1
|
Bao P, Xiao H, Li Q, Wang Y, Wang Y, He G. Highly regio-selective hydration of ynamides under catalyst-free conditions. Org Biomol Chem 2025. [PMID: 40434297 DOI: 10.1039/d5ob00581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
The highly regio-selective hydration of ynamides under catalyst-free conditions has been demonstrated for easily accessing α-amidoketones in 51-99% yields. The excellent regio-selectivity is believed to be controlled by the amide group, which is just opposite to that observed in Brønsted acid-mediated hydration of ynamides. This approach is highly convenient, easy to operate, and exhibits good functionality tolerance.
Collapse
Affiliation(s)
- Peng Bao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Han Xiao
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qiuwen Li
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yi Wang
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yumiao Wang
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guangke He
- Department of Applied Chemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| |
Collapse
|
2
|
Ushakov PY, Sukhorukov AY. Recent advances in the application of the isoxazoline route to aldols in the synthesis of natural products. Nat Prod Rep 2025; 42:876-910. [PMID: 40110917 DOI: 10.1039/d4np00069b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Covering: 2000 to 2024The cycloaddition of nitrile oxides with olefins (NOC), followed by reductive cleavage of the resulting isoxazolines, has been widely recognised as a convenient and powerful synthetic strategy for constructing the aldol motif in natural product synthesis. Different modes of NOC (intermolecular, fused and bridged intramolecular) enable the synthesis of diverse isoxazoline products, which can be converted into highly substituted cyclic and acyclic aldol frameworks. This review examines the advances in this field over the past 25 years. More than 50 total syntheses are discussed, encompassing various classes of natural compounds, including macrolides, alkaloids, terpenoids, steroids, pseudosugars, sulfolipids and some others. Moreover, the basic aspects of this methodology are outlined, including methods for the generation of nitrile oxides and isoxazoline ring cleavage, as well as stereochemical models for intramolecular nitrile oxide cycloaddition.
Collapse
Affiliation(s)
- Pavel Yu Ushakov
- Laboratory of Organic and Metal-Organic Nitrogen-oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, Moscow, 119991, Russia.
| | - Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-Organic Nitrogen-oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Leninsky prospect, 47, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Lüthy L, Thies LGS, Beitl KN, Hansen M, McManus J, Afzal M, Schrangl L, Bloch S, Subbiahdoss G, Reimhult E, Schäffer C, Carreira EM. Synthesis, Microbiology, and Biophysical Characterization of Mutanofactins from the Human Oral Microbiome. ACS CENTRAL SCIENCE 2025; 11:601-611. [PMID: 40290153 PMCID: PMC12022917 DOI: 10.1021/acscentsci.4c02184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/27/2025] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Mutanofactins are a family of natural products produced by Streptococcus mutans from the human oral microbiome. We report a unified approach to all mutanofactins by developing a total synthesis amenable to diversification. The key to success for the most complex members, mutanofactins 607 and 697, was an acyl ketene based strategy. Access to the family enabled comprehensive biological profiling, where we demonstrate that all mutanofactins are biofilm promoting in Streptococcus mutans. Experiments were extended to other inhabitants of the oral microbiome for the first time: Streptococcus gordonii and Streptococcus oralis, two early colonizers, were similarly affected with mutanofactins being biofilm promoting. Conversely, Veillonella dispar and Fusobacterium nucleatum showed little to no reaction to mutanofactins. Biophysical investigations based on quartz crystal microbalance with dissipation monitoring and atomic force microscopy reveal a previously unknown mucin-mutanofactin 697 interaction. Incubation of a mucin layer with mutanofactin 697 induces a morphology change within the mucin layer, which promotes bacterial adhesion and biofilm formation. This unique property of mutanofactin 697 might be key to early stages of biofilm formation in the human oral microbiome. Combined, an interdisciplinary approach consisting of total synthesis, microbiology and biophysical characterization provides insight into the roles of mutanofactins in the oral microbiome.
