1
|
Dong Y, Yu D, Yu HY, Yan L, Zou Z, Hu H, Jin M, Ke Y. Conductive cellulose nanofibers tailored poly(propylene carbonate) island structure and synergistic reinforcement-toughening mechanism of high-performance poly(lactic acid) composites. Int J Biol Macromol 2025; 310:143421. [PMID: 40268029 DOI: 10.1016/j.ijbiomac.2025.143421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 04/25/2025]
Abstract
Biodegradable poly(lactic acid) (PLA) based composites have broad application prospects in replacing common polyester-based composites, but poor toughness and low thermal stability of PLA composites is still unsatisfactory for practical applications. Herein, a new preparation method of PLA composites by doping rigid conductive cellulose nanofibers (CNFene) and tough poly(propylene carbonate) (PPC) to tailor island structure and synergistic reinforcement-toughening mechanism is presented. Moreover, the composite films and paper-based coated beverage straws prepared from these composites has excellent thermal stability, high-strength, and high-toughness. Compared to pure PLA film, the tensile strength, elastic modulus, and elongation at break of the best PLA80P20C3 were increased by 25.3%, 17%, and 17.5 times respectively. And the strength of PLA80P20C3 coated straws reached up to 49.4 MPa, which was 12.7 times higher than untreated paper-based straws and 70% higher than PLA-coated straws. The high-performance PLA-based composites expanded the application areas of bio-packaging and hot drink straws.
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Duo Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China.
| | | | | | | | | | - Yizhou Ke
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No. 928, Hangzhou 310018, China
| |
Collapse
|
2
|
Wu B, Abdalkarim SYH, Li Z, Lu W, Yu HY. Synergistic enhancement of high-barrier polylactic acid packaging materials by various morphological carbonized cellulose nanocrystals. Carbohydr Polym 2025; 351:123118. [PMID: 39779024 DOI: 10.1016/j.carbpol.2024.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The environmental challenges linked to petroleum-based polymers have accelerated the search for alternative materials like polylactic acid (PLA). Diverse nanofillers, ranging from inorganic to organic and hybrid inorganic/organic varieties, are employed to bolster PLA performance. Yet, non-synergistic nanofillers often underperform due to inadequate dispersion and singular functionality within the PLA matrix. This work introduces carbonized cellulose nanocrystals (GCNC) with rod-like (R-GCNC) and spherical structures (S-GCNC), as synergistic reinforcements for PLA matrix. Unlike traditional nanofillers, the highly graphitized carbon layer on GCNC effectively mitigates CNC agglomeration while preserving cellulose morphology, fostering improved interfacial interactions and hydrogen bonding within PLA matrix. Moreover, GCNC acts as a nucleating agent, boosting the crystallization rate of PLA and enhancing its mechanical properties. Remarkable synergistic reinforcing effects of GCNC on PLA performances were observed. Particularly, the tensile strength of R-GCNC 5 % and S-GCNC 5 % composites surged by 93 % and 76 %, elongation at break increased by 29.4 % and 33.3 %, Young's modulus rose by 37 % and 18 %, and cold crystallization temperature decreased by 11.5 °C and 12.9 °C. Additionally, the GCNC/PLA composites exhibited exceptional thermal stability, UV resistance, and water vapor permeability reduced by 46 % for R-GCNC, and 35 % for S-GCNC, making them promising for industrial and sustainable packaging.
Collapse
Affiliation(s)
- Bunan Wu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhijiang Li
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weidong Lu
- Hang Zhou Xin Guang Plastic Co., Ltd., Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Jiang SJ, Xu YS, Sun XW, Chen L, Li YN, Li L, Cao FF. Lignocellulolytic Bacterial Engineering for Tailoring the Microstructure of Hard Carbon as a Sodium-Ion Battery Anode with Fast Plateau Kinetics. J Am Chem Soc 2025. [PMID: 40021453 DOI: 10.1021/jacs.4c15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Lignocellulosic biomass-derived pyrolysis hard carbon (LCB-HC) shows promising commercial potential as an anode material for sodium-ion batteries (SIBs). LCB compromises multiple biopolymer carbon sources, including cellulose, hemicellulose, and lignin, which influence the formation and microstructure of pyrolysis HC. However, the poor plateau kinetics of LCB-HC is one of the main obstacles that severely limits its energy density with high power density, which could be attributed to the narrow interlayer distance and the lack of abundant closed pores for the intercalation/filling of Na+. Herein, we proposed a bottom-up approach to tailoring the microstructure of LCB-HC by regulating the components of the LCB precursor at the molecular level using bioenzymes secreted by lignocellulolytic bacteria. This mild and efficient enzymatic hydrolysis pathway partially depolymerized the biopolymers of basswood specifically, thereby enabling the construction of a small curved-graphite domain architecture with increased closed pores and an enlarged interlayer distance of LCB-HC, benefiting the low-voltage plateau Na+ storage with accelerated kinetics. As a result, the basswood-derived HC delivers a reversible capacity of 366.4 mAh g-1 and performed remarkable plateau capacity retainability with a high proportion of 74.3% even with increased current density to 1000 mA g-1. Such a microbial-chemistry-assisted approach provided insights into tailoring the microstructure of LCB-HC to construct high-performance SIB anode materials.
