1
|
Zhou T, Guo P, Jiang X, Zhao H, Zhang Q, Wang PX. Semiconducting liquid crystalline dispersions with precisely adjustable band gaps and polarized photoluminescence. MATERIALS HORIZONS 2025; 12:3399-3407. [PMID: 40040576 DOI: 10.1039/d4mh01876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Simultaneously possessing energy conversion properties and reconfigurable anisotropic structures due to their fluidity, semiconducting liquid crystals are an emerging class of soft materials for generating and detecting polarized photons. However, band-gap engineering of liquid crystalline substances remains challenging. Herein, semiconducting liquid crystals exhibiting discotic nematic ordering, linearly polarized monochromatic photoluminescence or broadband white-light emission, and polarization-dependent light-responsiveness (generation of photons and photocurrents) were systematically developed by transforming two-dimensional organic-inorganic metal halide perovskites into mesogenic colloidal nanoparticles. The emission wavelengths of the perovskite liquid crystals could be adjusted with an accuracy of 5 nanometers over a wide range in the visible region by compositional variations, indicating the possibility of fabricating polarized light-emitting or optoelectronic devices with desired band gaps using these materials.
Collapse
Affiliation(s)
- Tingting Zhou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Penghao Guo
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Xuelian Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Hongbo Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| | - Qing Zhang
- NANO-X Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 385 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Pei-Xi Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- I-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics of the Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
2
|
Crans KD, Sun Z, Nehoray AA, Brutchey RL. Data-Driven Mapping of the Cesium Cadmium Bromide Phase Space Utilizing a Soft-Chemistry Approach. Inorg Chem 2025. [PMID: 40373800 DOI: 10.1021/acs.inorgchem.5c01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Soft-chemistry techniques provide a versatile approach to synthesizing inorganic materials under mild conditions, enabling access to compositions and structures that are challenging to achieve through traditional thermodynamically driven solid-state methods. However, these solution-based routes often result in phase competition, requiring precise control over reaction conditions to achieve selective product formation. While one-variable-at-a-time (OVAT) approaches have traditionally been used for phase selection, data-driven strategies are emerging as more efficient methods for navigating complex synthetic spaces. Ternary metal halides, such as cesium cadmium bromides (Cs-Cd-Br), are of growing interest due to their potential in wide and ultrawide band gap applications. Unlike the well-studied cesium lead halide phases, the compositional diversity and solution-based synthesis of ternary Cs-Cd-Br phases remain largely unexplored. This study systematically investigates the synthetic phase space of the Cs-Cd-Br system by constructing a data-driven phase map. Using a common set of precursors and a standardized experimental procedure, we successfully synthesize all four known Cs-Cd-Br phases─CsCdBr3, Cs2CdBr4, Cs3CdBr5, and Cs7Cd3Br13─each exhibiting distinct structures, morphologies, and optical properties. Our findings highlight the potential of soft-chemistry methods for expanding the library of ternary metal halides and provide key insights into the thermodynamic and kinetic factors governing phase formation.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Zhaohong Sun
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ariel A Nehoray
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Wu Y, Chen D, Zou G, Liu H, Zhu Z, Rogach AL, Yip HL. Strategies for Stabilizing Metal Halide Perovskite Light-Emitting Diodes: Bulk and Surface Reconstruction of Perovskite Nanocrystals. ACS NANO 2025; 19:9740-9759. [PMID: 40053394 DOI: 10.1021/acsnano.5c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light-emitting colloidal lead halide perovskite nanocrystals (PeNCs) are considered promising candidates for next-generation vivid displays. However, the operational stability of light-emitting diodes (LEDs) based on PeNCs is still lower than those based on polycrystalline perovskite films, which requires an understanding of defect formation in PeNCs, both inside the crystal lattice ("bulk") and at the surface. Meanwhile, uncontrollable ion redistribution and electrochemical reactions under LED operation can be severe, which is also related to the bulk and surface quality of PeNCs, and a well-designed device architecture can boost carrier injection and balance radiative recombination. In this review, we consider bulk and surface reconstruction of PeNCs by enhancing the crystal lattice rigidity and rationally selecting the surface ligands. Degradation pathways of PeNCs under applied voltage are discussed, and strategies are considered to avoid both undesirable ion migration and electrochemical reactions in the PeNC films. Subsequently, other critical issues hindering the commercial application of PeNC LEDs are discussed, including the toxicity of Pb in lead halide perovskites, scale-up deposition of PeNC films, and design of active-matrix prototypes for high-resolution LED modules.
