Synchrotron Research CenterNorthwestern UniversityDND‐CATArgonneIL60439USA
| | - Samuel I. Stupp
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of MedicineNorthwestern University676 N St. Clair StreetChicagoIL60611USA
| |
Collapse
|
3
|
Lei Z, Song YH, Leng YL, Gu YJ, Yu M, Chen Y, Yu Q, Liu Y. In Situ NADH-Activated BODIPY-Based Macrocyclic Supramolecular Photosensitizer for Chemo-Photodynamic Synergistic Tumor Therapy. J Med Chem 2025; 68:5891-5906. [PMID: 40009744 DOI: 10.1021/acs.jmedchem.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Photodynamic therapy (PDT) based on supramolecular assembly has been receiving wide attention due to its great potential application in clinical treatment. Herein, we report a supramolecular photoelectron "reservoir" (SPR) constructed by tetracationic boron dipyrromethene (BODIPY)-based macrocycle (BBox·4Cl), doxorubicin (Dox), and tumor-targeted β-cyclodextrin-grafted hyaluronic acid (HACD). Upon irradiation, BBox·4Cl can in situ catalyze nicotinamide adenine dinucleotide (NADH) to continuously generate electrons to inject into SPR, which further transfers electrons to oxygen, inducing highly efficient hydroxyl radical generation even under hypoxia. Synergistically, Dox in SPR as "pump" can be encapsulated by BBox·4Cl and transport photoelectrons between two BODIPY units, while HACD as "sponge" can enrich BBox·4Cl by the electrostatic interaction to concentrate them closer in space, which facilitates intramolecular and intermolecular photoelectron transfer, respectively, and significantly enhances the generation of hydroxyl radicals. Meanwhile, electron replenishment in SPR causes NADH depletion and redox dysfunction, thereby accelerating the apoptosis and achieving highly effective synergistic tumor therapy.
Collapse
Affiliation(s)
- Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Hui Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuan-Li Leng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi-Jun Gu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Luo Y, Nie H, Zou C, Fan Y, Ni XL. Cucurbit[8]Uril-Stabilized Charge Transfer: An Efficient Supramolecular Approach Toward a Heterogeneous Organic Photocatalyst for Aerobic Oxidation Reactions. Chemistry 2025; 31:e202404273. [PMID: 39658510 DOI: 10.1002/chem.202404273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Host-stabilized charge transfer (HSCT) has been widely utilized in macrocycle-derived supramolecular assemblies and architectures. However, there has been less research attention focused on the direct fabrication of pure organic photocatalysts using HSCT. Herein, four viologen derivatives (m-PV2+, m-BPV2+, d-PV2+, and d-BPV2+) with different electron donor-acceptor (D-A) structures were synthesized. Their host-guest complexes with cucurbit[8]uril (Q[8]) in an aqueous solution could be switched using the substituted electron donor moieties, in which the host-guest complexes of m-BPV2+@Q[8] and d-BPV2+@Q[8] exhibited HSCT interactions. Control experiments revealed that the d-BPV2+@Q[8] complex had the strongest ability to sensitize singlet oxygen (1O2). This was ascribed to the increased π-conjugation of d-BPV2+@Q[8], which led to more effective HSCT upon encapsulation by the Q[8] host. Consequently, the d-BPV2+@Q[8] complex could be easily employed as a heterogeneous photocatalyst for the photooxidation reaction of thioether com-pounds with high selectivity. In particular, d-BPV2+@Q[8] was successfully applied to the synthesis of sulfoxide drugs, such as the con-version of inexpensive Iberverin ($7.0 per gram) to the expensive bioactive inhibitor Iberin ($19500.0 per gram) in high yield (94 %).
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Cuijuan Zou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yan Fan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
5
|
Li J, Kou M, Zhou S, Dong F, Huang X, Tang X, Tang Y, Liu W. Regulation of lanthanide supramolecular nanoreactors via a bimetallic cluster cutting strategy to boost aza-Darzens reactions. Nat Commun 2025; 16:2169. [PMID: 40038263 DOI: 10.1038/s41467-024-54950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 03/06/2025] Open
Abstract
Supramolecular nanoreactor as artificial mimetic enzyme is attracting a growing interest due to fine-tuned cavity and host-guest molecular recognition. Here, we design three 3d-4f metallo-supramolecular nanocages with different cavity sizes and active sites (Zn2Er4L14, Zn4Er6L26, and Zn2Er8L38) based on a "bimetallic cluster cutting" strategy. Three nanocages exhibit a differential catalysis for the three-component aza-Darzens reaction without another additive, and only Zn2Er8L38 with the largest cavity and the most lanthanides centers has excellent catalytic conversion for monosubstituted and disubstituted N-aryl aziridine products. The host-guest relationship investigations confirm that Zn2Er8L38 significantly outperforms Zn2Er4L14 with the smaller cavity and Zn4Er6L26 with the fewer Lewis acidic sites in multi-component reaction is mainly attributed to the synergy of inherent confinement effect and multiple Lewis acidic sites in nanocage. The "bimetallic cluster cutting" strategy for the construction of 3d-4f nanocages with large windows may represent a potential approach to develop supramolecular nanoreactor with high catalytic efficiency.