Collapse
Affiliation(s)
- Si-Jie Jiang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yan-Song Xu
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Xiao-Wen Sun
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Lin Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yun-Nuo Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lin Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Fei-Fei Cao
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
4
|
Yu D, Abdalkarim SYH, Jin M, Zhang Y, Yu HY. Tailoring graphitized cellulose nanocrystal morphologies for robust barrier and mechanical enhancement of PPC composites for green active packaging. Int J Biol Macromol 2025; 286:138295. [PMID: 39631586 DOI: 10.1016/j.ijbiomac.2024.138295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Both nanocellulose and graphene nanosheets serve as exceptional fillers for biopolymers. However, there are limited materials that effectively combine the properties of these two fillers in Poly (propylene carbonate) (PPC) to enhance their overall properties. This study presents a meticulous approach to producing graphitized nanocellulose (GCNC) with tailored rod-like (R-GCNC) and spheres-like (S-GCNC) under low-temperature and ambient-pressure conditions. The formation and integration of the reinforcement network within the PPC matrix were compared by modulating these morphologies. The R-GC3%, with its stronger hydrogen bonding interactions, achieved a more optimal combination of properties than S-GC3%. Significantly, R-GCNC and PPC formed a robust reinforcement network, resulting in remarkable reductions of approximately 153 % in water absorption and 1669 % in water vapor permeability. Significantly, the mechanical properties of PPC were improved by 95 % in tensile strength and 1038 % in Young's modulus due to improved dispersion of R-GCNC with higher aspect ratio. In addition, R-GC3% had the highest glass transition temperature of 35.1 °C, and a maximum degradation temperature increased by 16.5 °C. The PPC/GCNC composites exhibited outstanding UV shielding, antioxidant properties, and rapid degradation rates. This study introduces a practical method for choosing suitable GCNCs as reinforcing agents to produce innovative green materials for the active packaging.
Collapse
Affiliation(s)
- Duo Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
5
|
Zhang T, Feng C, Li A, Zhu Y, Jin C, Na H, Liu F, Zhu J. Fabrication of microfibrillated cellulose from biomass by use of carbon nitride with high nitrogen/carbon ratio. Int J Biol Macromol 2024; 277:133729. [PMID: 39019699 DOI: 10.1016/j.ijbiomac.2024.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Microfibrillated cellulose (MFC) as an attractive green bio-based material has attracted widespread attention in recent years due to its non-toxicity, degradability, excellent performance, and high aspect ratio. In this study, the g-C3N5 with a high nitrogen/carbon ratio was prepared as a catalyst through the self-polymerization of a nitrogen-rich precursor. The triazole groups at the edges of g-C3N5 were proven to exhibit strong adsorption to biomass and strong alkalinity. In a low-acidic aqueous system with g-C3N5, MFC with diameters of 100-200 nm and lengths up to 100 μm was fabricated from various biomasses within 5 min under microwave radiation. The ultimate yield of the MFC produced from viscose reached 90 %. Young's modulus of the MFC reaches 3.7 GPa. This work provides a particular method with high efficiency to prepare MFC with excellent properties from biomass by chemical method.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengqi Feng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anran Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yuxin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenkai Jin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Haining Na
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fei Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| |
Collapse
|
6
|
Yang M, Chen Y, Abdalkarim SYH, Chen X, Yu HY. Efficient cellulose dissolution and derivatization enabled by oxalic/sulfuric acid for high-performance cellulose films as food packaging. Int J Biol Macromol 2024; 276:133799. [PMID: 39019367 DOI: 10.1016/j.ijbiomac.2024.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The performance of cellulose-based materials is highly dependent on the choice of solvent systems. Exceptionally, cellulose dissolution and derivatization by efficient solvent have been considered as a key factor for large-scale industrial applications of cellulose. However, cellulose dissolution and derivatization often requires harsh reaction conditions, high energy consumption, and complex solubilizing, resulting in environmental impacts and low practical value. Here we address these limitations by using a low-temperature oxalic acid/sulfuric acid solvent to enable cellulose dissolution and derivatization for high-performance cellulose films. The dissolution and derivatization mechanism of the mixed acid is studied, demonstrating that cellulose is firstly socked by oxalic acid, then more hydrogen bonds ionized by sulfuric acid break cellulose chain, and finally the esterification reaction between oxalic acid and cellulose is catalyzed by sulfuric acid. Solutions containing 8 %-10 % cellulose are obtained and can be stored for a long time at -18 °C without significant degradation. Moreover, the cellulose film exhibits a higher tensile strength of up to 66.1 MPa, thermal stability, and degree of polymerization compared to that fabricated by sulfuric acid. These unique advantages provide new paths to utilize renewable resources for alternative food packaging materials at an industrial scale.