Collapse
Affiliation(s)
- Ye Wu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Desui Chen
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Guangruixing Zou
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Haochen Liu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Zhaohua Zhu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| | - Hin-Lap Yip
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong S.A.R. 999077, P.R. China
| |
Collapse
|
4
|
Lv JR, Guo RT, Zhu HW, Shi XD, Liu MY, Pan WG. Recent Advances in Metal Halide Perovskites for CO 2 Photocatalytic Reduction: An Overview and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408921. [PMID: 39614738 DOI: 10.1002/smll.202408921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Indexed: 01/23/2025]
Abstract
The photocatalytic reduction of CO2 into valuable chemicals and fuels has become a significant research focus in recent years due to its environmental sustainability and energy efficiency. Metal halide perovskites (MHPs), renowned for their remarkable optoelectronic properties and tunable structures, are regarded as promising photocatalysts. Yet, their practical uses are constrained by inherent instability, severe electron-hole recombination, and a scarcity of active sites, prompting substantial research efforts to optimize MHP-based photocatalysts. This review summarizes the latest advancements in MHP-based photocatalysis. First the fundamental principles of photocatalysis are outlined and the structural and optical characteristics of MHPs are evaluated. Then key strategies for enhancing MHP photocatalysts, including morphology and surface modification, encapsulation, metal cation doping, heterojunction engineering, and molecular immobilization are highlighted. Finally, considering recent research progress and the needs for industrial application, challenges and future prospects are explored. This review aims to support researchers in the development of more efficient and stable MHP-based photocatalysts.
Collapse
Affiliation(s)
- Jiong-Ran Lv
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xu-Dong Shi
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Ming-Yang Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
5
|
Guha S, Bera S, Garai A, Sarma DD, Pradhan N, Acharya S. Deriving Chiroptical Properties from Intrinsically Achiral Building Blocks of One-Dimensional CsPbBr 3 Perovskite Nanowires. J Am Chem Soc 2024; 146:33883-33892. [PMID: 39587928 DOI: 10.1021/jacs.4c12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Chirality is a ubiquitous feature in biological systems and occurs even in certain inorganic crystals. Interestingly, some inorganic nanocrystals have been shown to possess chirality, despite their achiral bulk forms. However, the mechanism of chirality formation and chiroptical responses in such nanocrystals is still ambiguous due to the presence of chiral organic ligands used to passivate such nanocrystals. Here, we recognize intrinsic chiroptical responses from lead halide perovskite nanowires with different length scales. Cube-connected nanowires with minimum interfacial contacts make their arrangement chiral for chiroptical responses even in the absence of chiral ligands. The chiral nanowires with varying lengths serve as a systematic platform for improving dissymmetric factors significantly with increasing lengths. The dissymmetric factor of the longest nanowires reaches 1.4 × 10-2, which is the highest among the intrinsic chiral perovskite nanocrystals at present. The nanowires generate circularly polarized luminescence, which has been seldom reported in halide perovskite nanocrystals in the absence of any chiral ligands. Furthermore, we find that chirality exists in the basic unit consisting of two corner-connected cubes in the form of a dimer. The intrinsic chirality of the nanowires is determined by the lattice rotation of connected cubes along the interfacial boundaries, which is different from the commonly observed chirality induced by chiral ligands. Such chiral lead halide perovskite nanocrystals with robust chiroptical properties provide an ideal platform for understanding the origin of intrinsic chirality and the rational design of anisotropic chiral nanostructures.