Collapse
Affiliation(s)
- Jingzhe Li
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Manchang Kou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Shengbin Zhou
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Fan Dong
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Huang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoliang Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| | - Yu Tang
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | - Weisheng Liu
- MOE Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Engineering Research Center of Rare Earth Functional Materials, Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
- Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China.
| |
Collapse
|
6
|
Fu F, Liu Y, Liu M, Li Z, Zhong W, Li Y, Li K, Wang J, Huang Y, Li Y, Liu W, Zhang Y, Xiang K, Liu H, Wang P, Liu D. Non-noble Metal Single-Molecule Photocatalysts for the Overall Photosynthesis of Hydrogen Peroxide. J Am Chem Soc 2025; 147:6390-6403. [PMID: 39681837 DOI: 10.1021/jacs.4c09445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Despite the great progress in molecule photocatalytic solar energy conversion, it is particularly challenging to realize a photocatalytic overall reaction in a non-noble metal complex, which represents a new paradigm for photosynthesis. In this study, a class of novel non-noble metal complexes with head-to-tail geometry were designed and readily synthesized via the coordination of triphenylamine-modified 2,2': 6',2″-terpyridine ligands with Zn2+. As expected, these complexes exhibited the desired through-space charge-transfer transition, generating both long-lived excited states (on the order of microseconds) and separate redox centers under visible-light irradiation. These complexes have particularly low exciton binding energies, which make them excellent heterogeneous single molecular photocatalysts for the overall photosynthetic production of H2O2. Remarkably, a high H2O2 evolution rate (8862 μmol g-1 h-1) was achieved in pure H2O under an air atmosphere via precise molecular tailoring, revealing the unparalleled advantages of molecular photocatalysts in improving the catalytic rate of H2O2 production. This is the first time that single-molecule photocatalysts have been used to efficiently complete the photosynthesis of H2O2. This study presents a new paradigm for photocatalytic energy conversion and provides unique insights into the design of molecular photocatalysts.
Collapse
Affiliation(s)
- Fan Fu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongxin Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingliang Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wanying Zhong
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yaqin Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yi Zhang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Institute of Environmental Research at Greater Bay Area; Guangzhou Key Laboratory for Clean Energy and Materials; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
7
|
Wang W, Dai J, Zhang Z, Zhang J, Tian H. Vintages for New Fashion: Red-Shifted Photoswitching via the Triplet-Photoreaction Channel with Charge-Transfer Complex Sensitizers. J Am Chem Soc 2025; 147:5486-5494. [PMID: 39879537 DOI: 10.1021/jacs.4c18682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Triplet-sensitization has been proven invaluable for creating photoswitches operated over a full visible-light spectrum. While designing efficient triplet-sensitizers is crucial for establishing visible-light photochromism, it remains an appealing yet challenging task. In this work, we propose a versatile strategy to fabricate triplet-sensitizers with intermolecular charge-transfer complexes (CTCs). Through fine-tuning interactions between various donor and acceptor units, a series of CTC sensitizers were prepared with intensified visible-light absorption and a distinctive narrow ΔEST feature. By virtue of this, a bidirectional visible-light photochromism (475 nm/605 nm) was achieved via integrating CTC sensitizers with classic diarylethene (DAE) photoswitches in various substrates upon triplet photoreaction pathways. Proof-of-concept applications, such as photoresponsive printing and mechanic-facilitated inkpad, were subsequently presented. The flexible accessibility and tunability of CTC sensitizers facilitate both generalized and customized production of photoresponsive systems that operate within the visible-light region.
Collapse
Affiliation(s)
- Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Bazzoni M, Rispoli F, Venturelli S, Cera G, Secchi A. Synthesis and Characterization of a Two-Station Two-Gate Calix[6]arene-Based [2]Catenane. Molecules 2025; 30:732. [PMID: 39942834 PMCID: PMC11820616 DOI: 10.3390/molecules30030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
The design, construction, and operation of devices and machines at the molecular scale using the bottom-up approach captivates a lot of interest in nanoscience. Particularly intriguing are interlocked molecular architectures, which are ideal candidates for these aims. [n]Pseudorotaxanes, [n]rotaxanes, and [n]catenanes serve as versatile prototypes for constructing molecular machines because they can be engineered to execute a diverse range of functions, including mechanical-like movements in response to chemical, photochemical, or electrochemical stimuli. The study explores the synthesis and characterization of a two-station two-gate calix[6]arene-based [2]catenane. Building on prior work with calix[6]arene-based Mechanically Interlocked Molecules (MIMs), this research integrates two functional gates-an azobenzene unit and a stilbene unit -into a two-station "track" ring. The synthesis employed threading and capping strategies to prepare the precursor [2]rotaxane isomers 12(azo-up) and 12(azo-down). Challenges in the deprotection of TBS groups led to the adoption of a supramolecular-assisted approach for the direct synthesis of the desired pseudorotaxane. The final catenation reaction, using a trans-stilbene-based bisacyl chloride as the "clipping unit", afforded the [2]catenane C3(azo-down) in 25% yield after purification. Mass spectrometry and NMR spectroscopy confirmed the successful synthesis and orientation of C3(azo-down).
Collapse
Affiliation(s)
| | | | | | | | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy; (M.B.); (F.R.); (G.C.)
| |
Collapse
|
9
|
Li N, Li Y, Wang Z, Cao T, Liu C, Wang H, Li G, He G. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202410525. [PMID: 39041715 DOI: 10.1002/anie.202410525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Directional electron flow in the photocatalyst enables efficient charge separation, which is essential for efficient photocatalysis of H2 production. Here, we report a novel class of tetracationic cyclophanes (7) incorporating bipyridine Pt(II) and selenoviologen. X-ray single-crystal structures reveal that 7 not only fixes the distances and spatial positions between its individual units but also exhibits a box-like rigid electron-deficient cavity. Moreover, host-guest recognition phenomena are observed between 7 and ferrocene, forming host-guest complexes with a 1 : 1 stoichiometry. 7 exhibits good redox properties, narrow energy gaps, and strong absorption in the visible range (370-500 nm) due to containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that 7 has stabilized dicationic biradical, efficient charge separation, and facilitates directional electron flow to achieve efficient electron transfer due to the formation of rigid cyclophane and electronic architecture. Then, 7 is applied to visible-light-driven hydrogen evolution with high hydrogen production (132 μmol), generation rate (11 μmol/h), turnover number (221), and apparent quantum yield (1.7 %), which provides a simplified and efficient photocatalytic strategy for solar energy conversion.