Collapse
Affiliation(s)
- Mingchen Yang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yi Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xuefei Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Li Q, Peng W, Sun Y, Cai C, Tang F, Liu Y, Hu Q, Zhou Z, Li X, Nie S. A super-hydrophilic graphite directly from lignin enabled by a room-temperature cascade catalytic carbonization. BIORESOURCE TECHNOLOGY 2024; 402:130802. [PMID: 38718902 DOI: 10.1016/j.biortech.2024.130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
A cost-effective, and low-energy room-temperature cascade catalytic carbonization strategy is demonstrated for converting lignin into graphite with a high yield of 87 %, a high surface potential of -37 eV and super-hydrophilicity. This super-hydrophilic feature endows the lignin-derived graphite to be dispersed in a variety of polar solvents, which is important for its future applications. Encapsulating of liquid metals with the graphite for electrical circuit patterning on flexible substrates is also advocated. These written patterns show superb conductivity of 4.9 × 106 S/m, offering good performance stability and reliability while being repeatedly stretched, folded, twisted, and bent. This will offer new designs for flexible electronic devices, sensors, and biomedical devices.
Collapse
Affiliation(s)
- Qiuxian Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Wenxuan Peng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yue Sun
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chenchen Cai
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Fangyuan Tang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yongfei Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Qingdi Hu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zheng Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xusheng Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Shuangxi Nie
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
8
|
Wang W, Wang B, Li Y, Wang N, Xu Y, Wang C, Sun Y, Hu H. Hard Carbon Derived From Different Precursors for Sodium Storage. Chem Asian J 2024; 19:e202301146. [PMID: 38445813 DOI: 10.1002/asia.202301146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Due to the almost unlimited resource and acceptable performance, Sodium-ion batteries (SIBs) have been regarded as a promising alternative for lithium-ion batteries (LIBs) for grid-scale energy storage. As the key material of SIBs, hard carbon (HC) plays a decisive role in determining the batteries' performance. Nevertheless, the micro-structure of HCs is quite complex and the random organization of turbostratically stacked graphene layers, closed pores, and defects make the structure-performance relationship insufficiently revealed. On the other hand, the impending large-scale deployment of SIBs leads to producing HCs with low-cost and abundant precursors actively pursued. In this work, the recent progress of preparing HCs from different precursors including biomass, polymers, and fossil fuels is summarized with close attention to the influences of precursors on the structural evolution of HCs. After a brief introduction of the structural features of HCs, the recent understanding of the structure-performance relationship of HCs for sodium storage is summarized. Then, the main focus is concentrated on the progress of producing HCs from distinct precursors. After that, the pros and cons of HCs derived from different precursors are comprehensively compared to conclude the selection rules of precursors. Finally, the further directions of HCs are deeply discussed to end this review.
