1
|
Xu H, Liu N, Wang Q, Liu J, Qu C, Zhang W, Qian J. Ferrous Fumarate-Encapsulated Nanoformulation Triggering a Domino Effect for Enhanced Ferroptosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29379-29391. [PMID: 40327625 DOI: 10.1021/acsami.5c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fenton-induced ferroptosis has emerged as a promising therapeutic strategy for malignant tumors. However, the therapeutic efficacy of ferroptosis is limited by factors such as suboptimal Fenton efficiency, intracellular antioxidant systems, and insufficient drug accumulation. Here, we report a domino effect triggered by a homologous cancer cell membrane-camouflaged nanoformulation: disrupting intracellular redox homeostasis, inducing enhanced oxidative stress and leading to specific ferroptosis. This strategy involves using pure red-emission upconversion nanoparticles (NaErF4:4%Tm@NaYF4, U NPs), a ferroptosis inducer (ferrous fumarate, an iron-deficiency anemia therapeutic reagent), and glucose oxidase (GOx). The nanoformulation, U@mSiO2/ferrous fumarate/GOx@lecithin/cell membrane (USFGM), enables efficient in vivo deep tissue upconversion luminescence (UCL) imaging by pure red-emission. Lecithin-modified cancer cell membranes are characterized by homologous target "homing" and acid-responsive release. Exogenous GOx depletes intratumoral glucose and generates H+/H2O2, which disrupts the nutrient supply and promotes efficient generation of reactive oxygen species (ROS). Subsequently, Fe2+/fumaric acids (FAs) are acid-responsively released from ferrous fumarate, which synchronously triggers and exacerbates the process of ferroptosis through mechanisms such as lipid ROS generation and glutathione (GSH) depletion. Here, we report for the first time that FA depletes GSH and leads to inactivation of GSH-dependent peroxidase 4 (GPX4). This concept is also confirmed in tumor-bearing mice of salivary adenoid cystic carcinoma (SACC). In summary, this work identifies a systemic, low-toxicity, and highly efficient cancer inhibitory nanoformulation from existing clinical drugs, which provides a promising direction for exploring therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Na Liu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Qian Wang
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jinyang Liu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Chen Qu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenchao Zhang
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jing Qian
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
2
|
Zhong S, Zhang Z, Wang Z, Zhao Q, Chen W, Chen G, Jiang Z, Cai Q, Gong L, Lai Y, Wang D, Li L. Synergizing Catalysis with Post-catalysis Pseudo-Iron Release by Building Dynamic Catalytic Active Sites in Diatomic Nanozymes for Boosting Cancer Therapy. J Am Chem Soc 2025; 147:15814-15826. [PMID: 40279358 DOI: 10.1021/jacs.5c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Biomimetic nanozymes hold considerable promise for cancer therapy, but their therapeutic potential is often constrained by their limited catalytic activity. Here, we present a Ga/Zn diatomic nanozyme (Ga/Zn-NC) with a well-defined geometric structure and electronic configuration designed to emulate peroxidase and glutathione oxidase with exceptional catalytic activities, enabling cascade catalysis. We demonstrate that the formation of Ga-Zn metal bonding is essential for accelerating electron transfer and reducing the reaction energy barrier, thus enhancing the catalytic performance. Within the tumor microenvironment, the catalytic actions of Ga/Zn-NC induce oxidative damage and sensitize breast cancer cells to ferroptosis. Concurrently, the release of gallium from Ga/Zn-NC with "pseudo-iron" activity disrupts iron metabolism and activates a self-amplifying ferroptosis pathway, synergizing with the enzyme's catalytic activity to potentiate ferroptosis and apoptosis, thereby achieving remarkable efficacy against tumors.
Collapse
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Zeyu Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Wenting Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Genglin Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Zhuoheng Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Qian Cai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Likun Gong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Yuecheng Lai
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 101400, P. R. China
| |
Collapse
|
3
|
Zhang Z, Liu Y, Liang X, Wang Q, Xu M, Yang X, Tang J, He X, He Y, Zhang D, Li C. Advances in nanodelivery systems based on apoptosis strategies for enhanced rheumatoid arthritis therapy. Acta Biomater 2025; 197:87-103. [PMID: 40154765 DOI: 10.1016/j.actbio.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder primarily characterized by persistent synovial inflammation and progressive bone erosion. The pathogenesis of RA involves a complex cascade of cellular and molecular events, including sustained hyperactivation of macrophages, excessive recruitment and activation of neutrophils, pathological proliferation and invasion of fibroblast-like synoviocytes (FLS), and dysregulated differentiation and function of osteoclasts (OCs). The inflammatory factors secreted by these dysregulated cells significantly disrupt the joint microenvironment through multiple pathological mechanisms, primarily by promoting synovial inflammation, cartilage matrix degradation, osteoclast-mediated bone erosion, and pathological angiogenesis. Therapeutic strategies targeting the induction of apoptosis in these malignant cells have demonstrated considerable potential in preclinical studies, offering a promising approach to enhance treatment outcomes by simultaneously reducing inflammatory cytokine production and inhibiting pathogenic cell proliferation. However, conventional therapeutic drugs are limited in clinical applications because of their high toxicity and side effects. Inflammation induces morphological and functional changes in cells within the rheumatoid arthritis microenvironment (RAM), particularly the overexpression of specific receptors on cell membranes. This phenomenon has driven the development of ligand-modified targeted nanodelivery systems (NDSs), which can specifically target and induce apoptosis in specific cell types, thereby enhancing therapeutic efficacy. This paper comprehensively reviews the research progress of targeted NDSs based on apoptosis strategies for RA therapy, with a detailed discussion of their advantages in inducing apoptosis in various disease-associated cells. Furthermore, the potential of combining apoptosis of multiple cell types for RA treatment is explored. This review is expected to improve insights into the apoptosis of malignant cells to enhance RA therapy. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in nanodelivery systems (NDSs) based on apoptotic strategies for enhanced rheumatoid arthritis (RA) therapy. Unlike conventional NDSs, these optimized systems specifically induce apoptosis in malignant cells within the RA microenvironment by integrating multiple therapeutic strategies. By summarizing the latest research, our work demonstrates the potential of these NDSs to suppress inflammatory responses and prevent bone destruction through targeted elimination of malignant cells, offering a novel direction for RA treatment. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective therapeutic approaches for RA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Wang
- Classical teaching and Research Department, College of Integrated Chinese and Western medicine, Affiliated TCM Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Xu Y, Ge M, Xu Y, Yin K. Ferroptosis: a novel perspective on tumor immunotherapy. Front Immunol 2025; 16:1524711. [PMID: 40260246 PMCID: PMC12009862 DOI: 10.3389/fimmu.2025.1524711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. The execution of ferroptosis is intricately linked to both iron and lipid metabolism. Intriguingly, iron and lipid metabolism are also pivotal for maintaining the physiological function of immune cells. Research has revealed that ferroptosis can potentiate the immunogenicity of tumor cells and engage in intricate interactions with immune cells. Certain ferroptosis inducers have the capacity to augment the efficacy of immunotherapy by modulating the tumor immune microenvironment. Ferroptosis holds immense potential in cancer immunotherapy and is anticipated to emerge as a novel therapeutic target in the future landscape of cancer treatment. In this review, we primarily delineate the ferroptosis signaling pathways and metabolic processes pertinent to immune cells, and further summarize the roles of ferroptosis in tumor-infiltrating immune cells. Ultimately, we anticipate further elucidation of the mechanisms of ferroptosis in immunotherapy and envision that strategies targeting ferroptosis and immunotherapy will be expeditiously applied in clinical oncology practice.