Collapse
Affiliation(s)
- Naiyao Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Yawen Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Tianle Cao
- School of Materials Science and Engineering, Chang'an University, Xi'an, Shaanxi Province, 710064, P. R. China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Hongyue Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Future Industrial Innovation Institute of Emerging Information Storage and Smart Sensor, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, P. R. China
| |
Collapse
|
10
|
Singh A, Kumar M, Bhalla V. Regulating the Twisted Intramolecular Charge Transfer and Anti-heavy Atom Effect at Supramolecular Level for Favorable Photosensitizing Activity in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62064-62081. [PMID: 39481003 DOI: 10.1021/acsami.4c13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photosensitizing assemblies based on twisted intramolecular charge transfer (TICT) active donor-acceptor-donor (D-A-D) system BrTPA-Qx having bromine atoms at the periphery have been developed. Through strategic incorporation of bromine atoms at the para-position to the nitrogen-carbon bonds of phenyl rings at the periphery, halogen-halogen interactions are induced in BrTPA-Qx nanoassemblies in H2O:DMSO (99:1) solution. Hence, the anti-heavy atom effect is induced, and the limitations of TICT (dark excited state) and heavy atom effect (triplet deactivation via radiative decay) could be overcome. Because of TICT and anti-heavy atom effect, supramolecular BrTPA-Qx nanoassemblies demonstrate high efficiency in promoting activation of aerial oxygen via electron and energy transfer pathways in aqueous media. The significant influence of the stabilized TICT state and anti-heavy-atom effect in controlling the ROS generation was validated through in-depth solvent-dependent photophysical studies and investigations of the structure-activity relationship in several model compounds. The notable photosensitizing activity of BrTPA-Qx nanoassemblies is manifested in their ability to efficiently catalyze the oxidative coupling of benzylamine (via type I and type II mechanisms), Knoevenagel condensation of aromatic aldehydes (type II), and oxidative hydroxylation of arylboronic acids (type I) under mild conditions.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| |
Collapse
|
11
|
Chen L, Chen Z, Wang W, Chen C, Kuboi Y, Zhang C, Li C, Zhang S. Interwoven Trimeric Cage-Catenanes with Topological Chirality. J Am Chem Soc 2024; 146:30303-30313. [PMID: 39437416 DOI: 10.1021/jacs.4c10104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Catenanes have gained increasing attention for their unique features such as topological chirality. To date, the majority of works have focused on catenanes comprising monocyclic rings. Due to the lack of efficient synthetic strategy, catenanes of multiannulated monomers remain scarce. Here, we report the one-pot synthesis of an interwoven trimeric cage-catenane in high yield by dynamic imine condensation between diamine linkers of suitable length and trialdehyde panels in stoichiometry. The formation of cage-catenane is driven by the efficient 6-fold π-π stacking of panels. The monomeric cage and trimeric cage-catenane are interconvertible with reversible imine chemistry, with the latter thermodynamically being more favored. Using a topology-based statistical model, we first reveal that the formation probability of the interwoven catenane surpasses that of its chain-like isomer by 20%. When this pure mathematical model is refined by taking into account the strong template effect provided by the π-π stacking of aromatic panels, it shows that the interwoven structure emerges as the dominant species, almost ruling out the formation of the latter. Although composed of achiral cage monomers, the topological chirality of the interwoven trimeric catenane is unraveled by chiral-high-performance liquid chromatography (HPLC) and circular dichroism (CD) spectroscopy, and single-crystal X-ray diffraction (XRD) analysis of the interwoven cage-catenane also reveals a pair of two topological enantiomers. Our probability analysis-aided rationale would provide a design rationale for guiding the efficient synthesis of topologically sophisticated structures.
Collapse
Affiliation(s)
- Lihua Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenghong Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihao Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhao Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yoshiaki Kuboi
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chi Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenfei Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Ghosh P, Ratha R, Shekhar Purohit C. Functionalization of a [2]Catenane with Donor-Acceptor Chromophores Using a Metal Template and Click Reactions. Chem Asian J 2024; 19:e202400668. [PMID: 39082610 DOI: 10.1002/asia.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Synthesizing molecules with significant topological features, such as catenanes, tailored with specific groups to confer desired functionality, is essential for investigating various properties arising from the entanglement due to mechanical bonds. This investigation can pave the way for uncovering novel functional materials employing mechanically interlocked molecules (MIMs). In this direction, we have synthesized a π-donor (D) and π-acceptor (A) functionalized [2]catenane using a non-labile Co(III) metal ion as a template with pyridine-diamide templating center and utilizing click reaction for ring-closing. The donor group is a fluorene derivative, and the acceptor is a benzophenazine derivative, commonly employed in synthesizing conjugated polymers for various optoelectronic devices. Synthetically, the acceptor group was introduced into a macrocycle with a pyridine diamide unit. It was then threaded with a ligand having alkyne terminals to obtain the desired [2]pseudorotaxane utilizing cobalt ion as a template. Ring-closing was then performed with a di-azide functionalized molecule with the donor chromophore. The desired D-A functionalized [2]catenane was obtained after demetalation. All the starting materials, macrocycle, and entangled structures have been characterized by 1H-NMR, 13C-NMR, and mass spectroscopy. Some of these materials were also characterized by single-crystal X-ray analysis. The photophysical properties are studied by UV-visible and fluorescence spectroscopy.
Collapse
Affiliation(s)
- Priyanka Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, 752050, India
- An OCC of Homi Bhabha National Institute (HBNI), Mumbai, 400 04
| |
Collapse
|
13
|
Shi K, Jia G, Wu Y, Zhang S, Chen J. Dynamic control of circumrotation of a [2]catenane by acid-base switching. ChemistryOpen 2024; 13:e202300304. [PMID: 38333963 PMCID: PMC11319237 DOI: 10.1002/open.202300304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
Dynamic control of the motion in a catenane remains a big challenge as it requires precise design and sophisticated well-organized structures. This paper reports the design and synthesis of a donor-acceptor [2]catenane through mechanical interlocking, employing a crown ether featuring two dibenzylammonium salts on its side arms as the host and a cyclobis(paraquat-p-phenylene) (CBPQT ⋅ 4PF6) ring as the guest molecule. By addition of external acid or base, the catenane can form self-complexed or decomplexed compounds to alter the cavity size of the crown ether ring, consequently affecting circumrotation rate of CBPQT ⋅ 4PF6 ring of the catenane. This study offers insights for the design and exploration of artificial molecular machines with intricate cascading responsive mechanisms.