Collapse
Affiliation(s)
- Wanli Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuqi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ning Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yujie Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chongze Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
9
|
Chen Y, Huang C, Miao Z, Gao Y, Dong Y, Tam KC, Yu HY. Tailoring Hydronium ion Driven Dissociation-Chemical Cross-Linking for Superfast One-Pot Cellulose Dissolution and Derivatization to Build Robust Cellulose Films. ACS NANO 2024; 18:8754-8767. [PMID: 38456442 DOI: 10.1021/acsnano.3c11335] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Concepts of sustainability must be developed to overcome the increasing environmental hazards caused by fossil resources. Cellulose derivatives with excellent properties are promising biobased alternatives for petroleum-derived materials. However, a one-pot route to achieve cellulose dissolution and derivatization is very challenging, requiring harsh conditions, high energy consumption, and complex solubilizing. Herein, we design a one-pot tailoring hydronium ion driven dissociation-chemical cross-linking strategy to achieve superfast cellulose dissolution and derivatization for orderly robust cellulose films. In this strategy, there is a powerful driving force from organic acid with a pKa below 3.75 to dissociate H+ and trigger the dissolution and derivatization of cellulose under the addition of H2SO4. Nevertheless, the driving force can only trigger a partial swelling of cellulose but without dissolution when the pKa of organic acid is above 4.26 for the dissociation of H+ is inhibited by the addition of inorganic acid. The cellulose film has high transmittance (up to ∼90%), excellent tensile strength (∼122 MPa), and is superior to commercial PE film. Moreover, the tensile strength is increased by 400% compared to cellulose film prepared by the ZnCl2 solvent. This work provides an efficient solvent, which is of great significance for emerging cellulose materials from renewable materials.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chengling Huang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youjie Gao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Wang F, Zhang T, Zhang T, He T, Ran F. Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries. NANO-MICRO LETTERS 2024; 16:148. [PMID: 38466498 PMCID: PMC10928064 DOI: 10.1007/s40820-024-01351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries; however, its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries. The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials, explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials, and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials. This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials, with particular focuses on their molecular, crystalline, and aggregation structures. Furthermore, the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses. Finally, future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted.
Collapse
Affiliation(s)
- Fujuan Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Tianyun Zhang
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
- School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| | - Tian Zhang
- School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Tianqi He
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, People's Republic of China.
| |
Collapse
|
11
|
Du K, Zhang D, Zhang S, Tam KC. Advanced Functionalized Materials Based on Layer-by-Layer Assembled Natural Cellulose Nanofiber for Electrodes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304739. [PMID: 37726489 DOI: 10.1002/smll.202304739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Indexed: 09/21/2023]
Abstract
The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.
Collapse
Affiliation(s)
- Keke Du
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dongyan Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Shuangbao Zhang
- Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing, 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
12
|
Cherian RM, Varghese RT, Antony T, Malhotra A, Kargarzadeh H, Chauhan SR, Chauhan A, Chirayil CJ, Thomas S. Non-cytotoxic, highly functionalized cellulose nanocrystals with high crystallinity and thermal stability derived from a novel agromass of Elettaria cardamomum, using a soft and benign mild oxalic acid hydrolysis. Int J Biol Macromol 2023; 253:126571. [PMID: 37648134 DOI: 10.1016/j.ijbiomac.2023.126571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Non-cytotoxic, highly crystalline, and functionalized, thermally stable cellulose nanocrystals are extracted from the stems of Elettaria cardamom, a novel underutilised agromass, by employing a neat green, mild oxalic acid hydrolysis. The protocol involves a chemo-mechanical strategy of coupling hydrolysis with steam explosion and homogenization. The obtained CNC showed a crystallinity index of 81.51 %, an aspect ratio of 17.80 ± 1.03 and a high degradation temperature of about 339.07 °C. The extraction procedure imparted a high negative surface functionalization with a zeta potential value of -34.244 ± 0.496 mV and a polydispersity of 16.5 %. The CNC had no antibacterial activity, according to non-cytotoxic experiments conducted on four bacterial strains. This supports the notion of "One Health" in the context of AMR by demonstrating the safety of antibiotic resistance due to consistent exposure upon environmental disposal. The as-extracted nanocellulose crystals can be a potential candidate for commercial application in wide and diversified disciplines like food packaging, anti-infective surfaces for medical devices, biosensors, bioelectronics etc.
Collapse
Affiliation(s)
- Reeba Mary Cherian
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India.