Collapse
Affiliation(s)
| | | | | | - Kai Yin
- Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Guo S, Guan T, Ke Y, Lin Y, Tai R, Ye J, Deng Z, Deng S, Ou C. Biologically logic-gated Trojan-horse strategy for personalized triple-negative breast cancer precise therapy by selective ferroptosis and STING pathway provoking. Biomaterials 2025; 315:122905. [PMID: 39471713 DOI: 10.1016/j.biomaterials.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of "biological logic-gates" to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe0@HMON@DNA-Exo, is engineered via in situ Fe0 synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells. Emphasizing the precision of our approach, the DNA-Exo ensures specific 'homing' to TNBC cells, rendering a targeted delivery mechanism. Concurrently, the concept of "biological logic-gates" is employed to dictate a meticulous and selective activation of STING in antigen-presenting cells (APCs) under OR logic-gating with robust immune response and Fe0-based ferroptosis in TNBC cells under AND logic-gating with reactive oxygen species (ROS) storm generation. In essence, our strategy exhibits great potential in transforming the "immunologically cold" nature of TNBC, enabling precise control over cellular responses, illuminating a promising therapeutic paradigm that is comprehensive and productive in pursuing precision oncology and paving the way for personalized TNBC therapies.
Collapse
Affiliation(s)
- Shuai Guo
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Tianwang Guan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Yushen Ke
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Yuping Lin
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Rundong Tai
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Jujian Ye
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Zhilin Deng
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China
| | - Shaohui Deng
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523059, China.
| |
Collapse
|
6
|
Chen Z, Wang Y, Li Z, Chen M, Li Y, Lu C, Lin Z, Zheng H, Chen L, Zhang Q. Improving ferroptosis-mediated immunotherapy for colorectal cancer through lysosome-targeted photodynamic therapy. Mater Today Bio 2025; 31:101552. [PMID: 40018057 PMCID: PMC11867524 DOI: 10.1016/j.mtbio.2025.101552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Lysosomes is emerging as a promising therapeutic target for improving immunotherapy, which dysfunction would trigger lysosomal membrane permeabilization increase and subsequent leakage of reduced iron, which contributed to ferroptosis through cell-intrinsic Fenton chemistry. However, the integrity of lysosomal membranes is not susceptible to disrupt, owing to the presence of several Endo-lysosomal damage-response mechanisms. Herein, we developed a lysosome-targeted photosensitizer (TLA), which possessed robust light stability, good bio-compatibility, and high photodynamic therapy (PDT) effect. Upon internalized by cancer cells, TLA was specifically accumulated in lysosome, and which would destroy the integrity of lysosomal membranes and inhibit protective autophagy upon exposure to light irradiation. Subsequently, the cancer cells were suffered from ferroptosis through triggering cell-intrinsic Fenton chemistry and mitochondrial dysfunction, which would release damage-associated molecular pattern molecules (DAMPs) to induce immunogenic cell death and remodel immunosuppressive tumor microenvironment. Notably, combined with PD-L1 antibody and TLA could greatly potentiate the immune response and exhibit highest anti-tumor effects. In summary, this novel lysosome-targeted photosensitizer could serve as a promising strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhian Chen
- Zhongshan City People's Hospital, Zhongshan, 528403, China
| | - Yutong Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhao Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingshi Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuyue Lu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhenyu Lin
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbing Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
7
|
Chen H, Huang J, Wang H, Xu Y, Chen J, Deng T, Su Z, Lin R, Huang C, Wu J. Multifunctional liposome boosts glioma ferroptosis and immunotherapy through reinforcement of chemo-dynamic therapy strategy. Mater Today Bio 2025; 31:101521. [PMID: 39968524 PMCID: PMC11834134 DOI: 10.1016/j.mtbio.2025.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/05/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Glioma remains significant challenging to completely cure by the conventional surgical resection because of its high infiltrative growth properties. Recently, emerging immunotherapy has achieved remarkable success in treating various cancer, but glioma do not benefit from cancer immunotherapy owing to its specific immunosuppressive tumor microenvironment (iTME). Herein, we show the significant improvement of the immunotherapy efficacy for glioma through multifunctional liposome (Lpo@Cu2Se-GOx). After tumor cells endocytosis, the released glucose oxidase (GOx) could oxidize glucose into gluconic acid to achieve starvation therapy and generate H2O2 as byproduct. Meanwhile, these properties might further cause anti-oxidant systems dysfunction and reinforce Cu2+ based Fenton-like reaction, which lead to lipid peroxides accumulation and ferroptosis occur. Moreover, the onset of ferroptosis would trigger the release of damage-associated molecular patterns and induce immunogenic cell death, which contributed to the dendritic cell maturation and cytotoxic T cell infiltration. Besides, in vitro and in vivo experiments verified that Lpo@Cu2Se-GOx had well significant glioma inhibition without adverse reactions. Taken together, our research demonstrates the modulation of iTME through self-amplified chemo-dynamic therapy could be a significant strategy to improve the immunotherapy of glioma.