Collapse
Affiliation(s)
- Lukas Lüthy
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Leon Gabor Sacha Thies
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Moritz Hansen
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Joshua McManus
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Muhammad Afzal
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Lukas Schrangl
- Institute
of Biophysics, BOKU University, 1190 Vienna, Austria
| | - Susanne Bloch
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | | | - Erik Reimhult
- Institute
of Colloid and Biointerface Science, BOKU
University, 1190 Vienna, Austria
| | - Christina Schäffer
- Institute
of Biochemistry, NanoGlycobiology Research Group, BOKU University, 1190 Vienna, Austria
| | - Erick M. Carreira
- Department
of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Bulcock BW, Chooi YH, Flematti GR. SpectroIBIS: Automated Data Processing for Multiconformer Quantum Chemical Spectroscopic Calculations. JOURNAL OF NATURAL PRODUCTS 2025; 88:495-501. [PMID: 39918062 DOI: 10.1021/acs.jnatprod.4c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Quantum chemical spectroscopic calculations have grown increasingly popular in natural products research for aiding the elucidation of chemical structures, especially their stereochemical configurations. These calculations have become faster with modern computational speeds, but subsequent data handling, inspection, and presentation remain key bottlenecks for many researchers. In this article, we introduce the SpectroIBIS computer program as a user-friendly tool to automate tedious tasks commonly encountered in this workflow. Through a simple graphical user interface, researchers can drag and drop Gaussian or ORCA output files to produce Boltzmann-averaged ECD, VCD, UV-vis and IR data, optical rotations, and/or 1H and 13C NMR chemical shifts in seconds. Also produced are formatted, publication-quality supplementary data tables containing conformer energies and atomic coordinates, saved to a DOCX file compatible with Microsoft Word and LibreOffice. Importantly, SpectroIBIS can assist researchers in finding common calculation issues by automatically checking for redundant conformers and imaginary frequencies. Additional useful features include recognition of conformer energy recalculations at a higher theory level, and automated generation of input files for quantum chemistry programs with optional exclusion of high-energy conformers. Lastly, we demonstrate the applicability of SpectroIBIS with spectroscopic calculations for five natural products. SpectroIBIS is open-source software available as a free desktop application (https://github.com/bbulcock/SpectroIBIS).
Collapse
Affiliation(s)
- Brodie W Bulcock
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
5
|
Nikolic S, Alastra G, Pultar F, Lüthy L, Stadlinger B, Carreira EM, Bugueno IM, Mitsiadis TA. Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. Int J Mol Sci 2025; 26:1144. [PMID: 39940912 PMCID: PMC11817755 DOI: 10.3390/ijms26031144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Bacterium-triggered carious lesions implicate dental hard tissue destruction and the simultaneous initiation of regenerative events comprising dental stem cell activation. Streptococcus mutans (S. mutans) is a prominent pathogen of the oral cavity and the principal cause of caries. S. mutans generates complex products involved in interbacterial interactions, including Mutanobactin-D (Mub-D), which belongs to a group of non-ribosomal cyclic lipopeptides. In the present study, we aimed to analyse the potential role of the synthetic Mub-D peptide in cell populations involved in tissue regenerative processes. To this end, we assessed the in vitro effects of Mub-D in human dental pulp stem cells (hDPSCs) and human bone marrow stem cells (hBMSCs). Our data demonstrated a concentration-dependent effect of Mub-D on their viability and a significant increase in their proliferation and osteogenic/odontogenic differentiation. These events were associated with specific changes in gene expression, where CCDN-1, RUNX-2, OSX, OCN, DMP-1, DSPP, and BMP-2 genes were upregulated. The ability of Mub-D to modulate the osteogenic/odontogenic differentiation of both hDPSCs and hBMSCs and considerably enhance mineralisation in a controlled and concentration-dependent manner opens new perspectives for stem cell-based regenerative approaches in the clinics.