Collapse
Affiliation(s)
- Kelun Shi
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Guohui Jia
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Ying Wu
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Shilong Zhang
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsGuangzhou510006P. R. China
| |
Collapse
|
14
|
Podh MB, Ratha R, Purohit CS. Template Assisted Synthesis of Linear [5]Catenane by Post-Functionalization of Templated [2]Catenane and Using Click Reaction. Chem Asian J 2024; 19:e202400351. [PMID: 38700467 DOI: 10.1002/asia.202400351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Polymers with all mechanically interlocked rings, such as linear [n]catenanes, have great potential as functional materials due to possible higher degrees of freedom that may contribute to their flexibility but remain elusive. All the synthetic methods used to prepare such a polymer yield mixtures of products. In the absence of higher molecular weight linear [n]catenanes, emphasis on synthesizing low molecular weight oligomers is being pursued. Here, we have described the synthesis of a linear [5]catenane by post-functionalizing a Co(III) templated [2]catenane having a pyridine-diamide unit free for further metal ion coordination. Two molecules were synthesized with suitable threading groups: one, two terminal azide groups, and two, with two terminal alkyne groups to form two [3]pseudorotaxane utilizing Co(III) coordination. These units were then joined, forming a macrocycle, using click reaction, giving the desired metalated linear [5]catenane in 40 % yield. Removal of metal ions leads to linear [5]catenane. In addition, the formation of linear [3] and [2]catenane are also observed. All synthesized structures have been isolated by column chromatographic technique and characterized by 1H-NMR, 13C-NMR, and mass spectroscopy.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India-, 752050
- Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit, Homi Bhabha National Institute (HBNI) Mumbai, Mumbai, India-, 400094
| |
Collapse
|
15
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
16
|
Li HY, Li ZS, Qiu GH, Zhang RR, Wang YR, Wang F, Huang RW, Liu XF, Zang SQ. Viologen-based ionic conjugated mesoporous polymer as the electron conveyer for efficient polysulfide trapping and conversion. Sci Bull (Beijing) 2024; 69:1071-1080. [PMID: 38302332 DOI: 10.1016/j.scib.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024]
Abstract
The commercialization of lithium-sulfur (Li-S) batteries has been hindered by the shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs). Herein, we reported a viologen-based ionic conjugated mesoporous polymer (TpV-Cl), which acts as the cathode host for modifying Li-S batteries. The viologen component serves as a reversible electron conveyer, leading to a comprehensive enhancement in the adsorption of polysulfides and improved conversion rate of polysulfides during the electrochemical process. As a result, the S@TpV-PS cathode exhibits outstanding cycling performance, achieving 300 cycles at 2.0 C (1 C = 1675 mA g-1) with low decay rate of 0.032% per cycle. Even at a high sulfur loading of 4.0 mg cm-2, S@TpV-PS shows excellent cycling stability with a Coulombic efficiency of up to 98%. These results highlight the significant potential of S@TpV-PS in developing high-performance Li-S batteries.
Collapse
Affiliation(s)
- Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Shan Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Gang-Hao Qiu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Rou-Rou Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ya-Rui Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ren-Wu Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Fei Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Key Laboratory of Special Environmental Functional Materials (Zhengzhou University), Ministry of Education, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Podh MB, Ratha R, Purohit CS. Template Assisted One-Pot Synthesis of [2], Linear [3], and Radial [4]Catenane via Click Reaction. Chem Asian J 2024; 19:e202400031. [PMID: 38372572 DOI: 10.1002/asia.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Design and synthesis of higher order catenane are unexpectedly complex and involve precise cooperation among the precursors overcoming competing and opposing interactions. We achieved synthesis of [2], linear [3], radial [4] in a one-pot reaction by consecutive ring closing through click reactions. This synthesis gave three isolable products due to two, four, and six-click reactions between suitable coupling partners. Yields of the isolate templated-catenane decrease from lower to higher-ordered catenane (40 %, 12 %, and 4 %), probably due to the bite angle as well as the flexibility of the reacting partners. Removal of templating cobalt(III) ion leads to the formation of fully organic [2], linear [3], and radial [4]catenane. These synthesized catenanes were purified by column chromatography and characterized by 1H-NMR, 13C-NMR, and ESI-MS spectroscopy. The synthesized catenanes have free binding sites suitable for post-functionalization and may be used for the synthesis of higher-ordered catenane.
Collapse
Affiliation(s)
- Mana Bhanjan Podh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Radhakrishna Ratha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India -, 752050
- Homi Bhabha National Institute (HBNI), Mumbai, India -, 400094
| |
Collapse
|
18
|
Wang L, Zhu W. Organic Donor-Acceptor Systems for Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307227. [PMID: 38145342 PMCID: PMC10933655 DOI: 10.1002/advs.202307227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/06/2023] [Indexed: 12/26/2023]
Abstract
Organic semiconductor materials are considered to be promising photocatalysts due to their excellent light absorption by chromophores, easy molecular structure tuning, and solution-processable properties. In particular, donor-acceptor (D-A) type organic photocatalytic materials synthesized by introducing D and A units intra- or intermolecularly, have made great progress in photocatalytic studies. More and more studies have demonstrated that the D-A type organic photocatalytic materials combine effective carrier separation, tunable bandgap, and sensitive optoelectronic response, and are considered to be an effective strategy for enhancing light absorption, improving exciton dissociation, and optimizing carrier transport. This review provides a thorough overview of D-A strategies aimed at optimizing the photocatalytic performance of organic semiconductors. Initially, essential methods for modifying organic photocatalytic materials, such as interface engineering, crystal engineering, and interaction modulation, are briefly discussed. Subsequently, the review delves into various organic photocatalytic materials based on intramolecular and intermolecular D-A interactions, encompassing small molecules, conjugated polymers, crystalline polymers, supramolecules, and organic heterojunctions. Meanwhile, the energy band structures, exciton dynamics, and redox-active sites of D-A type organic photocatalytic materials under different bonding modes are discussed. Finally, the review highlights the advanced applications of organic photocatalystsand outlines prospective challenges and opportunities.