Collapse
Affiliation(s)
- Shramana Guha
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arghyadeep Garai
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bengaluru 560012, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somobrata Acharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Technical Research Centre (TRC), Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
Zheng C, He J, Liu W, Liu Z, Xu L, Cao Z, Jiao C, Chen B. Ultra-Long Carrier Lifetime of Spiral Perovskite Nanowires Realized through Cooperative Strategy of Selective Etching and Passivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404861. [PMID: 39073293 DOI: 10.1002/smll.202404861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr3 perovskite NWs with an ultralong carrier lifetime of ≈2 µs. Specifically, a novel amine of 1-(p-tolyl)ethanamine is introduced to functionalize as both a selective etchant and the source of forming an effective ligand to passivate the exposed facets, favoring the structural twisting and the enhancement of carrier lifetimes. The twisting behaviors are dependent on the etch ratios, which are essentially associated with the densities of grain boundaries and dislocations in the NWs. The ultralong carrier lifetime and long-term stability of the spiral NWs open up new possibilities for all-inorganic perovskites in optoelectronic and photocatalytic fields, while the cooperative synthesis strategy paves the way for exploring complex spiral structures with tunable morphology and functionality.
Collapse
Affiliation(s)
- Cheng Zheng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia He
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwen Liu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linfeng Xu
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zetan Cao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuangwei Jiao
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Chen
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Justice Babu K, Chazhoor Asokan A, Shukla A, Kaur A, Sachdeva M, Ghosh HN. Ultrafast Interfacial Charge Transfer in Anisotropic One-Dimensional CsPbBr 3/Pt Epitaxial Heterostructure. J Phys Chem Lett 2024; 15:9677-9685. [PMID: 39283702 DOI: 10.1021/acs.jpclett.4c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Colloidal one-dimensional (1D) perovskite nanorods (NRs) and metal epitaxial heterostructures (HSs) are the promising class of new materials for efficient photovoltaic and photocatalytic applications. Besides, fundamental photophysical properties and its device applications of 1D perovskite-metal HSs are limited due to their challenging synthetic protocols and difficulties in forming epitaxial growth between covalent and ionic bonds. Herein, we have synthesized the CsPbBr3 perovskite NRs-platinum (Pt) nanoparticles (NPs) (CsPbBr3/Pt) epitaxial HS using cation exchange followed by chemical reduction methods with the orthorhombic Cs2CuBr4 NRs. Here, the tertiary ammonium ions extensively helped to form the 1D Cs2CuBr4, CsPbBr3 NRs, and CsPbBr3/Pt HSs. For CsPbBr3/Pt HSs an epitaxial relationship has been established in the (020) plane of orthorhombic CsPbBr3 with the (020) plane of cubic Pt. Further, femtosecond transient absorption (TA) spectroscopy was employed to study the charge carrier dynamics of CsPbBr3/Pt HS. Upon 420 nm photoexcitation, excitons in the conduction band of CsPbBr3 NRs dissociate by electron transfer (with an ultrafast time of 1.1 ps) to the Pt domain. In addition, charge transfer (CT) was also demonstrated in the CsPbBr3/Pt HS, which is ascribed to strong electron coupling and epitaxial growth between CsPbBr3 and Pt states. This extensive understanding of the electron transfer dynamics of CsPbBr3/Pt epitaxial HS may pave the way to designing highly efficient photovoltaic and photocatalytic applications.