Collapse
Affiliation(s)
- Sandra Nikolic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Felix Pultar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Lukas Lüthy
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, 8032 Zurich, Switzerland;
| | - Erick M. Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Foundation for Research and Technology—Hellas (FORTH), University of Crete, 700 13 Heraklion, Greece
| |
Collapse
|
6
|
Buchanan D, Mori S, Chadli A, Panda SS. Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications. Biomedicines 2025; 13:240. [PMID: 39857823 PMCID: PMC11763372 DOI: 10.3390/biomedicines13010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Natural cyclic peptides, a diverse class of bioactive compounds, have been isolated from various natural sources and are renowned for their extensive structural variability and broad spectrum of medicinal properties. Over 40 cyclic peptides or their derivatives are currently approved as medicines, underscoring their significant therapeutic potential. These compounds are employed in diverse roles, including antibiotics, antifungals, antiparasitics, immune modulators, and anti-inflammatory agents. Their unique ability to combine high specificity with desirable pharmacokinetic properties makes them valuable tools in addressing unmet medical needs, such as combating drug-resistant pathogens and targeting challenging biological pathways. Due to the typically low concentrations of cyclic peptides in nature, effective synthetic strategies are indispensable for their acquisition, characterization, and biological evaluation. Cyclization, a critical step in their synthesis, enhances metabolic stability, bioavailability, and receptor binding affinity. Advances in synthetic methodologies-such as solid-phase peptide synthesis (SPPS), chemoenzymatic approaches, and orthogonal protection strategies-have transformed cyclic peptide production, enabling greater structural complexity and precision. This review compiles recent progress in the total synthesis and biological evaluation of natural cyclic peptides from 2017 onward, categorized by cyclization strategies: head-to-tail; head-to-side-chain; tail-to-side-chain; and side-chain-to-side-chain strategies. Each account includes retrosynthetic analyses, synthetic advancements, and biological data to illustrate their therapeutic relevance and innovative methodologies. Looking ahead, the future of cyclic peptides in drug discovery is bright. Emerging trends, including integrating computational tools for rational design, novel cyclization techniques to improve pharmacokinetic profiles, and interdisciplinary collaboration among chemists, biologists, and computational scientists, promise to expand the scope of cyclic peptide-based therapeutics. These advancements can potentially address complex diseases and advance the broader field of biological drug development.
Collapse
Affiliation(s)
- Devan Buchanan
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
| | - Ahmed Chadli
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA;
| | - Siva S. Panda
- Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA; (D.B.); (S.M.)
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Afzal M, Carda-Diéguez M, Bloch S, Thies LGS, Mira A, Schäffer C. Decoding gene expression dynamics in planktonic and biofilm cells of Streptococcus mutans: regulation and role of mutanofactin genes in biofilm formation. FRONTIERS IN ORAL HEALTH 2025; 6:1535034. [PMID: 39896144 PMCID: PMC11782227 DOI: 10.3389/froh.2025.1535034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Introduction Dental caries is the most prevalent chronic infectious disease globally, with Streptococcus mutans recognized as a primary causative agent due to its acidogenicity and robust biofilm-forming ability. In S. mutans biofilm formation, the role of autoinducers has been extensively studied, while the influence of other small molecules remains largely unexplored. Mutanofactins, a class of polyketide/non-ribosomal lipopeptide secondary metabolites, are emerging as potential modulators of S. mutans biofilm development. Methods Transcriptomic analysis was conducted to examine gene expression patterns in S. mutans NMT4863 across distinct growth phases and lifestyles, aiming to identify metabolic factors influencing biofilm formation. Transcriptomic profiles were compared between cells in early-, mid-, and late-exponential-, and stationary phase, as well as between planktonic and biofilm cells. Differentially expressed genes were identified, and pathway analyses revealed significant alterations in key metabolic and regulatory pathways. Specifically, the biosynthetic mutanofactin gene cluster was analyzed via quantitative real-time polymerase chain reaction. Results Several genes and operons were differentially expressed across the tested growth phases, with 1,095 genes showing differential expression between stationary-phase, planktonic and biofilm cells. Pathway analysis revealed significant changes in ascorbate metabolism, carbohydrate utilization and transport systems, lipoic acid metabolism, bacterial toxin pathways, two-component regulatory systems, and