Collapse
Affiliation(s)
- Lingsong Wang
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated CircuitsMinistry of EducationTianjin Key Laboratory of Molecular Optoelectronic SciencesDepartment of ChemistrySchool of ScienceTianjin UniversityTianjin300072China
| |
Collapse
|
19
|
Ko H, Kang DG, Choi YJ, Wi Y, Kim S, Pham HH, Lee KM, Godman NP, McConney ME, Jeong KU. Polarization-Dependent Thin Films with Biaxial Anisotropic Absorption Constructed by a Single Coating and Subsequent Topochemical Polymerization of Chromophores. J Am Chem Soc 2024; 146:4393-4401. [PMID: 38329893 DOI: 10.1021/jacs.3c06444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
For the construction of hierarchical superstructures with biaxial anisotropic absorption, a newly synthesized diacetylene-functionalized bipyridinium is self-assembled to use an electron-accepting host for capturing and arranging guests. The formation of the donor-acceptor complex triggers an intermolecular charge transfer, leading to chromophore activation. Polarization-dependent multichroic thin films are prepared through a sequential process of single-coating, self-assembly, and topochemical polymerization of host-guest chromophores. Molecular packing structures constructed in the single-layer optical thin film possess orthogonal absorption axes for two different wavelengths. By tuning the linear polarization angle, the color of the optical thin film can be intentionally controlled. This single-layered multichroic film provides a new pathway for the development of anticounterfeiting and multiplexing encryptions.
Collapse
Affiliation(s)
- Hyeyoon Ko
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yu-Jin Choi
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Youngjae Wi
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Subin Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Huan Huu Pham
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyung Min Lee
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Nicholas P Godman
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Michael E McConney
- US Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
20
|
Cheng C, Yu J, Xu D, Wang L, Liang G, Zhang L, Jaroniec M. In-situ formatting donor-acceptor polymer with giant dipole moment and ultrafast exciton separation. Nat Commun 2024; 15:1313. [PMID: 38350993 PMCID: PMC10864376 DOI: 10.1038/s41467-024-45604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Donor-acceptor semiconducting polymers present countless opportunities for application in photocatalysis. Previous studies have showcased their advantages through direct bottom-up methods. Unfortunately, these approaches often involve harsh reaction conditions, overlooking the impact of uncontrolled polymerization degrees on photocatalysis. Besides, the mechanism behind the separation of electron-hole pairs (excitons) in donor-acceptor polymers remains elusive. This study presents a post-synthetic method involving the light-induced transformation of the building blocks of hyper-cross-linked polymers from donor-carbon-donor to donor-carbon-acceptor states, resulting in a polymer with a substantial intramolecular dipole moment. Thus, excitons are efficiently separated in the transformed polymer. The utility of this strategy is exemplified by the enhanced photocatalytic hydrogen peroxide synthesis. Encouragingly, our observations reveal the formation of intramolecular charge transfer states using time-resolved techniques, confirming transient exciton behavior involving separation and relaxation. This light-induced method not only guides the development of highly efficient donor-acceptor polymer photocatalysts but also applies to various fields, including organic solar cells, light-emitting diodes, and sensors.
Collapse
Affiliation(s)
- Chang Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China.
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China.
| | - Difa Xu
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, 98 Hongshan Road, Changsha, 410022, P.R. China
| | - Lei Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, 441053, P. R. China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang, 441053, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
21
|
Tripathi NP, Jain S, Singh RK, Sengupta S. Tripodal Triazine and 1,8-Naphthalimide-based Small Molecules as Efficient Photocatalysts for Visible-light Oxidative Condensation. Chemistry 2024; 30:e202303244. [PMID: 38038268 DOI: 10.1002/chem.202303244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Tripodal donor-acceptor (D-A) small molecules Tr-Np3 and Tr-T-Np3 consisting of triphenyl triazine and 1,8-naphthalimide, without and with a thiophene spacer have been synthesized. Their optical and redox properties were thoroughly investigated along with their utilization as photocatalysts in organic transformations. Compounds Tr-Np3 and Tr-T-Np3 showed broad absorption in the range of 290-480 nm in solutions and 300-510 nm in thin films. These tripodal molecules displayed wide optical bandgaps of (Eg opt ) 3.10 eV and 2.64 eV with very deep-lying HOMO energy levels (-6.60 eV and -6.03 eV) and low-lying LUMO levels (-3.50 eV and -3.40 eV). Appreciable electron mobilities of 5.24×10-4 cm2 /Vs and 6.14×10-4 cm2 /Vs were obtained for compounds Tr-Np3 and Tr-T-Np3 respectively by space-charge limited current (SCLC) measurements. Metal-free tripodal molecules Tr-Np3 and Tr-T-Np3 showed excellent photocatalytic abilities towards condensation of aromatic aldehydes and o-phenylenediamine followed by cyclization under visible light to yield benzimidazole derivatives that are of high medicinal value.
Collapse
Affiliation(s)
- Narendra Pratap Tripathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| | - Sanyam Jain
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Rajiv K Singh
- Photovoltaic Metrology Section, Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Punjab, 140306, India
| |
Collapse
|
22
|
Liu Y, Zhang G, Wang D, Chen G, Gao F, Tung CH, Wang Y. A cryptand-like Ti-coordination compound with visible-light photocatalytic activity in CO 2 storage. Dalton Trans 2024; 53:1989-1998. [PMID: 38205664 DOI: 10.1039/d3dt04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A cryptand-like Ti-coordination compound, namely Ti12Cs, comprising two Ti6-salicylate cages and hosting two Cs+ ions, was synthesized by the solvothermal method. It exhibits strong visible-light absorption with an absorption band edge of 652 nm, attributed to the electron transition from salicylate ligands to Ti ions. Electrochemical impedance, visible-light transient photocurrent response, and photoluminescence spectra confirm that Ti12Cs has excellent visible-light response and charge-separation properties. Ti12Cs can be used as a heterogeneous and recyclable photocatalyst for CO2/epoxide cycloaddition, with high utilization efficiency of visible-light under mild conditions. The mechanism investigation points to a synergistic effect of photocatalysis and Lewis acid catalysis.