Collapse
Affiliation(s)
- Hongwu Chen
- Shantou University Medical College, Shantou, 515041, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiehao Huang
- Shantou University Medical College, Shantou, 515041, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yimin Xu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jieling Chen
- Shantou University Medical College, Shantou, 515041, China
| | - Tingting Deng
- Shantou University Medical College, Shantou, 515041, China
| | - Zhongjing Su
- Shantou University Medical College, Shantou, 515041, China
| | - Rui Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Cong Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
8
|
Zhu L, Hu J, Wu X, Zhang J, Xu X, Huang X, Tian B, Zhao CX, Du Y, Wu L. Programmed enhancement of endogenous iron-mediated lysosomal membrane permeabilization for tumor ferroptosis/pyroptosis dual-induction. Nat Commun 2025; 16:3017. [PMID: 40148335 PMCID: PMC11950380 DOI: 10.1038/s41467-025-58124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Ferroptosis and pyroptosis, as emerging regulated forms of cell death capable of overcoming apoptotic resistance, demonstrate promising potential in tumor therapy. Given that iron manipulation and reactive oxygen species elevation serve as common stimuli for both processes, inducing lysosomal membrane permeabilization (LMP) with ensuing release of lysosomal contents (including iron ions and cathepsins) is anticipated to realize dual induction of ferroptosis/pyroptosis. Herein, we report a folic acid and croconaine molecule-functionalized upconversion nanoparticle (UCNP-Cro/FA) that is able to mobilize intracellular stores of endogenous iron and spatiotemporally control the lysosome-intrinsic Fenton chemistry, thereby triggering LMP-associated cell death. The process of endogenous iron mobilization occurs through two key steps: Cro-mediated coordination of abundant Fe3+ ions within lysosomes, followed by UV-emitting upconversion core-mediated photoreduction, resulting in Fe2+ ions release. Both in vitro and in vivo experiments show that UCNP-Cro/FA + NIR treatment effectively boost LMP by endogenous iron-mediated •OH production, ultimately triggering irreversible tumor cell death via ferroptosis and Caspase-1/GSDMD-dependent pyroptosis pathways. Moreover, this process potentiates tumor immunogenicity, holding promise for tumor immunotherapy. Overall, this work proposes a feasible tumor therapy strategy that integrates ferroptosis and pyroptosis through the efficient application and activation of endogenous iron.
Collapse
Affiliation(s)
- Luwen Zhu
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiahao Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaochuan Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jucong Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xinyi Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiajie Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| | - Chun-Xia Zhao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
| | - Yongzhong Du
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Liming Wu
- Department of General Surgery, Center for Metabolism Research, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, P. R. China.
| |
Collapse
|
9
|
Yu H, Wei D, Liao W, Shang X, Li D, Liu C, Deng Q, Huangfu H. Exosome-mediated effects of BRCA1 on cardiovascular artery disease. Cell Biol Toxicol 2025; 41:59. [PMID: 40080209 PMCID: PMC11906578 DOI: 10.1007/s10565-025-09996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025]
Abstract
The progression of coronary artery disease atherosclerosis (CAD) is closely associated with cardiomyocyte apoptosis and inflammatory responses. This study focused on investigating the impact of BRCA1 in exosomes (Exo) derived from M1 macrophages on CAD. Through the analysis of single-cell RNA-seq datasets, significant communication between macrophages and cardiomyocytes in CAD patients was observed. BRCA1, identified as a significant apoptosis-related gene, was pinpointed through the assessment of differential gene expression and weighted gene co-expression network analysis (WGCNA). Experimental procedures involved BRCA1 lentivirus transfection of M1 macrophages, isolation of Exo for application to cardiomyocytes and smooth muscle cells, cell viability assessments, and characterization of Exo. The results showed that BRCA1-Exo from M1 macrophages induced cardiomyocyte apoptosis and affected smooth muscle cell behavior. In vivo studies further supported the exacerbating effects of BRCA1-Exo on CAD progression. Overall, the involvement of Exo carrying BRCA1 from M1 macrophages is evident in the induction of cardiomyocyte apoptosis and the regulation of smooth muscle cell behaviors, thereby contributing to CAD atherosclerosis progression. These findings unveil novel molecular targets that could have potential implications for CAD treatment strategies.
Collapse
Affiliation(s)
- Hairui Yu
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Dong Wei
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Weiqian Liao
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Xiaoming Shang
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Dandan Li
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Chunzhao Liu
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Qimei Deng
- Department of Preventive Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China
| | - Haiquan Huangfu
- Department of Cardiology, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 PMCID: PMC11874808 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
11
|
Reuning U, D'Amore VM, Hodivala-Dilke K, Marinelli L, Kessler H. Importance of integrin transmembrane helical interactions for antagonistic versus agonistic ligand behavior: Consequences for medical applications. Bioorg Chem 2025; 156:108193. [PMID: 39842299 DOI: 10.1016/j.bioorg.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands. The reorganization of the transmembrane domain (TMD) in the integrin receptor, forming homooligomers within focal adhesions, could be key to the understanding of the agonistic properties of integrin ligands at substoichiometric concentrations. This has significant implications for medical applications. While we focus on the RGD peptide-recognizing integrin subfamily, we propose that these mechanistic insights may also apply to other integrin subtypes. For application of integrin ligands in medicine it is essential to consider this mechanism and its consequences for affinity and bioavailability.