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tijo Antony
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemistry, Pavanatma College, Murickassery, Idukki, Kerala 685604, India
| | - Akshit Malhotra
- Department of Microbiology, University of Delhi- South campus, Delhi 110021, India
| | - Hanieh Kargarzadeh
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Suchitra Rajput Chauhan
- Centre for Advanced Materials and Devices (CAMD), School of Engineering and Technology, BML Munjal University, Sidhrawali, Gurgaon, Haryana 122413, India
| | - Ashwini Chauhan
- Department of Microbiology, University of Delhi- South campus, Delhi 110021, India
| | | | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box. 17011, Doornfontein, 2028 Johannesburg, South Africa.
| |
Collapse
|
13
|
Wang Y, Liu H, Wang Q, An X, Ji X, Tian Z, Liu S, Yang G. Recent advances in sustainable preparation of cellulose nanocrystals via solid acid hydrolysis: A mini-review. Int J Biol Macromol 2023; 253:127353. [PMID: 37839592 DOI: 10.1016/j.ijbiomac.2023.127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
As a green and renewable nanomaterial, cellulose nanocrystals (CNC) have received numerous attention due to the unique structural features and superior physicochemical properties. Conventionally, CNC was isolated from lignocellulosic biomass mostly depending on sulfuric or hydrochloric acid hydrolysis. Although this approach is effective, some critical issues such as severe equipment corrosion, excessive cellulose degradation, serious environmental pollution, and large water usage are inevitable. Fortunately, solid acid hydrolysis is emerging as an economical and sustainable CNC production technique and has achieved considerable progress in recent years. Herein, the preparation of CNC by solid acid hydrolysis was summarized systematically, including organic solid acids (citric, maleic, oxalic, tartaric, p-toluenesulfonic acid) and inorganic solid acids (phosphotungstic, phosphoric, and Lewis acid). The advantages and disadvantages of organic and inorganic solid acid hydrolysis methods were evaluated comprehensively. Finally, the challenges and opportunities in the later exploitation and application of solid acid hydrolysis to prepare CNC in the industrial context are discussed. Considering the future development of this technology in the large-scale CNC production, much more efforts should be made in lowering CNC processing cost, fabricating high-solid-content and re-dispersible CNC, developing value-added applications of CNC, and techno-economic analysis and life cycle assessment on the whole process.
Collapse
Affiliation(s)
- Yingchao Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Xingye An
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China; Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China.
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shanshan Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
14
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
16
|
Zubair M, Manzar MS, El-Qanni A, Haroon H, Alqahtani HA, Al-Ejji M, Mu'azu ND, AlGhamdi JM, Haladu SA, Al-Hashim D, Ahmed SZ. Biochar-layered double hydroxide composites for the adsorption of tetracycline from water: synthesis, process modeling, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109162-109180. [PMID: 37770741 DOI: 10.1007/s11356-023-29954-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Antibiotic-contaminated water is a crucial issue worldwide. Thus, in this study, the MgFeCa-layered double hydroxides were supported in date palm-derived biochar (B) using co-precipitation, hydrothermal, and co-pyrolysis methods. It closes gaps in composite design for pharmaceutical pollutant removal, advances eco-friendly adsorbents, and advances targeted water cleanup by investigating synthesis methodologies and gaining new insights into adsorption. The prepared B-MgFeCa composites were investigated for tetracycline (TC) adsorption from an aqueous solution. The B-MgFeCa composites synthesized through co-precipitation and hydrothermal methods exhibited better crystallinity, functional groups, and well-developed LDH structure within the biochar matrix. However, the co-pyrolysis method resulted in the LDH structure breakage, leading to the low crystalline composite material. The maximum adsorption of TC onto all B-MgFeCa was obtained at an acidic pH range (4-5). The B-MgFeCa composites produced via hydrothermal and co-pyrolysis methods showed higher and faster TC adsorption than the co-precipitation method. The kinetic results can be better described by Langmuir kinetic and mixed order models at low and high TC concentrations, indicating that the rate-limiting step is mainly associated with active binding sites adsorption. The Sip and Freundlich models showed better fitting with the equilibrium data. The TC removal by B-MgFeCa composites prepared via hydrothermal, the highest estimated uptake which is around 639.76 mg.g-1 according to the Sips model at ambient conditions, and co-pyrolysis was mainly dominated by physical and chemical interactions. The composite obtained via the co-precipitation method adsorbed TC through chemical bonding between surface functional groups with anionic species of TC molecule. The B-MgFeCa composite showed excellent reusability performance for up to five cycles with only a 30% decrease in TC removal efficiency. The results demonstrated that B-MgFeCa composites could be used as promising adsorbent materials for effective wastewater treatment.