Collapse
Affiliation(s)
- Yanshu Liu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dexin Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanjie Chen
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Fangfang Gao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
23
|
Lin CY, Hsu CH, Hung CM, Wu CC, Liu YH, Shi EHC, Lin TH, Hu YC, Hung WY, Wong KT, Chou PT. Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs. Nat Chem 2024; 16:98-106. [PMID: 37884666 DOI: 10.1038/s41557-023-01357-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV-visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m-2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Tse-Hung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuan-Cheng Hu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Hussain A, Irfan A, Kanwal F, Afzal M, Chaudhry AR, Hussien M, Ali MA. Exploration of violet-to-blue thermally activated delayed fluorescence emitters based on "CH/N" and "H/CN" substitutions at diphenylsulphone acceptor. A DFT study. Front Chem 2023; 11:1279355. [PMID: 38025080 PMCID: PMC10666053 DOI: 10.3389/fchem.2023.1279355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The violet-to-blue thermally activated delayed fluorescence (TADF) emitters were created employing several substituents based on 5,5-dimethyl-5,10-dihydropyrido [2,3-b][1,8] naphthyridine-diphenylsulphone (DMDHPN-DPS) called 1a via "CH/N" and "H/CN" substitutions at the diphenylsulphone acceptor (DPS) moiety. The parent compound 1a was selected from our former work after extensive research employing "CH/N" substitution on Dimethyl-acridine (DMAC) donor moiety. There is a little overlap amid the highest occupied molecular orbitals (HOMOs) and lowest un-occupied molecular orbitals (LUMOs) due to the distribution of HOMOs and LUMOs primarily on the DMDHPN donor and the DPS acceptor moieties, respectively. It resulted in a narrower energy gap (∆E ST) between the lowest singlet (S1) and triplet (T1) excited state. In nearly all derivatives, the steric hindrance results in a larger torsional angle (85°-98°) between the plane of the DMDHPN and the DPS moieties. The predicted ΔE ST values of the compounds with "H/CN" substitution were lower than those of the comparable "CH/N" substituents, demonstrating the superiority of the reversible inter-system crossing (RISC) from the T1 → S1 state. All derivatives have emission wavelengths (λ em) in the range of 357-449 nm. The LUMO → HOMO transition energies in the S1 states are lowered by the presence of -CN groups or -N = atoms at the ortho or meta sites of a DPS acceptor unit, causing the λ em values to red-shift. Furthermore, the λ em showed a greater red-shift as there were more-CN groups or -N = atoms. Three of the derivatives named 1b, 1g, and 1h, emit violet (394 nm, 399 nm, and 398 nm, respectively), while two others, 1f and 1i, emit blue shade (449 nm each) with reasonable emission intensity peak demonstrating that these derivatives are effective violet-to-blue TADF nominees. The lower ΔE ST value for derivative 1i (0.01 eV) with λ em values of 449 nm make this molecule the finest choice for blue TADF emitter amongst all the studied derivatives. We believe our research might lead to the development of more proficient blue TADF-OLEDs in the future.
Collapse
Affiliation(s)
- Aftab Hussain
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Afzal
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Mohamed Hussien
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Arif Ali
- Institute of Chemistry, Baghdad Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
25
|
Tse YC, Au-Yeung HY. Catenane and Rotaxane Synthesis from Cucurbit[6]uril-Mediated Azide-Alkyne Cycloaddition. Chem Asian J 2023; 18:e202300290. [PMID: 37460745 DOI: 10.1002/asia.202300290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/29/2023] [Indexed: 08/01/2023]
Abstract
The chemistry of mechanically interlocked molecules (MIMs) such as catenane and rotaxane is full of new opportunities for the presence of a mechanical bond, and the efficient synthesis of these molecules is therefore of fundamental importance in realizing their unique properties and functions. While many different types of preorganizing interactions and covalent bond formation strategies have been exploited in MIMs synthesis, the use of cucurbit[6]uril (CB[6]) in simultaneously templating macrocycle interlocking and catalyzing the covalent formation of the interlocked components is particularly advantageous in accessing high-order catenanes and rotaxanes. In this review, catenane and rotaxane obtained from CB[6]-catalyzed azide-alkyne cycloaddition will be discussed, with special emphasis on the synthetic strategies employed for obtaining complex [n]rotaxanes and [n]catenanes, as well as their properties and functions.
Collapse
Affiliation(s)
- Yuen Cheong Tse
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
26
|
Miyajima R, Ooe Y, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Hasegawa E. Triarylamine-Substituted Benzimidazoliums as Electron Donor-Acceptor Dyad-Type Photocatalysts for Reductive Organic Transformations. J Am Chem Soc 2023; 145:10236-10248. [PMID: 37127911 DOI: 10.1021/jacs.3c01264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 μs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.
Collapse
Affiliation(s)
- Ryo Miyajima
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
27
|
Li Y, Li N, Li G, Qiao Y, Zhang M, Zhang L, Guo QH, He G. The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host-Guest Interactions, and Visible-Light Photocatalysis. J Am Chem Soc 2023; 145:9118-9128. [PMID: 37015020 DOI: 10.1021/jacs.3c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 μmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Naiyao Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Yi Qiao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| |
Collapse
|
28
|
Wu JR, Wu G, Li D, Yang YW. Macrocycle-Based Crystalline Supramolecular Assemblies Built with Intermolecular Charge-Transfer Interactions. Angew Chem Int Ed Engl 2023; 62:e202218142. [PMID: 36651562 DOI: 10.1002/anie.202218142] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Synthetic macrocycles have served as principal tools for supramolecular chemistry, have greatly extended the scope of organic charge transfer (CT) complexes, and have proved to be of great practical value in the solid state during the past few years. In this Minireview, we summarize the research progress on the macrocycle-based crystalline supramolecular assemblies primarily driven by intermolecular CT interactions (a.k.a. macrocycle-based crystalline CT assemblies, MCCAs for short), which are classified by their donor-acceptor (D-A) constituent elements, including simplex macrocyclic hosts, heterogeneous macrocyclic hosts, and host-guest D-A pairs. Particular attention will be focused on their diverse functions and applications, as well as the underlying CT mechanisms from the perspective of crystal engineering. Finally, the remaining challenges and prospects are outlined.