Collapse
Affiliation(s)
| | | | - Ayushi Shukla
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Arshdeep Kaur
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Manvi Sachdeva
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India
| | - Hirendra N Ghosh
- School of Chemical Science, National Institute of Science Education and Research, Jatni, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
8
|
Bera S, Tripathi A, Titus T, Sethi NM, Das R, Afreen, Adarsh KV, Thomas KG, Pradhan N. CsPbBr 3 Perovskite Crack Platelet Nanocrystals and Their Biexciton Generation. J Am Chem Soc 2024; 146:20300-20311. [PMID: 39005055 DOI: 10.1021/jacs.4c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Lead halide perovskite nanocrystals have been extensively studied in recent years as efficient optical materials for their bright and color-tunable emissions. However, these are mostly confined to their 3D nanocrystals and limited to the anisotropic nanostructures. By exploring the Cs-sublattice-induced metal(II) ion exchange with Pb(II), crack CsPbBr3 perovskite platelet nanocrystals having polar surfaces in all three directions are reported here, which remained different than reported standard square platelets. The crack platelets are also passivated with halides to enhance their brightness. Further, as these crack and passivated crack platelets have defects and polar surfaces, the exciton and biexciton generation in these platelets is investigated using femtosecond photoluminescence and transient absorption measurement at ambient as well as cryogenic temperatures, correlated with time-resolved single-particle photoluminescence spectroscopy, and compared with standard square platelets having nonpolar facets. These investigations revealed that the crack platelets and passivated crack platelets possess enhanced biexciton emission compared to square platelets due to the presence of polar surfaces in all three directions. These results provide insights into not only the design of the anisotropic nanostructures of ionic nanocrystals but also the possibility of tuning the single exciton to biexciton generation efficiency, which has potential applications in optoelectronic systems.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Akash Tripathi
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - Timi Titus
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Nilesh Monohar Sethi
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| | - Afreen
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K V Adarsh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462066, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal 700032, India
| |
Collapse
|
9
|
Zhou L, Liang L, Chen J, Zhou X, Liu L, Xi S, Loh KP, Han Y, He Q, Liu X. Promoted Growth and Multiband Emission in Heterostructured Perovskites Through Cs + -Sublattice Interaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306398. [PMID: 38018323 PMCID: PMC10797418 DOI: 10.1002/advs.202306398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Precise control of exciton confinement in metal halide perovskites is critical to the development of high-performance, stable optoelectronic devices. A significant hurdle is the swift completion of ionic metathesis reactions, often within seconds, making consistent control challenging. Herein, the introduction of different steric hindrances in a Cs+ sublattice within CsYb2 F7 is reported, which effectively modulates the reaction rate of Cs+ with lead (Pb2+ ) and halide ions in solution, extending the synthesis time for perovskite nanostructures to tens of minutes. Importantly, the Cs+ sublattice provides a crystal facet-dependent preference for perovskite growth and thus exciton confinement, allowing the simultaneous occurrence of up to six emission bands of CsPbBr3 . Moreover, the rigid CsYb2 F7 nano template offers high activation energy and enhances the stability of the resulting perovskite nanostructures. This methodology provides a versatile approach to synthesizing functional heterostructures. Its robustness is demonstrated by in-situ growth of perovskite nanostructures on Cs+ -mediated metal-organic frameworks.
Collapse
Affiliation(s)
- Lei Zhou
- Department of ChemistryNational University of SingaporeSingapore117549Singapore
- School of Chemical Engineering and TechnologySun Yat‐sen UniversityZhuhai519802P. R. China
| | - Liangliang Liang
- Department of ChemistryNational University of SingaporeSingapore117549Singapore
| | - Jiaye Chen
- Department of ChemistryNational University of SingaporeSingapore117549Singapore
| | - Xin Zhou
- Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Lingmei Liu
- Multi‐scale Porous Materials CenterInstitute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering Chongqing UniversityChongqing400044P. R. China
| | - Shibo Xi
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for Science, Technology and Research (A*STAR)1 Pesek Road Jurong IslandSingapore627833Singapore
| | - Kian Ping Loh
- Department of ChemistryNational University of SingaporeSingapore117549Singapore
| | - Yu Han
- Physical Sciences and Engineering DivisionAdvanced Membranes and Porous Materials (AMPM) CenterKing Abdullah University of Science and Technology (KAUST)Thuwal23955–6900Saudi Arabia
| | - Qian He
- Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Xiaogang Liu
- Department of ChemistryNational University of SingaporeSingapore117549Singapore
- Institute of Materials Research and EngineeringAgency for Science, Technology and ResearchSingapore138634Singapore
- The N1 Institute for HealthNational University of SingaporeSingapore117456Singapore
| |
Collapse
|
10
|
Su K, Yuan SX, Wu LY, Liu ZL, Zhang M, Lu TB. Nanoscale Janus Z-Scheme Heterojunction for Boosting Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301192. [PMID: 37069769 DOI: 10.1002/smll.202301192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Artificial photosynthesis for CO2 reduction coupled with water oxidation currently suffers from low efficiency due to inadequate interfacial charge separation of conventional Z-scheme heterojunctions. Herein, an unprecedented nanoscale Janus Z-scheme heterojunction of CsPbBr3 /TiOx is constructed for photocatalytic CO2 reduction. Benefitting from the short carrier transport distance and direct contact interface, CsPbBr3 /TiOx exhibits significantly accelerated interfacial charge transfer between CsPbBr3 and TiOx (8.90 × 108 s-1 ) compared with CsPbBr3 :TiOx counterpart (4.87 × 107 s-1 ) prepared by traditional electrostatic self-assembling. The electron consumption rate of cobalt doped CsPbBr3 /TiOx can reach as high as 405.2 ± 5.6 µmol g-1 h-1 for photocatalytic CO2 reduction to CO coupled with H2 O oxidation to O2 under AM1.5 sunlight (100 mW cm-2 ), over 11-fold higher than that of CsPbBr3 :TiOx , and surpassing the reported halide-perovskite-based photocatalysts under similar conditions. This work provides a novel strategy to boost charge transfer of photocatalysts for enhancing the performance of artificial photosynthesis.