Collapse
Affiliation(s)
- Mukarram Zubair
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia.
| | - Mohammad Saood Manzar
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Amjad El-Qanni
- Department of Chemical Engineering, An-Najah National University, Nablus, Palestine
| | - Hajira Haroon
- Department of Environmental Sciences, University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Hissah A Alqahtani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Maryam Al-Ejji
- Center for Advanced Materials, Qatar University, 2713, Doha, Qatar
| | - Nuhu Dalhat Mu'azu
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Jwaher M AlGhamdi
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Shamsuddeen A Haladu
- Department of Basic Engineering Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dana Al-Hashim
- Environmental Engineering Department, College of Engineering A13, Imam Abdulrahman Bin Faisal University, Main Campus, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Syed Z Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
17
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
18
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
19
|
Roat P, Hada S, Chechani B, Prasher P, Singh Rawat D, Kumar Yadav D, Kumar S, Kumari N. Isolation and Characterization of Fractionated Cellulose from
Madhuca indica. ChemistrySelect 2023. [DOI: 10.1002/slct.202203248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Priyanka Roat
- Department of Chemistry Mohanlal Sukhadia University 313001 Udaipur India
| | - Sonal Hada
- Department of Chemistry Mohanlal Sukhadia University 313001 Udaipur India
| | - Bhawna Chechani
- Department of Chemistry Mohanlal Sukhadia University 313001 Udaipur India
| | - Parteek Prasher
- Department of Chemistry University Petroleum and Energy Studies 248007 Dehradun India
| | - Devendra Singh Rawat
- Department of Chemistry University Petroleum and Energy Studies 248007 Dehradun India
| | - Dinesh Kumar Yadav
- Department of Chemistry Mohanlal Sukhadia University 313001 Udaipur India
| | - Sanjay Kumar
- Department of Chemistry Muzaffarpur Institute of Technology 842003 Muzaffarpur India
- Department of Pharmacy Muzaffarpur Institute of Technology 842003 Muzaffarpur India
| | - Neetu Kumari
- Department of Chemistry Mohanlal Sukhadia University 313001 Udaipur India
| |
Collapse
|
20
|
Jia G, Innocent MT, Yu Y, Hu Z, Wang X, Xiang H, Zhu M. Lignin-based carbon fibers: Insight into structural evolution from lignin pretreatment, fiber forming, to pre-oxidation and carbonization. Int J Biol Macromol 2023; 226:646-659. [PMID: 36521701 DOI: 10.1016/j.ijbiomac.2022.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lignin remains the second abundant source of renewable carbon with an aromatic structure. However, most of the lignin is burnt directly for power generation, with an effective utilization rate of <2 %, making value addition on lignin an urgent requirement. From this perspective, preparation of lignin-based carbon fibers has been widely studied as an effective way to increase value addition on lignin. However, lignin species are diverse and complex in structure, and the pathway that enables changes in lignin structure during pretreatment, fiber formation, stabilization, and carbonization is still uncertain. In this review, we condense the common structural evolution route from the previous studies, which can serve as a guide towards engineered lignin carbon fibers with high performance properties.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mugaanire Tendo Innocent
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
21
|
Hu B, Zhang H, Li S, Chen W, Wu Z, Liang H, Yu H, Yu S. Robust Carbonaceous Nanofiber Aerogels from All Biomass Precursors. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202207532] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 01/16/2025]
Abstract
AbstractAerogels, a type of fascinating material with very low density and high surface area, show many unique properties and unlimited applications. To boost their practical applications, it is necessary to develop efficient, controllable, and low‐cost methods to produce high‐performance aerogels on a large‐scale, preferably in a sustainable way. Here, a general strategy is reported for controllable fabrication of a family of carbonaceous nanofiber aerogels (CNFAs) by biomass‐derived nanofibers template‐directed hydrothermal carbonization method. Abundant functional groups are exposed on the surface of the prepared carbonaceous nanofibers. Importantly, in contrast to traditional nature biopolymer‐based aerogels, a superior combination of good recoverability and high strength is achieved for the CNFAs by adjusting the synthetic parameters. The successful synthesis of such fascinating materials provides an excellent platform for design and construction of devices for fast water treatment. The synthetic strategy and sustainable concept presented in this work will open a new way to prepare advanced aerogels with unique properties for wide applications.