Collapse
Affiliation(s)
- Ute Reuning
- TUM University Hospital, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Department of Gynecology and Obstetrics, Clinical Research Unit, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Vincenzo Maria D'Amore
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| | - Luciana Marinelli
- University of Naples Federico II, UNINA-Department of Pharmacy, C.so Umberto I, 40, 80138 Naples, Italy.
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany.
| |
Collapse
|
12
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
13
|
Zhang J, Jiao D, Qi X, Zhang Y, Liu X, Pan T, Gao H, Liu Z, Ding D, Feng G. An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410405. [PMID: 39804949 PMCID: PMC11884554 DOI: 10.1002/advs.202410405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis. These multifaceted cell deaths synergistically facilitate the release of damage-associated molecular patterns and antitumor cytokines, thereby provoking robust antitumor immunity. Both in vitro and in vivo experiments confirmed that BSA@TPE-BT-SCT NPs elicited the immunogenic cell death, enhance dendritic cell maturation, activate T cell, and reduce myeloid-derived suppressor cells, leading to the inhibition of both primary and distant tumors. Additionally, BSA@TPE-BT-SCP NPs also exhibited excellent antitumor performance in a humanized mice model, evidenced by a reduction in senescent T cells among these activated T cells. The findings advance the development of robust type I photosensitizers and unveil the important role of type I ROS in enhancing multifaceted tumor cell deaths and antitumor immunogenicity.
Collapse
Affiliation(s)
- Jingtian Zhang
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Di Jiao
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xinwen Qi
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Yufan Zhang
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Xiaoang Liu
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Tengwu Pan
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Heqi Gao
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone ControlTianjin Institute of HematologyTianjin300052China
| | - Dan Ding
- Frontiers Science Center for Cell ResponsesState Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive MaterialsMinistry of Educationand College of Life SciencesNankai UniversityTianjin300071China
| | - Guangxue Feng
- Guangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesState Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringAIE InstituteSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
14
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
15
|
Chang Z, Liang Z, Lan Y, Huang J, Feng L, Xu J. Strategy of "Controllable Ions Interference" for Boosting MRI-Guided Ferroptosis Therapy of Tumors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11688-11703. [PMID: 39945467 DOI: 10.1021/acsami.4c19178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Chemotherapy for oral squamous cell carcinoma (OSCC) is often marred by the development of multidrug resistance and systemic adverse effects. Metal ion interference therapy (MIIT) has risen as an innovative strategy to disrupt the intracellular metal ion equilibrium in tumor cells, potentially overcoming drug resistance. However, the effectiveness of cancer treatment that relies on delivering single metal ions to tumor site is often constrained. To address this, we have developed a therapeutic nanoplatform employing hollow mesoporous manganese dioxide nanoparticles (HMON) which harness the chelating properties of tannic acid to control the loading and release of Zn2+ and Pt2+, i.e., Zn@CDDP@HMON. In acidic tumor microenvironment, Zn2+ and Pt2+ ions strategically released from nanoplatform can inhibit mitochondrial respiration and activate NADPH oxidases (NOXs), respectively, increasing superoxide anion (O2•-) and hydrogen peroxide production (H2O2). The released Mn4+ consumes intracellular glutathione (GSH) to generate Mn2+, which reacts with H2O2 in a Fenton-like reaction, producing hydroxyl radicals (•OH) and inducing lipid peroxidation (LPO). The depletion of GSH also inhibits GPX4 activity, sensitizing tumor cells to ferroptosis. Furthermore, the reduced Mn2+ facilitates T1-MRI imaging, allowing for real-time monitoring of nanoplatform distribution and accumulation in tumors.
Collapse
Affiliation(s)
- Zhen Chang
- Oral Emergency Department, Hospital of Stomatology, Zhongshan City, Zhangshan528400, China
| | - Zhiyu Liang
- Department of Medical Imaging, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, China
| | - Yuming Lan
- Oral Emergency Department, Hospital of Stomatology, Zhongshan City, Zhangshan528400, China
| | - Jiacheng Huang
- Oral Emergency Department, Hospital of Stomatology, Zhongshan City, Zhangshan528400, China
| | - Lijie Feng
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Guangzhou, Guangdong 510515, China
| | - Jianhui Xu
- Department of Otolaryngology Head and Neck surgery, Zhongshan City People's Hospital, Zhongshan 528403, China
| |
Collapse
|
16
|
Cheng X, Xu J, Cui Y, Liu J, Chen Y, He C, Cui L, Liu Y, Song B, Gong C, Mi P. Nanovesicles for Lipid Metabolism Reprogram-Enhanced Ferroptosis and Magnetotherapy of Refractory Tumors and Inhibiting Metastasis with Activated Innate Immunity. ACS NANO 2025; 19:7213-7230. [PMID: 39928515 DOI: 10.1021/acsnano.4c16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Castration-resistant prostate cancer (CRPC) is an intractable disease, but approaches for eradicating primary tumors and inhibiting metastasis are limited. Considering that lipid metabolism plays key roles in ferroptosis and tumor progression and treatment resistance, here we developed a biomimetic nanovesicle (FiFe@RBM) encapsulating fatty acid synthetase inhibitors and iron oxide nanoparticles for synergistic therapy of CRPC and inhibiting the metastasis. FiFe@RBM with superior magnetic properties efficiently delivered drugs into the CRPC cancer cells, where it can release Fe ions to efficiently induce reactive oxygen species and mitochondrial dysfunction and inhibit the AKT-mTOR pathway, which synergistically causes apoptosis and enhances ferroptosis by rewired lipid metabolism through increasing polyunsaturated fatty acids (PUFAs), PUFA-enriched phosphatidylcholine (PUFA-PC), PUFA-enriched phosphatidylethanolamine (PUFA-PE), etc. By intravenous injection, the high accumulation of FiFe@RBM in PC-3 tumors enabled precision T1/T2-weighted magnetic resonance imaging-guided effective eradication of human CRPC PC-3 tumors by synergistic magnetic hyperthermia therapy (MHT) and ferroptosis, which further inhibited liver metastasis by the activated and recruited high rates of natural killer cells in the nude mice model. This work presents an effective nanovesicle strategy for reprogramming lipid metabolism to enhance ferroptosis in synergy with MHT for effectively treating refractory cancers.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinshun Xu