Collapse
Affiliation(s)
- Ke Su
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Su-Xian Yuan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Li-Yuan Wu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhao-Lei Liu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
11
|
Garai A, Vishnu EK, Banerjee S, Nair AAK, Bera S, Thomas KG, Pradhan N. Vertex-Oriented Cube-Connected Pattern in CsPbBr 3 Perovskite Nanorods and Their Optical Properties: An Ensemble to Single-Particle Study. J Am Chem Soc 2023. [PMID: 37317943 DOI: 10.1021/jacs.3c03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of cube-connected nanorods is accomplished by connecting seed nanocrystals of a defined shape in a particular orientation or by etching selective facets of preformed nanorods. In lead halide perovskite nanostructures, which retain mostly a hexahedron cube shape, such patterned nanorods can be designed with the anisotropic direction along the edge, vertex, or facet of seed cubes. Combining the Cs-sublattice platform for transforming metal halides to halide perovskites with facet-specific ligand binding chemistry, herein, vertex-oriented patterning of nanocubes in one-dimensional (1D) rod structures is reported. By tuning the length of host metal halides, their lengths could also be tuned from 100 nm to nearly 1000 nm. The symmetry of the hexagonal phase of host halide CsCdBr3 and product orthorhombic CsPbBr3 helped in maintaining the vertex [201] as the anisotropic direction. Neutral exciton recombination rates, extracted from photoluminescence blinking traces, showed a systematic increase from isolated cubes to cube-connected nanorods of various lengths. Efficient coupling of wave functions in vertex-oriented cube assemblies permits exciton delocalization. Our findings on carrier delocalization in cube-connected nanorods along their vertex direction having minimum interfacial contacts provide valuable insights into the fundamental chemistry of assembling anisotropic halide perovskite nanostructures as conducting wires.
Collapse
Affiliation(s)
- Arghyadeep Garai
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Anoop Ajaya Kumar Nair
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
12
|
Wang X, He J, Chen X, Ma B, Zhu M. Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Behera RK, Bera S, Pradhan N. Hexahedron Symmetry and Multidirectional Facet Coupling of Orthorhombic CsPbBr 3 Nanocrystals. ACS NANO 2023; 17:7007-7016. [PMID: 36996308 DOI: 10.1021/acsnano.3c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The cube shape of orthorhombic phase CsPbBr3 nanocrystals possesses the ability of selective facet packing that leads to 1D, 2D, and 3D nanostructures. In solution, their transformation with linear one-dimensional packing to nanorods/nanowires is extensively studied. Here, multifacet coupling in two directions of the truncated cube nanocrystals to rod couples and then to single-crystalline rectangular rods is reported. With extensive high-resolution transmission electron microscopy image analysis, length and width directions of these nanorods are derived. For the seed cube structures, finding {110} and {002} facets has remained difficult as these possess the hexahedron symmetry and their size remains smaller; however, for nanorods, these planes and the ⟨110⟩ and ⟨001⟩ directions are clearly identified. From nanocrystal to nanorod formation, the alignment directions are observed as random (as shown in the abstract graphic), and this could vary from one to the other rods obtained in the same batch of samples. Moreover, seed nanocrystal connections are derived here as not random and are rather induced by addition of the calculated amount of additional Pb(II). The same has also been extended to nanocubes obtained from different literature methods. It is predicted that a Pb-bromide buffer octahedra layer was created to connect two cubes, and this can connect along one, two, or even more facets of cubes simultaneously to connect other cubes and form different nanostructures. Hence, these results here provide some basic fundamentals of seed cube connections, the driving force to connect those, trapping the intermediate to visualize their alignments for attachments, and identifying and establishing the orthorhombic ⟨110⟩ and ⟨001⟩ directions of the length and width of CsPbBr3 nanostructures.