Collapse
Affiliation(s)
- Bi‐Cheng Hu
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| | - Hao‐Ran Zhang
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| | - Si‐Cheng Li
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| | - Wen‐Shuai Chen
- Key Laboratory of Bio‐Based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin 150040 China
| | - Zhen‐Yu Wu
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| | - Hai‐Wei Liang
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| | - Hai‐Peng Yu
- Key Laboratory of Bio‐Based Material Science and Technology (Ministry of Education) Northeast Forestry University Harbin 150040 China
| | - Shu‐Hong Yu
- Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale Department of Chemistry Institute of Biomimetic Materials and Chemistry Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
22
|
Fabrication of Superhydrophobic/Superoleophilic Bamboo Cellulose Foam for Oil/Water Separation. Polymers (Basel) 2022; 14:polym14235162. [PMID: 36501555 PMCID: PMC9739291 DOI: 10.3390/polym14235162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Water is an indispensable strategic resource for biological and social development. The problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil pollution has become an extremely serious international challenge. At present, numerous superwetting materials have been applied to effectively separate oil and water. However, most of these materials are difficult to scale and their large-scale application is limited by cost and environmental protection. Herein, a simple, environmentally friendly strategy including sol-gel, freeze-drying and surface hydrophobic modification is presented to fabricate a bamboo cellulose foam with special wetting characteristics. The bamboo cellulose foam is superhydrophobic, with a water contact angle of 160°, and it has the superoleophilic property of instantaneous oil absorption. Owing to the synergistic effect of the three-dimensional network structure of the superhydrophobic bamboo cellulose foam and its hydrophobic composition, it has an excellent oil-absorption performance of 11.5 g/g~37.5 g/g for various types of oil, as well as good recyclability, with an oil (1,2-dichloroethane) absorption capacity of up to 31.5 g/g after 10 cycles. In addition, the prepared cellulose-based foam exhibits an outstanding performance in terms of acid and alkali corrosion resistance. Importantly, owing to bamboo cellulose being a biodegradable, low-cost, natural polymer material that can be easily modified, superhydrophobic/superoleophilic bamboo cellulose foam has great application potential in the field of oily wastewater treatment.
Collapse
|
23
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
24
|
Pawcenis D, Leśniak M, Szumera M, Sitarz M, Profic-Paczkowska J. Effect of hydrolysis time, pH and surfactant type on stability of hydrochloric acid hydrolyzed nanocellulose. Int J Biol Macromol 2022; 222:1996-2005. [DOI: 10.1016/j.ijbiomac.2022.09.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
25
|
Chen Z, Xu HN, Ouyang XK. The Simultaneous Production of Two Distinct Types of Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5996-6003. [PMID: 35522966 DOI: 10.1021/acs.langmuir.2c00151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We develop a route to prepare two types of cellulose nanocrystals (CNCs, CNC1 and CNC2) from a unique biomass resource, the fruit shell of Camellia oleifera Abel (SCOA), by integrating sulfuric acid hydrolysis and high-pressure homogenization and examine the effects of hydrolysis time on characteristics of the CNCs during the process. The CNCs exhibit different evolutions in size, morphology, surface charge, and crystallinity with increasing hydrolysis time. While both the CNCs have high crystallinity, CNC1 is of rod-like character with a relatively low aspect ratio, and CNC2 exhibits a hairy appearance with a high aspect ratio. We highlight that controlled acid hydrolysis contributes to the formation of weak spots with an increased susceptibility for homogenizing cellulosic solid residues into hairy CNCs. This is a good step toward tailoring CNC properties in a conventional and scalable approach to maximize their potential applications.
Collapse
Affiliation(s)
- Zhihui Chen
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Technology, and School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| |
Collapse
|
26
|
Tyrikos-Ergas T, Sletten ET, Huang JY, Seeberger PH, Delbianco M. On resin synthesis of sulfated oligosaccharides. Chem Sci 2022; 13:2115-2120. [PMID: 35308866 PMCID: PMC8848854 DOI: 10.1039/d1sc06063e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/29/2022] [Indexed: 01/19/2023] Open
Abstract
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
27
|
Zhang Y, Ying L, Wang Z, Wang Y, Xu Q, Li C. Unexpected hydrophobic to hydrophilic transition of PET fabric treated in a deep eutectic solvent of choline chloride and oxalic acid. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|