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Yongsheng Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuntian Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuanshi He
- Department of Ultrasound, Sichuan Cancer Hospital, Chengdu 610042, Sichuan, China
| | - Lele Cui
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610051, Sichuan, China
| | - Bin Song
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Radiology, Sanya People's Hospital, Sanya 572032, Hainan, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
17
|
Wang Z, Wang C, Ji Y, Yang M, Li C, Li M, Yang J, Tang H, Luo X, Hao H, Liu Z, Chen K, Chang Y, Yuan H, Feng L, Xing G, Li J. Magnetically driven bionic nanorobots enhance chemotherapeutic efficacy and the tumor immune response via precise targeting. Innovation (N Y) 2025; 6:100777. [PMID: 39991478 PMCID: PMC11846086 DOI: 10.1016/j.xinn.2024.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
We developed magnetically driven bionic drug-loaded nanorobots (MDNs) to accurately target tumors and deliver chemotherapy agents using a customized three-dimensional (3D) magnetic manipulation platform (MMP) system to precisely control their movement mode. MDNs were based on polyethylene glycol-modified homogeneous ultrasmall iron oxide nanoparticles (7.02 ± 0.18 nm). Doxorubicin (12% ± 2% [w/w]) was encapsulated in MDNs by an imide bond. MDNs could imitate the movement mode of a school of wild herrings (e.g., re-dispersion/arrangement/vortex/directional movement) to adapt to the changing and complex physiological environment through the 3D MMP system. MDNs overcame blood flow resistance and biological barriers using optimized magnetic driving properties according to in vivo imaging (magnetic resonance imaging and fluorescence) and histopathology. The performance of fabricated MDNs was verified through cells and tumor-bearing mouse models. The MDNs showed high efficiency of drug delivery and targeting at the tumor site (>10-fold), lower toxicity than free doxorubicin (5 mg/kg body weight), activated immune response in the tumor site, and significantly lengthened survival for mice. The synergistic interaction between MDNs and the 3D MMP system underscores the immense potential of this drug delivery system, indicating a potential revolution in the field of tumor chemotherapy.
Collapse
Affiliation(s)
- Zhijie Wang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chutian Wang
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Ying Ji
- Institute of Textiles and Clothing, School of Fashion and Textiles, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Mingxin Yang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Li
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Mengyao Li
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Yang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Tang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwei Luo
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Hao
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicai Liu
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Chang
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Yuan
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Gengmei Xing
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Shen J, Feng K, Yu J, Zhao Y, Chen R, Xiong H, Ruan Y, Xu Z, Zhang T, Sun X. Responsive and traceless assembly of iron nanoparticles and 131I labeled radiopharmaceuticals for ferroptosis enhanced radio-immunotherapy. Biomaterials 2025; 313:122795. [PMID: 39232333 DOI: 10.1016/j.biomaterials.2024.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death with the potential to reverse traditional cancer therapy resistance. The combination of ferroptosis with chemotherapy, photodynamic therapy and X-ray therapy has demonstrated remarkably improved therapeutic efficiency. Radiopharmaceutical therapy (RPT) is an emerging approach that achieves precise radiation to diseased tissues via radionuclide delivery. However, insufficient accumulation and retention of therapeutic radiopharmaceuticals in tumor region as well as cancer radioresistance impact treatment efficacy. Here, a nanoassembly of renal clearable ultrasmall iron nanoparticles (USINPs) and 131I-aPD-L1 is prepared via the affinity of fluorophenylboronic acid modified on the USINPs with 131I-aPD-L1. The 150 nm USINAs(131I-aPD-L1) nanoassembly is stable in blood circulation, effectively targets to the tumor and disassembles in the presence of ATP in the tumor microenvironment. Both in vitro and in vivo experiments prove that USINPs-induced ferroptosis boosted the tumor radiosensitization to 131I while 131I-mediated RPT further enhanced ferroptosis. Meanwhile, the immunogenic cell death caused by RPT and ferroptosis combined with PD-L1 immune checkpoint blockade therapy exhibits a strong antitumor immunity. This study provides a novel way to improve the tumor accumulation of ferroptosis inducer and radiopharmaceuticals, insights into the interaction between RPT and ferroptosis and an effective SPECT-guided ferroptosis-enhanced radio-immunotherapy.
Collapse
Affiliation(s)
- Jingjing Shen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yaxuan Zhao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruifang Chen
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hehua Xiong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengtao Xu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tao Zhang
- Northern Jiangsu Institute of Clinical Medicine, Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
19
|
Zhang Y, Zhang N, Gong SP, Chen ZS, Cao HL. Nanozyme-based synergistic therapeutic strategies against tumors. Drug Discov Today 2025; 30:104292. [PMID: 39805540 DOI: 10.1016/j.drudis.2025.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Cancer remains a global health threat, with traditional treatments limited by adverse effects and drug resistance. Nanozyme-based catalytic therapy with high stability and controllable activity provides targeted and specific in situ tumor treatment to address these challenges. More intriguingly, the tremendous advances in nanotechnology have enabled nanozymes to rival the catalytic activity of natural enzymes, presenting an exciting opportunity for innovating antitumor nanodrugs. This review systematically summarizes the latest progresses in nanozyme-based anticancer catalytic therapy, with a particular focus on various synergistic antitumor strategies, including other functional enzymes, drugs, exogenous stimuli and radiotherapy. These combinations not only enhance the efficacy of cancer treatment and reduce systemic toxicity but also offer insights into the development of potent antitumor nanodrugs.