Collapse
Affiliation(s)
- Rakesh Kumar Behera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
14
|
Chen ZY, Huang NY, Xu Q. Metal halide perovskite materials in photocatalysis: Design strategies and applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
15
|
Mishra L, Behera RK, Panigrahi A, Dubey P, Dutta S, Sarangi MK. Deciphering the Relevance of Quantum Confinement in the Optoelectronics of CsPbBr 3 Perovskite Nanostructures. J Phys Chem Lett 2023; 14:2651-2659. [PMID: 36924080 DOI: 10.1021/acs.jpclett.3c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perovskites (PVKs) have emerged as an exciting class of semiconducting materials owing to their magnificent photophysical properties and been used in solar cells, light-emitting diodes, photodetectors, etc. The growth of multidimensional nanostructures has revealed many exciting alterations in their optoelectronic properties compared to those of their bulk counterparts. In this work, we have spotlighted the influence of quantum confinement in CsPbBr3 PVKs like the quantum dot (PQD), nanoplatelet (PNPL), and nanorod (PNR) on their charge transfer (CT) dynamics with 1,4-naphthoquinone (NPQ). The energy band alignment facilitates the transfer of both electrons and holes in the PNPL to NPQ, enhancing its CT rate, while only electron transfer in the PQD and PNR diminishes CT. The tunneling current across a metal-nanostructure-metal junction for the PNPL is observed to be higher than others. The higher exciton binding energy in the PNPL results in efficient charge transport by enhancing the mobility of the excited-state carrier and its lifetime compared to those of the PNR and PQD.
Collapse
Affiliation(s)
- Leepsa Mishra
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Ranjan Kumar Behera
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Aradhana Panigrahi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Priyanka Dubey
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Soumi Dutta
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| | - Manas Kumar Sarangi
- Department of Physics, Indian Institute of Technology Patna, Bihar, India 801106
| |
Collapse
|
16
|
Yang D, Zhang X, Liu S, Xu Z, Yang Y, Li X, Ye Q, Xu Q, Zeng H. Diverse CsPbI 3 assembly structures: the role of surface acids. NANOSCALE 2023; 15:1637-1644. [PMID: 36594626 DOI: 10.1039/d2nr06208a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface ligand engineering, seed introduction and external driving forces play major roles in controlling the anisotropic growth of halide perovskites, which have been widely established in CsPbBr3 nanomaterials. However, colloidal CsPbI3 nanocrystals (NCs) have been less studied due to their low formation energy and low electronegativity. Here, by introducing different molar ratios of surface acids and amines to limit the monomer concentration of lead-iodine octahedra during nucleation, we report dumbbell-shaped CsPbI3 NCs obtained by the in situ self-assembly of nanospheres and nanorods with average sizes of 89 nm and 325 nm, respectively, which showed a high photoluminescence quantum yield of 89%. Structural and surface state analyses revealed that the strong binding of benzenesulfonic acid promoted the formation of a Pb(SO3-)x-rich surface of CsPbI3 assembly structures. Furthermore, the addition of benzenesulfonic acid increases the supersaturation threshold and the solubility of PbI2 in a high-temperature reaction system, and controls effectively the lead-iodine octahedron monomer concentration in the second nucleation stage. As a result, the as-synthesized CsPbI3-Sn NCs exhibited different assembly morphologies and high PLQYs, among which the role of sulfonate groups can be further verified by UV absorption and surface characteristics. The strategy provides a new frontier to rationally control the surface ligand-induced self-assembly structures of perovskites.