secondary metabolite biosynthesis. Notably, expression of the muf gene cluster, was elevated in early exponential-phase cells relative to stationary-phase cells. Additionally, the mufCDEFGHIJ genes were identified as components of a single transcriptional unit (muf operon). MufC, a transcriptional regulator of the TetR/AcrR-family, acts as a positive regulator of the muf operon in strain NMT4863. Bioinformatic analysis pinpointed a 20-bp regulatory sequence in the muf operon promoter region (5'-AAATGAGCTATAATTCATTT-3'). Interestingly, the muf operon was found to be significantly downregulated in biofilm cells. Conclusion This study provides key insights into gene expression dynamics that drive biofilm formation in S. mutans NMT4863, with a particular emphasis on the role of the muf operon. This operon is governed by the TetR/AcrR-family regulator MufC and plays a central role in biofilm development, offering a novel perspective on the molecular basis of S. mutans biofilm formation and resilience.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Natural Sciences and Sustainable Resources, Institue of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | | | - Susanne Bloch
- Department of Natural Sciences and Sustainable Resources, Institue of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Leon G. S. Thies
- Department of Natural Sciences and Sustainable Resources, Institue of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Alex Mira
- Department of Genomics and Health, FISABIO Foundation, Valencia, Spain
| | - Christina Schäffer
- Department of Natural Sciences and Sustainable Resources, Institue of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
8
|
Porte V, Nascimento VR, Sirvent A, Tiefenbrunner I, Feng M, Kaiser D, Maulide N. Asymmetric Synthesis of β-Ketoamides by Sulfonium Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202418070. [PMID: 39440410 PMCID: PMC11627135 DOI: 10.1002/anie.202418070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The synthesis of enantioenriched α-substituted 1,3-dicarbonyls remains a contemporary challenge in synthesis due to their tendency to undergo racemization via keto-enol tautomerization. Herein, we report a method to access enantioenriched β-ketoamides by a chiral sulfinimine-mediated [3,3]-sigmatropic sulfonium rearrangement. The transformation displays good chirality transfer, as well as excellent chemoselectivity and functional group tolerance. Diastereoselective reduction of the ketone moiety, also achievable in one-pot fashion, affords enantioenriched β-hydroxyamides.
Collapse
Affiliation(s)
- Vincent Porte
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | | | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Irmgard Tiefenbrunner
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Minghao Feng
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Daniel Kaiser
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
9
|
Möllerke A, Stell M, Schlawis C, Trauer-Kizilelma U, Herrmann J, Leinaas HP, Scheu S, Schulz S. Identification of unique highly hetero-substituted benzenes as chemical weapons of springtails by a combination of trace analytical methods with DFT calculations and synthesis. Chem Sci 2024:d4sc03182b. [PMID: 39246360 PMCID: PMC11376146 DOI: 10.1039/d4sc03182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Springtails (Collembola) are important members of the soil mesofauna. They are small, often less than 1-2 mm in length. A typical escape response of most surface-living species is to jump, using their furca. However, some species also use chemical defence against predators. While the defence chemistry of higher insects has been well studied, reports from the basal Collembola are rare, linked to the difficulties in obtaining enough biomass. We herein report on the identification and repellent activity of compounds detected in Ceratophysella denticulata. Extracts with various solvents obtained from only 50 individuals were sufficient for analysis by GC/MS, GC/HR-MS, and GC/IR. The large number of candidate structures of the major components were then prioritised by DFT calculations of IR spectra. Finally, the total synthesis of the top candidates confirmed the structures of the three major compounds to be 4-methoxy-5-(methylthio)benzo-1,3-dioxolane, 5,6,7-trimethoxybenzo-1,3-oxathiolane, and 8-amino-5,6,7-trimethoxybenzo-1,3-oxathiolane, the latter being the first naturally occurring fully hetero-substituted benzene. These highly substituted benzenes have no precedence in nature and carry structural motifs rare in nature, such as the benzo-1,3-oxathiolane ring system or the occurrence of O-, N-, and S-substituents at the same benzene core. Another novel natural compound, 2-methyl-1H-imidazo[4,5-b]pyridine, is used by Hypogastrura viatica. 4-Methoxy-5-(methylthio)benzo-1,3-dioxolane showed significant activity in deterrence assays with the ant Lasius niger. The data indicate that the title compounds are used in the chemical defence of these springtails, thus adding a new compound class to the known antipredator defences of arthropods. The results underline the difference in defence chemistry between Collembola and insects.