Collapse
Affiliation(s)
- Jia-Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
29
|
Mo X, Deng Y, Lai SKM, Gao X, Yu HL, Low KH, Guo Z, Wu HL, Au-Yeung HY, Tse ECM. Mechanical Interlocking Enhances the Electrocatalytic Oxygen Reduction Activity and Selectivity of Molecular Copper Complexes. J Am Chem Soc 2023; 145:6087-6099. [PMID: 36853653 DOI: 10.1021/jacs.2c10988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.
Collapse
Affiliation(s)
- Xiaoyong Mo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Yulin Deng
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Samuel Kin-Man Lai
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Xutao Gao
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Hung-Ling Yu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Kam-Hung Low
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
| | - Zhengxiao Guo
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan
| | - Ho Yu Au-Yeung
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, University of Hong Kong, Hong Kong, China
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory of New Materials, University of Hong Kong, Hong Kong, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou 311305, People's Republic of China
| |
Collapse
|
30
|
Shen Y, Liu S, Lu L, Zhu C, Fang Q, Liu R, Shen Y, Song S. Pyridine-linked covalent triazine frameworks with bidirectional electron donor-acceptor for efficient organic pollution removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130428. [PMID: 36435039 DOI: 10.1016/j.jhazmat.2022.130428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous regulation of adsorption and photocatalytic performance of covalent triazine frameworks (CTFs) to achieve efficient control of organic pollution in water is a promising strategy, but remains a formidable challenge. Herein, pyridine linkers were innovatively introduced into pristine CTF (p-CTF) and the bidirectional electron donor-acceptor (EDA) system of contaminant-to-pyridine and pyridine-to-triazine was constructed inside. Experimental results combined with theoretical calculations revealed that pyridine units with π-deficient properties performed as electron acceptors and electron donors in the adsorption and photocatalytic processes, respectively. This special structure provided a directional pathway for electron transfer, which endowed CTFs with excellent adsorption and photocatalytic properties. Compared to p-CTF, pyridine-linked CTF (M-CTF) showed a 16-fold increase in adsorption capacity for naphthalene (973.4 μmol·g-1). Benefiting from the optimized light absorption and electron transfer form (n → π*transition), M-CTF exhibited high regeneration efficiency after adsorption of both bisphenol A (94 % after 4 cycles) and naphthalene (95 % after 4 cycles). Besides, the removal performance of organic micropollutants from natural water showed a great advantage thanks to the bidirectional EDA system. Overall, the present study provides new insights into the optimization of electronic structures for carbon-based environmental functional materials applied to organic pollution control in water.
Collapse
Affiliation(s)
- Yi Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Shasha Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Chao Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yixin Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|
31
|
Barlow SR, Akien GR, Evans NH. Hydrogen bond templated synthesis of catenanes and rotaxanes from a single isophthalic acid derivative. Org Biomol Chem 2023; 21:402-414. [PMID: 36525263 DOI: 10.1039/d2ob02019j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen bond templated [2]catenanes and [2]rotaxanes have been synthesized using azide precursors derived from a single isophthalic acid derivative precursor. The interlocked molecules were prepared using either stoichiometric or near stoichiometric amounts of macrocycle and CuAAC "click" precursors, with yields of up to 70% for the mechanical bond formation step. Successful preparation of the interlocked structures was confirmed by NMR spectroscopy and mass spectrometry, with detail of co-conformational behaviour being elucidated by a range of 1H NMR spectroscopic experiments.
Collapse
Affiliation(s)
- Sean R Barlow
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
32
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
33
|
Jiao Y, Stoddart J. Electron / hole catalysis: A versatile strategy for promoting chemical transformations. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Wu J, Li D, Wu G, Li M, Yang Y. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022; 61:e202210579. [DOI: 10.1002/anie.202210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jia‐Rui Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
- Key Laboratory of Automobile Materials of Ministry of Education and School of Materials Science and Engineering Jilin University 5988 Renmin Street Changchun 130025 P. R. China
| | - Dongxia Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Gengxin Wu
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Meng‐Hao Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
35
|
Yan D, Cai L, Hu S, Zhou Y, Zhou L, Sun Q. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induced‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022; 61:e202209879. [DOI: 10.1002/anie.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dan‐Ni Yan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Shao‐Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan‐Fang Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Li‐Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Qing‐Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
36
|
Wu JR, Li D, Wu G, Li MH, Yang YW. Modulating Supramolecular Charge‐Transfer Interactions in the Solid State using Compressible Macrocyclic Hosts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Rui Wu
- Jilin University College of Chemistry CHINA
| | - Dongxia Li
- Jilin University College of Chemistry CHINA
| | - Gengxin Wu
- Jilin University College of Chemistry CHINA
| | | | - Ying-Wei Yang
- Jilin University College of Chemistry 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
37
|
Xu W, Chao J, Tang B, Li Z, Xu J, Zhang X. Improving Photocatalytic Performance through the Construction of a Supramolecular Organic Framework. Chemistry 2022; 28:e202202200. [DOI: 10.1002/chem.202202200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Weiquan Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jin‐Yu Chao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200438 China
| | - Bohan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Zhan‐Ting Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University Shanghai 200438 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
38
|
Yan DN, Cai LX, Hu SJ, Zhou YF, Zhou LP, Sun QF. An Organo‐Palladium Host Built from a Dynamic Macrocyclic Ligand: Adaptive Self‐Assembly, Induce‐Fit Guest Binding, and Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dan-Ni Yan
- University of the Chinese Academy of Sciences Fujian College CHINA
| | - Li-Xuan Cai