Collapse
Affiliation(s)
- Dandan Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xuebin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Shijia Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Zhiheng Xu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiuyu Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Zhao HB, Liao JF, Teng Y, Chen HY, Kuang DB. Inorganic Copper-Based Halide Perovskite for Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43354-43361. [PMID: 36123166 DOI: 10.1021/acsami.2c12695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In view of the toxicity of the Pb element, exploring eco-friendly Pb-free halide perovskites with excellent photoelectric properties is of great research and practical application significance. Herein, copper-based halide perovskite CsCuCl3 and the corresponding Br--substituted sample (CsCuCl2Br) are designed and explored as the catalysts for photocatalytic CO2 reduction for the first time. A facile antisolvent recrystallization process with pre-prepared single crystals as the precursor is employed to controllably synthesize CsCuCl3 and CsCuCl2Br microcrystals (MCs). The electronic structure and charge transfer property analysis by theoretical and experimental investigation reveal that CsCuCl3 possesses a satisfying bandgap (1.92 eV) and conduction band minimum (CBM) to harvest the sunlight and drive the conversion of CO2 to CH4 and CO. The Br- substitution can not only narrow the bandgap but also facilitate the transportation of charge carriers. Thus, a total electron consumption rate of 44.71 μmol g-1 h-1 is achieved for CsCuCl2Br MCs, which is much better than that of same-sized CsPbBr3 microcrystals or even better than many perovskite nanocrystal photocatalysts. This study suggests that Cu-based perovskites can serve as promising candidates for artificial photosynthesis or other photocatalytic applications, which may propose a new thought to construct lead-free, low-cost photocatalysts.
Collapse
Affiliation(s)
- Hai-Bing Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yuan Teng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Hong-Yan Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, P. R. China
- School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
18
|
Recent advances in 1D nanostructured catalysts for photothermal and photocatalytic reduction of CO2. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Nasipuri D, Patra A, Bera S, Dutta SK, Pradhan N. Nucleophile-Controlled Halide Release from the Substitution Reaction of Haloketone for Facet Tuning and Manganese Doping in CsPbCl 3 Nanocrystals. J Phys Chem Lett 2022; 13:4506-4512. [PMID: 35575707 DOI: 10.1021/acs.jpclett.2c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide content of the reaction medium not only enhances the brightness of CsPbCl3 nanocrystals but also, control the shape modulations as well as doping Mn(II) in these host nanocrystals. Correlating both the shape effect and doping, herein, an in situ reaction of nucleophile-controlled halide release was explored for monitoring facets modulations and doping in CsPbCl3 nanocrystals. This was performed using alkyl amine as nucleophile which reacted with α-halo ketone, phenacyl chloride, to release chloride ions. Increase in amine concentration which released more Cl ions, reduced the possibility of shape transformation from perfect to truncated cubes during annealing. Similarly, for Mn(II) doping, the dopant photoluminescence intensity remained directly proportional to the amount of introduced amine nucleophiles. Quality of both doped and undoped nanocrystals obtained in this procedure remained unparallel and the method provided a strong correlation of rate of halide release with both facet modulations and doping in these nanocrystals.
Collapse
Affiliation(s)
- Diptam Nasipuri
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Avijit Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sumit Kumar Dutta
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
20
|
Wen JR, Rodríguez Ortiz FA, Champ A, Sheldon MT. Kinetic Control for Continuously Tunable Lattice Parameters, Size, and Composition during CsPbX 3 (X = Cl, Br, I) Nanorod Synthesis. ACS NANO 2022; 16:8318-8328. [PMID: 35544608 DOI: 10.1021/acsnano.2c02474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fast kinetics of all-inorganic CsPbX3 (X = Cl, Br, or I) nanocrystal growth entail that many synthetic strategies for structural control established in other semiconductor systems do not apply. Rather, products are often determined by thermodynamic factors, limiting the range of synthetic outcomes and functionality. In this study, we show how reaction kinetics are significantly slowed if nanocrystals are prepared using a dual injection strategy that moderates the crucial interaction between cesium and halide during nucleation and growth. The result is highly uniform nanorod or cuboid nanocrystals with a controllable size and aspect ratio across the quantum confinement regime, obtainable for both pure and mixed halide compositions. Further, the crystal lattice is continuously tunable between the tetragonal (I4/mcm) and orthorhombic (Pbnm) phases, independent of the overall nanorod morphology, enabling significantly more sophisticated structure-property relationships that can be tailored during this kinetically controlled synthesis.