Collapse
Affiliation(s)
- Anton Möllerke
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Matthew Stell
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christian Schlawis
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Ute Trauer-Kizilelma
- Umweltbundesamt Boetticherstraße 2 (Haus 19), Dahlemer Dreieck 14195 Berlin Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus E8.1 66123 Saarbrücken Germany
| | - Hans Petter Leinaas
- Department of Bioscience, University of Oslo P. O. Box 1066 Blindern 0316 Oslo Norway
| | - Stefan Scheu
- University of Göttingen, JFB Institute of Zoology and Anthropology 37073 Göttingen Germany
- University of Göttingen, Centre of Biodiversity and Sustainable Land Use 37077 Göttingen Germany
| | - Stefan Schulz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
10
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
11
|
Cotter E, Pultar F, Riniker S, Altmann KH. Experimental and Theoretical Studies on the Reactions of Aliphatic Imines with Isocyanates. Chemistry 2024; 30:e202304272. [PMID: 38226702 DOI: 10.1002/chem.202304272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
In the context of a project aiming at the replacement of the 3-substituted β-lactam ring in classical β-lactam antibiotics by an N(3)-acyl-1,3-diazetidinone moiety, we have investigated the reaction of isocyanates with imines derived from allyl glycinate and differently substituted propionaldehydes. Imines of aromatic aldehydes with anilines have been reported to react with acyl isocyanates to give 1,3-diazetidinones or 2,3-dihydro-4H-1,3,5-oxadiazin-4-ones, via [2+2] or [4+2] cycloaddition, respectively. However, neither of these products was formed with imines derived from allyl glycinate and 2-(mono)methyl propionaldehydes. α,α-Dimethylation of the imine enabled the [4+2] cycloaddition pathway, but the desired 1,3-diazetidinone products were not observed. Surprisingly, the imines obtained from thioesters of 2,2-dimethyl 3-oxo propionic acid reacted with aryl isocyanates or with benzyl isocyanate to give 5,5-dimethyl-2,4-dioxo-6-(aryl-/alkylthio)tetrahydropyrimidines, via thiol displacement and re-addition to a putative six-membered iminium intermediate. These experimental results obtained for the reactions could be rationalized by DFT calculations. In addition, we have shown that N(3)-acyl-1,3-diazetidinone and 2,3-dihydro-4H-1,3,5-oxadiazin-4-one products can be distinguished based on experimental IR data in combination with theoretical reference spectra employing the IR spectra alignment (IRSA) algorithm. This discrimination was not possible by means of 1 H, 13 C, or 15 N NMR spectroscopy.