Collapse
Affiliation(s)
- Ye Zhang
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Ning Zhang
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Shou-Ping Gong
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University NY USA.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Xi'an Key Laboratory of Autoimmune Rheumatic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
20
|
Yao C, Zhang R, Xie Z, Wu Y, Wu X. A Magnetically Actuated MOF-Based Nanozyme for Intensified Induction of Ferroptosis and Immunogenic Cell Death Via Autophagy Blockade. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409026. [PMID: 39659092 DOI: 10.1002/smll.202409026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/23/2024] [Indexed: 12/12/2024]
Abstract
Nanozymes mimicking enzymes show great promise in anti-tumor therapy but are often limited by their low catalytic activity and lack of tumor specificity in hostile tumor microenvironments. This study develops a novel nanozyme, D/P@ZUCO, utilizing metal-organic frameworks (MOFs) with glutathione oxidase, peroxidase, and catalase-like activities. D/P@ZUCO is synthesized using ZnFe2O4 and NH2-UiO66 (Cu/Zr) through an in situ growth method, followed by loading with doxorubicin (DOX) and primaquine (PQ), and functionalization with oxidized hyaluronic acid (OHA). It efficiently catalyzes the conversion of hydrogen peroxide (H2O2) into hydroxyl radicals (·OH) and glutathione (GSH) into glutathione disulfide (GSSH), initiating ferroptosis in cancer cells. Additionally, the conversion of excess H2O2 into oxygen (O2) enhances the apoptosis effects of DOX. Importantly, the inhibition of autophagy by D/P@ZUCO exacerbates ferroptosis and immunogenic cell death (ICD), triggering a potent anti-tumor immune response. The targeted drug delivery of D/P@ZUCO is facilitated by magnetic guidance and interactions between OHA and CD44 receptors. D/P@ZUCO demonstrates effective cancer treatment by triggering multiple cell death pathways through a synergistic combination of enzymatic actions, serving as a paradigm for systemic activation of multiple enzymes in triple-negative breast cancer therapy.
Collapse
Affiliation(s)
- Can Yao
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Rui Zhang
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Zongliang Xie
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| | - Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Digital Medical Engineering, Hainan University, Haikou, 570228, China
- School of Life and Health Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
- Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, China
| |
Collapse
|
21
|
Xiao Q, Shang L, Peng Y, Zhang L, Wei Y, Zhao D, Zhao Y, Wan J, Wang Y, Wang D. Rational Design of Coordination Polymers Composited Hollow Multishelled Structures for Drug Delivery. SMALL METHODS 2025; 9:e2301664. [PMID: 38678518 DOI: 10.1002/smtd.202301664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/30/2024] [Indexed: 05/01/2024]
Abstract
Multifunctional drug delivery systems (DDS) are in high demand for effectively targeting specific cells, necessitating excellent biocompatibility, precise release mechanisms, and sustained release capabilities. The hollow multishelled structure (HoMS) presents a promising solution, integrating structural and compositional design for efficient DDS development amidst complex cellular environments. Herein, starting from a Fe-based metal-organic framework (MOF), amorphous coordination polymers (CP) composited HoMS with controlled shell numbers are fabricated by balancing the rate of MOF decomposition and shell formation. Fe-CP HoMS loaded with DOX is utilized for synergistic chemotherapy and chemodynamic therapy, offering excellent responsive drug release capability (excellent pH-triggered drug release 82% within 72 h at pH 5.0 solution with doxorubicin (DOX) loading capacity of 284 mg g-1). In addition to its potent chemotherapy attributes, Fe-CP-HoMS possesses chemodynamic therapy potential by continuously catalyzing H2O2 to generate ·OH species within cancer cells, thus effectively inhibiting cancer cell proliferation. DOX@3S-Fe-CP-HoMS, at a concentration of 12.5 µg mL-1, demonstrates significant inhibitory effects on cancer cells while maintaining minimal cytotoxicity toward normal cells. It is envisioned that CP-HoMS could serve as an effective and biocompatible platform for the advancement of intelligent drug delivery systems in the realm of cancer therapy.
Collapse
Affiliation(s)
- Qian Xiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lingling Shang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yang Peng
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ludan Zhang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Decai Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yasong Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
23
|
Shi G, Zhang Y, Wang W, Xiang W, Zhang F, Zhu X, Zhou H. Controlled Synthesis of the FeB Nanometallic Glasses with Stronger Electron Donating Capability to Activate Molecular Oxygen for the Enhanced Ferroptosis Therapy. Adv Healthc Mater 2025; 14:e2403582. [PMID: 39648655 DOI: 10.1002/adhm.202403582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Considering the strong electron-donating ability and the superior biocompatibility, the integration of zero-valent iron nanostructure Fe0 (electron-reservoir) and zero-valent boron nanostructure B0 offers great promise for fabricating novel ferroptosis nanoagents. Nevertheless, the controlled and facile synthesis of alloyed Fe0 and B0 nanostructure-FeB nanometallic glasses (NMGs) has remained a long-standing challenge. Herein, a complexion-reduction strategy is proposed for the controlled synthesis of FeB NMGs with greater electron donating capacity to activate the molecular oxygen for improved ferroptosis therapy. In-depth mechanism reveales that the complexion-reduction strategy effectively prevent the long-range diffusion of Fe0, resulting in the amorphous alloyed Fe0 and B0 nanostructure-FeB nanoparticles (FeB NPs). The FeB NPs display stronger electron donating capability and electron transfer rate 9.4 times higher than that of the Fe0 NPs, which effectively activate the molecular oxygen to produce ∙O2 -, H2O2 and ∙OH. The in vitro cellular experiments confirm the FeB-ss-SiO₂ NPs (encapsulation with SiO2 outlayer containing -S-S- bonds) demonstrates the enhanced ferroptosis. The tumor-bearing mice models shows that FeB-ss-SiO₂ NPs exhibited superior biocompatibility and tumor inhibition effect (inhibition rate of 73%), which improve the overall survival rate for 30 days post-treatment. This study will provide an innovative way to design therapeutic nanoagents for cancer treatments.