Collapse
Affiliation(s)
- Je-Ruei Wen
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | | | - Anna Champ
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Matthew T Sheldon
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
21
|
Zhang H, Ma J, Wang S, Ji J, Zeng Z, Shen Z, Du Y, Yan CH. Novel Cerium-Based Sulfide Nano-Photocatalyst for Highly Efficient CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201332. [PMID: 35451152 DOI: 10.1002/smll.202201332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
To address the environmental crisis caused by excessive emissions of CO2 , the development of effective photocatalysts for the conversion of CO2 into chemicals has emerged as one of the most promising strategies. Herein, beyond those well-studied materials, a rare-earth sulfide-based nanocrystal NaCeS2 is fabricated and investigated for efficient and selective conversion of CO2 into CO, where the role of Ce ions is crucial. Firstly, the hybridization of Ce 4f and Ce 5d orbitals contributes to the photoresponsive band structure of NaCeS2 . Secondly, due to the charge rearrangement supplied by the incompletely filled 4f orbitals of Ce ions, NaCeS2 exhibits excellent charge separation efficiency and CO2 adsorption affinity, reducing the energy barrier for the conversion from CO2 to CO. Moreover, a NaCeS2 -MoS2 heterostructure is also designed to further boost the electron transfer from the Mo site to the Ce site, which results in an improvement of the catalytic reduction yield from 7.24 to 23.42 µmol g-1 within 9 h (both better than TiO2 controls). This work offers a platform for the development of rare-earth-based photocatalysts for CO2 conversion.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jiamin Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jixiang Ji
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhichao Zeng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Zhurui Shen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Chun-Hua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
22
|
Bera S, Banerjee S, Das R, Pradhan N. Tuning Crystal Plane Orientation in Multijunction and Hexagonal Single Crystalline CsPbBr 3 Perovskite Disc Nanocrystals. J Am Chem Soc 2022; 144:7430-7440. [DOI: 10.1021/jacs.2c01969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Souvik Banerjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajdeep Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
23
|
Bera S, Hudait B, Mondal D, Shyamal S, Mahadevan P, Pradhan N. Transformation of Metal Halides to Facet-Modulated Lead Halide Perovskite Platelet Nanostructures on A-Site Cs-Sublattice Platform. NANO LETTERS 2022; 22:1633-1640. [PMID: 35157475 DOI: 10.1021/acs.nanolett.1c04624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conversion of metal halides to lead halide perovskites with B-site metal ion diffusion has remained a convenient approach for obtaining shape-modulated perovskite nanocrystals. These transformations are typically observed for materials having a common A-site Cs-sublattice platform. However, due to the fast reactions, trapping the interconversion process has been difficult. In an exploration of the tetragonal phase of Cs7Cd3Br13 platelets as the parent material, herein, a slower diffusion of Pb(II) leading to facet-modulated CsPbBr3 platelets is reported. This was expected due to the presence of Cd(II) halide octahedra along with Cd(II) halide tetrahedra in the parent material. This helped in microscopically monitoring their phase transformation via an epitaxially related core/shell intermediate heterostructure. The transformation was also derived and predicted by density functional theory calculations. Further, when the reaction chemistry was tuned, core/shell platelets were transformed to different facet-modulated and hollow CsPbBr3 platelet nanostructures. These platelets having different facets were also explored for catalytic CO2 reduction, and their catalytic rates were compared.
Collapse
Affiliation(s)
- Suman Bera
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Biswajit Hudait
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Sanjib Shyamal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| | - Narayan Pradhan
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|