Collapse
Affiliation(s)
- Etienne Cotter
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Felix Pultar
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Science, 8093, Zürich, Switzerland
| | - Sereina Riniker
- ETH Zürich, Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Science, 8093, Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| |
Collapse
|
12
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
13
|
Robertson EB, Willett JLE. Streptococcus mutans inhibits the growth of Enterococcus via the non-ribosomal cyclic peptide mutanobactin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557362. [PMID: 37745448 PMCID: PMC10515869 DOI: 10.1101/2023.09.12.557362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium in the gastrointestinal tract and an opportunistic pathogen. Enterococci are a leading cause of nosocomial infections, treatment of which is complicated by intrinsic and acquired antibiotic resistance mechanisms. Additionally, E. faecalis has been associated with various oral diseases, and it is frequently implicated in the failure of endodontic treatment. For establishment and persistence in a microbial community, E. faecalis must successfully compete against other bacteria. Streptococcal species play an important role in the establishment of the oral microbiome and co-exist with Enterococcus in the small intestine, yet the nature of interactions between E. faecalis and oral streptococci remains unclear. Here, we describe a mechanism by which Streptococcus mutans inhibits the growth of E. faecalis and other Gram-positive pathogens through the production of mutanobactin, a cyclic lipopeptide. Mutanobactin is produced by a polyketide synthase-nonribosomal peptide synthetase hybrid system encoded by the mub locus. Mutanobactin-producing S. mutans inhibits planktonic and biofilm growth of E. faecalis and is also active against other Enterococcus species and Staphylococcus aureus. Mutanobactin damages the cell envelope of E. faecalis, similar to other lipopeptide antibiotics like daptomycin. E. faecalis resistance to mutanobactin is mediated by the virulence factor gelatinase, a secreted metalloprotease. Our results highlight the anti-biofilm potential of the microbial natural product mutanobactin, provide insight into how E. faecalis interacts with other organisms in the human microbiome, and demonstrate the importance of studying E. faecalis dynamics within polymicrobial communities.
Collapse
Affiliation(s)
- Ethan B. Robertson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| | - Julia L. E. Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
14
|
Böselt L, Aerts R, Herrebout W, Riniker S. Improving the IR spectra alignment algorithm with spectra deconvolution and combination with Raman or VCD spectroscopy. Phys Chem Chem Phys 2023; 25:2063-2074. [PMID: 36546852 PMCID: PMC9847344 DOI: 10.1039/d2cp04907d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The relative stereochemistry of organic molecules can be determined by comparing theoretical and experimental infrared (IR) spectra of all isomers and assessing the best match. For this purpose, we have recently developed the IR spectra alignment (IRSA) algorithm for automated optimal alignment. IRSA provides a set of quantitative metrics to identify the candidate structure that agrees best with the experimental spectrum. While the correct diastereomer could be determined for the tested sets of rigid and flexible molecules, two issues were identified with more complex compounds that triggered further development. First, strongly overlapping peaks in the IR spectrum are not treated adequately in the current IRSA implementation. Second, the alignment of multiple spectra from different sources (e.g. IR and VCD or Raman) can be improved. In this study, we present an in-depth discussion of these points, followed by the description of modifications to the IRSA algorithm to address them. In particular, we introduce the concept of deconvolution of the experimental and theoretical spectra with a set of pseudo-Voigt bands. The pseudo-Voigt bands have a set of parameters, which can be employed in the alignment algorithm, leading to improved scoring functions. We test the modified algorithm on two data sets. The first set contains compounds with IR and Raman spectra measured in this study, and the second set contains compounds with IR and VCD spectra available in the literature. We show that the algorithm is able to determine the correct diastereomer in all cases. The results highlight that vibrational spectroscopy can be a valuable alternative or complementary method to inform about the stereochemistry of compounds, and the performance of the updated IRSA algorithm suggests that it is a powerful tool for quantitative-based spectral assignments in academia and industry.