Collapse
Affiliation(s)
- Gongyu Shi
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Yongxuan Zhang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Wenting Wang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Wanxuan Xiang
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Feng Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230026, P.R.China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| |
Collapse
|
24
|
Wang L, Zhang X, He L, Wei Y, Zhang Y, Wu A, Li J. Iron-Based Nanomaterials for Modulating Tumor Microenvironment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70001. [PMID: 39788569 DOI: 10.1002/wnan.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME). In this review, a variety of IBNMs including iron oxide-based nanomaterials (IONMs), iron-based complex conjugates (ICCs), and iron-based single iron atom nanomaterials (ISANMs) will be introduced, and their advantages in regulating TME would also be emphasized. Besides, the recent progress of IBNMs for cancer diagnosis and treatment through the strategy of modulating TME will be summarized, including overcoming hypoxia, modulating acidity, decreasing redox species, and immunoregulation. Finally, the challenges and opportunities in this field are briefly discussed. This review is expected to contribute to the future design and development of next-generation TME-modulate IBNMs for cancer treatment.
Collapse
Affiliation(s)
- Le Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Xiaoting Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Lulu He
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Yuanyuan Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Yujie Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Aiguo Wu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| | - Juan Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, China
| |
Collapse
|
25
|
Wang F, Wu Z, Zhang Y, Li M, Wei P, Yi T, Li J. Semiconducting polymer nanoprodrugs enable tumor-specific therapy via sono-activatable ferroptosis. Biomaterials 2025; 312:122722. [PMID: 39096841 DOI: 10.1016/j.biomaterials.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Ferroptosis, a recently identified form of cell death, holds promise for cancer therapy, but concerns persist regarding its uncontrolled actions and potential side effects. Here, we present a semiconducting polymer nanoprodrug (SPNpro) featuring an innovative ferroptosis prodrug (DHU-CBA7) to induce sono-activatable ferroptosis for tumor-specific therapy. DHU-CBA7 prodrug incorporate methylene blue, ferrocene and urea bond, which can selectively and specifically respond to singlet oxygen (1O2) to turn on ferroptosis action via rapidly cleaving the urea bonds. DHU-CBA7 prodrug and a semiconducting polymer are self-assembled with an amphiphilic polymer to construct SPNpro. Ultrasound irradiation of SPNpro leads to the production of 1O2 via sonodynamic therapy (SDT) of the semiconducting polymer, and the generated 1O2 activated DHU-CBA7 prodrug to achieve sono-activatable ferroptosis. Consequently, SPNpro combine SDT with the controlled ferroptosis to effectively cure 4T1 tumors covered by 2-cm tissue with a tumor inhibition efficacy as high as 100 %, and also completely restrain tumor metastases. This study introduces a novel sono-activatable prodrug strategy for regulating ferroptosis, allowing for precise cancer therapy.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhiting Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
26
|
Wei W, Kang H, Lian C, Liu J, Lin J, Yang J, Xu Z, Wang Z, Yin M, Dai H. Iron-based magnetic nanocomplexes for combined chemodynamic and photothermal cancer therapy through enhanced ferroptosis. BIOMATERIALS ADVANCES 2025; 166:214046. [PMID: 39332345 DOI: 10.1016/j.bioadv.2024.214046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Chemodynamic therapy (CDT) guided by Fenton chemistry and iron-containing materials can induce ferroptosis as a prospective cancer treatment method, but the inefficient Fe3+/Fe2+ conversion restricts the monotherapeutic performances. Here, an iron-based nanoplatform (Fe3O4-SRF@FeTA) including a magnetic core and a reductive film is developed for combined CDT and photothermal therapy (PTT) through ferroptosis augmentation. The inner iron oxide core serves as a photothermal transducer, a magnet-responsive module, and an iron reservoir for CDT. The coated Fe3+-tannic acid film (FeTA) provides extra iron and reductants for Fe3+/Fe2+ conversion acceleration, and functions as a door keeper for the pH- and light-responsive release of the embedded ferroptosis inducer sorafenib (SRF). The in vitro results demonstrate that the iron-based nanocomplexes promote the production of lipid peroxide through the amplified Fenton activity, and downregulate glutathione involved in lipid peroxide repair system through the responsively released SRF. Upon accumulation in tumor by magnetic targeting and sequential laser irradiation locoregionally, Fe3O4-SRF@FeTA nanocomplexes present prominent in vivo anticancer efficacy by leveraging PTT and CDT-enhanced ferroptosis.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinwei Lin
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhangmancang Xu
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Ziqi Wang
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Meizhen Yin
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| |
Collapse
|
27
|
Zhang Y, Hao F, Liu Y, Yang M, Zhang B, Bai Z, Zhao B, Li X. Recent advances of copper-based metal phenolic networks in biomedical applications. Colloids Surf B Biointerfaces 2024; 244:114163. [PMID: 39154599 DOI: 10.1016/j.colsurfb.2024.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.