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Shao-Jun Hu
- University of the Chinese Academy of Sciences Fujian College 350002 Fuzhou CHINA
| | - Yan-Fang Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Li-Peng Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Qing-Fu Sun
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry 155 Yangqiao Road West 350002 Fuzhou CHINA
| |
Collapse
|
39
|
Garci A, Weber JA, Young RM, Kazem-Rostami M, Ovalle M, Beldjoudi Y, Atilgan A, Bae YJ, Liu W, Jones LO, Stern CL, Schatz GC, Farha OK, Wasielewski MR, Fraser Stoddart J. Mechanically interlocked pyrene-based photocatalysts. Nat Catal 2022. [DOI: 10.1038/s41929-022-00799-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Wang T, Zhang L, Liu J, Li XX, Yuan L, Li SL, Lan YQ. A viologen-functionalized metal-organic framework for efficient CO 2 photoreduction reaction. Chem Commun (Camb) 2022; 58:7507-7510. [PMID: 35699400 DOI: 10.1039/d2cc02650c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a viologen-functionalized metal-organic framework (MOF), MIL-125-RV2+, was obtained by modification of MIL-125-NH2 with viologen molecules. MIL-125-RV2+, the first viologen-based MOF for photocatalytic CO2RR, exhibited excellent photocatalytic activity and high selectivity for HCOO-. The strategy of using photo-responsive color-changing organics to functionalize the MOF is significant for achieving efficient CO2RR.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xin Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lin Yuan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
41
|
A cobalt redox switch driving alcohol dehydrogenation by redox coupled molecular swing. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
43
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
44
|
Recent advances of visible-light photocatalysis in the functionalization of organic compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Kazem-Rostami M. A nitrogen-based chiral catenane for enantioenriching photocatalytic aerobic oxidation. NEW J CHEM 2022. [DOI: 10.1039/d2nj03732g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tröger's base's chirality merges catenanes’ photosensitizing characteristics to introduce the first nitrogen-based chiral hetero[2]catenane that proceeds enantioenriching photocatalytic aerobic oxidations.
Collapse
Affiliation(s)
- Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
46
|
Amemori S, Hamamoto R, Mizuno M. Enhancement of association constants of various charge-transfer complexes in siloxane solvents. NEW J CHEM 2022. [DOI: 10.1039/d2nj00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The association constants of various charge-transfer complexes were evaluated in n-hexane, octamethyltrisiloxane and PDMS to investigate the solvent effect.
Collapse
Affiliation(s)
- Shogo Amemori
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ryosuke Hamamoto
- School of Chemistry, College of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
47
|
Lei Z, Li Q, Sun JD, Wang ZK, Wang H, Li ZT, Zhang DW. A cucurbit[8]uril-stabilized 3D charge transfer supramolecular polymer with a remarkable confinement effect for enhanced photocatalytic proton reduction and thioether oxidation. Org Chem Front 2022. [DOI: 10.1039/d1qo01939b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A water-soluble porous supramolecular polymer is assembled through a CB[8]-based 2 + 2 host–guest binding motif, which can greatly increase the efficiency of photocatalysis.
Collapse
Affiliation(s)
- Zhuo Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Qian Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Jian-Da Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Ze-Kun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Nazarova A, Padnya P, Cragg PJ, Stoikov I. [1]Rotaxanes based on phosphorylated pillar[5]arenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj05461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[1]Rotaxanes based on monosubstituted phosphorus-containing pillar[5]arenes have been synthesized by the Kabachnik–Fields reaction for the first time in good yields.
Collapse
Affiliation(s)
- Anastasia Nazarova
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Pavel Padnya
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| | - Peter J. Cragg
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Ivan Stoikov
- A. M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya, 18, Kazan 420008, Russian Federation
| |
Collapse
|
49
|
Mamat M, Liu C, Abdukerem D, Abdukader A. A visible-light-induced thiol addition/aerobic oxidation cascade reaction of epoxides and thiols for the synthesis of β-hydroxylsulfoxides. Org Biomol Chem 2021; 19:9855-9859. [PMID: 34761765 DOI: 10.1039/d1ob01826d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical thiol addition/aerobic oxidation cascade reaction has been developed. This protocol enables efficient oxidative coupling of epoxides and thiols to access structurally valuable β-hydroxylsulfoxides. A broad range of functional groups are compatible to obtain moderate to good yields of the target products. Mechanistic studies revealed a sequential reaction pathway involving base-promoted thiol addition of thiols to epoxides and visible-light-induced aerobic oxygenation of thioethers.
Collapse
Affiliation(s)
- Marhaba Mamat
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Changhong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Dilshat Abdukerem
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| |
Collapse
|
50
|
Wang F, Yu D, Chen Y, Sun J, Wang JY, Zhou MD. Cross-dehydrogenative Coupling of N-Aryl Tetrahydroisoquinolines Catalyzed by an Anthraquinone-containing Polymeric Photosensitizer. Chem Asian J 2021; 16:4087-4094. [PMID: 34668333 DOI: 10.1002/asia.202100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Indexed: 11/09/2022]
Abstract
This work reports the photocatalytic application of an anthraquinone-containing polymeric photosensitizer (AQ-PHEMA) in the visible light-induced cross-dehydrogenative-coupling of N-aryl tetrahydroisoquinolines with several nucleophiles, including nitromethane, 1-methyl-2-alkyl ketone and dialkyl (aryl) phosphine oxide. The results revealed that the reaction could be catalyzed by AQ-PHEMA efficiently to afford a series of 1-substituted-2-aryl-1,2,3,4-tetrahydroisoquinolines in good to excellent yields with nice substrate tolerance under aerobic conditions at room temperature. The practical application potential was also showcased by a gram-scale synthesis. More importantly, the utilization of AQ-PHEMA as a heterogeneous photosensitizer also showed nice recyclability and reusability of the catalyst, whereas AQ-PHEMA can be easily separated and reused for at least 8 times without significant loss of photocatalytic activity.
Collapse
Affiliation(s)
- Fei Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| | - Dan Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| | - Yang Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| | - Jing-Yun Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, 113001, Dan Dong Road 1, Fushun, P. R. China
| |
Collapse
|