Collapse
Affiliation(s)
- Lennard Böselt
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Nakamuro T, Kamei K, Sun K, Bode JW, Harano K, Nakamura E. Time-Resolved Atomistic Imaging and Statistical Analysis of Daptomycin Oligomers with and without Calcium Ions. J Am Chem Soc 2022; 144:13612-13622. [PMID: 35857028 DOI: 10.1021/jacs.2c03949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Daptomycin (DP) is effective against multiple drug-resistant Gram-positive pathogens because of its distinct mechanism of action. An accepted mechanism includes Ca2+-triggered aggregation of the DP molecule to form oligomers. DP and its oligomers have so far defied structural analysis at a molecular level. We studied the ability of DP molecule to aggregate by itself in water, the effects of Ca2+ ions to promote the aggregation, and the connectivity of the DP molecules in the oligomers by the combined use of dynamic light scattering in water and atomic-resolution cinematographic imaging of DP molecules captured on a carbon nanotube on which the DP molecule is installed as a fishhook. We found that the DP molecule aggregates weakly into dimers, trimers, and tetramers in water, and strongly in the presence of calcium ions, and that the tetramer is the largest oligomer in homogeneous aqueous solution. The dimer remains as the major species, and we propose a face-to-face stacked structure based on dynamic imaging using millisecond and angstrom resolution transmission electron microscopy. The tetramer in its cyclic form is the largest oligomer observed, while the trimer forms in its linear form. The study has shown that the DP molecule has an intrinsic property of forming tetramers in water, which is enhanced by the presence of calcium ions. Such experimental structural information will serve as a platform for future drug design. The data also illustrate the utility of cinematographic recording for the study of self-organization processes.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keyi Sun
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jeffrey W Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Hansen ME, Yasmin SO, Wolfrum S, Carreira EM. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew Chem Int Ed Engl 2022; 61:e202203051. [PMID: 35593892 PMCID: PMC9400992 DOI: 10.1002/anie.202203051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/30/2022]
Abstract
We report the first total syntheses of tricyclic mutanobactins A and B, lipopeptides incorporating a thiazepanone, isolated from Streptococcus mutans, a member of the human oral microbiome. A rapid, solid‐phase peptide synthesis (SPPS) based route delivers these natural products from a cascade of cyclization reactions. This versatile process was also employed in a streamlined synthesis of mutanobactin D. Additionally, we provide an independent synthesis of a truncated mutanobactin A analog, utilizing a novel thiazepanone amino acid building block.
Collapse
Affiliation(s)
- Moritz E. Hansen
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Samuel O. Yasmin
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
17
|
Umemoto N, Imayoshi A, Tsubaki K. Development of Regio- and Face-Selective [2 + 3] Cycloaddition Reactions of Readily Preparable Oxime-Substituted Nitrile Oxides with Silicon-Linked Allylic-Alcohol Moieties for Intramolecular Reactions. CHEM LETT 2022. [DOI: 10.1246/cl.220258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nao Umemoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Ayumi Imayoshi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Kazunori Tsubaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
18
|
Antonova Y, Nelyubina Y, Ioffe SL, Sukhorukov A, Tabolin A. Ring closure of nitroalkylmalonates for the synthesis of isoxazolines under the acylation conditions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulia Antonova
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| | - Yulia Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences RUSSIAN FEDERATION
| | | | | | - Andrey Tabolin
- N. D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
19
|
Hansen ME, Yasmin SO, Wolfrum S, Carreira EM. Total Synthesis of Mutanobactins A, B from the Human Microbiome: Macrocyclization and Thiazepanone Assembly in a Single Step. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz E. Hansen
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Samuel O. Yasmin
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Susanne Wolfrum
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Erick M. Carreira
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
20
|
Fobofou SA, Savidge T. Microbial metabolites: cause or consequence in gastrointestinal disease? Am J Physiol Gastrointest Liver Physiol 2022; 322:G535-G552. [PMID: 35271353 PMCID: PMC9054261 DOI: 10.1152/ajpgi.00008.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/31/2023]
Abstract
Systems biology studies have established that changes in gastrointestinal microbiome composition and function can adversely impact host physiology. Notable diseases synonymously associated with dysbiosis include inflammatory bowel diseases, cancer, metabolic disorders, and opportunistic and recurrent pathogen infections. However, there is a scarcity of mechanistic data that advances our understanding of taxonomic correlations with pathophysiological host-microbiome interactions. Generally, to survive a hostile gut environment, microbes are highly metabolically active and produce trans-kingdom signaling molecules to interact with competing microorganisms and the host. These specialized metabolites likely play important homeostatic roles, and identifying disease-specific taxa and their effector pathways can provide better strategies for diagnosis, treatment, and prevention, as well as the discovery of innovative therapeutics. The signaling role of microbial biotransformation products such as bile acids, short-chain fatty acids, polysaccharides, and dietary tryptophan is increasingly recognized, but little is known about the identity and function of metabolites that are synthesized by microbial biosynthetic gene clusters, including ribosomally synthesized and posttranslationally modified peptides (RiPPs), nonribosomal peptides (NRPs), polyketides (PKs), PK-NRP hybrids, and terpenes. Here we consider how bioactive natural products directly encoded by the human microbiome can contribute to the pathophysiology of gastrointestinal disease, cancer, autoimmune, antimicrobial-resistant bacterial and viral infections (including COVID-19). We also present strategies used to discover these compounds and the biological activities they exhibit, with consideration of therapeutic interventions that could emerge from understanding molecular causation in gut microbiome research.
Collapse
Affiliation(s)
- Serge Alain Fobofou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
21
|
Atz K, Isert C, Böcker MNA, Jiménez-Luna J, Schneider G. Δ-Quantum machine-learning for medicinal chemistry. Phys Chem Chem Phys 2022; 24:10775-10783. [PMID: 35470831 PMCID: PMC9093086 DOI: 10.1039/d2cp00834c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Many molecular design tasks benefit from fast and accurate calculations of quantum-mechanical (QM) properties. However, the computational cost of QM methods applied to drug-like molecules currently renders large-scale applications of quantum chemistry challenging. Aiming to mitigate this problem, we developed DelFTa, an open-source toolbox for the prediction of electronic properties of drug-like molecules at the density functional (DFT) level of theory, using Δ-machine-learning. Δ-Learning corrects the prediction error (Δ) of a fast but inaccurate property calculation. DelFTa employs state-of-the-art three-dimensional message-passing neural networks trained on a large dataset of QM properties. It provides access to a wide array of quantum observables on the molecular, atomic and bond levels by predicting approximations to DFT values from a low-cost semiempirical baseline. Δ-Learning outperformed its direct-learning counterpart for most of the considered QM endpoints. The results suggest that predictions for non-covalent intra- and intermolecular interactions can be extrapolated to larger biomolecular systems. The software is fully open-sourced and features documented command-line and Python APIs.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Markus N A Böcker
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - José Jiménez-Luna
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
- ETH Singapore SEC Ltd., 1 CREATE Way, #06-01 CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
22
|
Umemoto N, Imayoshi A, Kazunori T. Development of regioselective [2 + 3] cycloaddition reactions of nitrile oxides with alkenes using intramolecular reactions through oxime groups [1]. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Xue H, Fan S, Xu J, Liu S. Total synthesis and stereochemistry establishment of tumescenamide A. Org Chem Front 2022. [DOI: 10.1039/d1qo01700d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumescenamide A (1), isolated from Streptomyces tumescens YM23-20, consists of a cyclic depsipeptide and a side-chain 2,4-dimethylheptanoate (Dmh).
Collapse
Affiliation(s)
- Hong Xue
- College of Science, Yanbian University, Yanji, 133002, China
| | - Shiming Fan
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| | - Jingzhe Xu
- College of Science, Yanbian University, Yanji, 133002, China
| | - Shouxin Liu
- College of Chemical & Pharmaceutical Engineering, Hebei University of Science & Technology, Shijiazhuang, 050018, China
| |
Collapse
|