Collapse
Affiliation(s)
- Ying Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengxiang Hao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Mengqi Yang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bo Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China; Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| | - Xia Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
28
|
Han Q, Yang F, Chen M, Zhang M, Wang L, Wang H, Liu J, Cao Z. Coating Dormant Collagenase-Producing Bacteria with Metal-Anesthetic Networks for Precision Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407402. [PMID: 39291426 PMCID: PMC11558152 DOI: 10.1002/advs.202407402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Tumor malignancy highly depends on the stiffness of tumor matrix, which mainly consists of collagen. Despite the destruction of tumor matrix is conducive to tumor therapy, it causes the risk of tumor metastasis. Here, metal-anesthetic network-coated dormant collagenase-producing Clostridium is constructed to simultaneously destruct tumor matrix and inhibit tumor metastasis. By metal-phenolic complexation and π-π stacking interactions, a Fe3+-propofol network is formed on bacterial surface. Coated dormant Clostridium can selectively germinate and rapidly proliferate in tumor sites due to the ability of carried Fe3+ ions to promote bacterial multiplication. Intratumoral colonization of Clostridium produces sufficient collagenases to degrade tumor collagen mesh and the loaded propofol restrains tumor metastasis by inhibiting tumor cell migration and invasion. Meanwhile, the delivered Fe3+ ions are reduced to the Fe2+ form by intracellular glutathione, thereby inducing potent Fenton reaction to trigger lipid peroxidation and ultimate ferroptosis of tumor cells. In addition to a satisfactory safety, a single intratumoral injection of coated dormant Clostridium not only effectively retards the growth of established large primary tumors, but also significantly suppresses distal lung metastasis in two different orthotopic tumor models. This work proposes a strategy to develop advanced therapeutics for malignant tumor treatment and metastasis prevention.
Collapse
Affiliation(s)
- Qiuju Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Fengmin Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Mian Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hongxia Wang
- Department of Medical OncologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInstitute of Molecular MedicineState Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
29
|
Chen Y, Lu Y, Lei H, Liu L, Li X, Yang Y, Sun S, Yu Q, Wang L, Wu J, Li J, Hou G, Cheng L. Zinc-Nickel Bimetallic Hydroxide Nanosheets Activate the Paraptosis-Pyroptosis Positive Feedback Cycle for Enhanced Tumor Immunotherapy. ACS NANO 2024; 18:29913-29929. [PMID: 39404652 DOI: 10.1021/acsnano.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Immunotherapy holds significant promise for cancer treatment. However, the highly immunosuppressive nature of solid tumors limits its effectiveness. Herein, we developed bioactive zinc-nickel hydroxide (ZnNi(OH)4) nanosheets (NSs) that can effectively initiate the paraptosis-pyroptosis positive feedback cycle through synergistic ionic effect, thereby mitigating the immunosuppression of solid tumors and enhancing the efficacy of immunotherapy. The acid-sensitive ZnNi(OH)4 NSs releases Ni2+ and Zn2+ in the weakly acidic tumor microenvironment. The released Ni2+ alleviated pyroptosis inhibition by inducing paraptosis and inhibiting autophagic flux. Concurrently, Ni2+ triggered release of endogenous Zn2+ within the cell through a coordination competition mechanism, further amplifying zinc overload-mediated pyroptosis. Interestingly, pyroptosis-associated oxidative stress and endoplasmic reticulum stress further promote Ni2+-mediated paraptosis, forming a positive feedback loop between pyroptosis and paraptosis. This process not only effectively kills tumor cells but also stimulates a strong inflammatory response, enhancing the antitumor immune response and immunotherapy efficacy. Overall, this study proposes an effective paraptosis-pyroptosis induction strategy based on metal ions and demonstrates the effectiveness of the positive feedback loop of paraptosis-pyroptosis in potentiating immunotherapy.
Collapse
Affiliation(s)
- Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yujie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xianmin Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Qiao Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Li Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Jingrui Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
30
|
Zhang Y, Xing Y, Zhou H, Ma E, Xu W, Zhang X, Jiang C, Ye S, Deng Y, Wang H, Li J, Zheng S. NIR-activated Janus nanomotors with promoted tumor permeability for synergistic photo-immunotherapy. Acta Biomater 2024:S1742-7061(24)00632-9. [PMID: 39490462 DOI: 10.1016/j.actbio.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Nanoparticle-based photo-immunotherapy has become an attractive strategy to eliminate tumors and activate host immune responses. However, the therapeutic efficacy is heavily restricted by low tumoral penetration and immunosuppressive tumor microenvironment (TME). Herein, near infrared laser (NIR)-propelled Janus nanomotors were presented for deep tumoral penetration, photothermal tumor ablation and photothermal-triggered augmented immunotherapy. The Janus nanomotors (AuNR/PMO@CPG JNMs) were constructed with gold nanorods (AuNR) and periodic mesoporous organo-silica nanospheres (PMO), followed by loading of immune adjuvant (CPG ODNs). Under NIR irradiation, the nanomotors exhibited superior photothermal effect, which produced active motion with a speed of 19.3 µm/s for deep tumor penetration and accumulation in vivo. Moreover, the good photothermal heating also benefited effective photothermal ablation to trigger immunogenic cell death (ICD). Subsequently, the ICD effect promoted the release of tumor-associated antigens (TAAs) and damage associated molecular patterns (DAMPs), and further generated abundant tumor vaccines in situ for reprograming the immunosuppressive TME in combination with CPG ODNs to inhibit tumor growth. As a result, a notable in vivo synergistic therapeutic effect was realized on CT26-bearing mice by combining photothermal therapy-induced ICD with modulation of immunosuppressive TME. Thus, we believe that the synthesized nanomotors can provide a new inspect to boost photothermal therapy-induced ICD in tumor immunotherapy. STATEMENT OF SIGNIFICANCE: Nanoparticle-based synergistic photo-immunotherapy has become a popular strategy to eliminate tumors and activate host immune responses. However, the therapeutic efficacy is heavily restricted by low tumoral penetration and immunosuppressive tumor microenvironment (TME). In this work, near infrared laser (NIR)-propelled Janus nanomotors were presented for deep tumoral penetration, photothermal tumor ablation and photothermal-triggered augmented immunotherapy. Under NIR irradiation, the nanomotors exhibited a superior photothermal effect, which produced active motion for deep tumor penetration and accumulation in vivo. Moreover, good photothermal heating also facilitated effective photothermal ablation to trigger immunogenic cell death (ICD), which promoted the release of tumor-associated antigens and damage-associated molecular patterns (DAMPs), and further generated abundant tumor vaccines in situ for reprograming the immunosuppressive TME to inhibit tumor growth.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Wenbei Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinran Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Canran Jiang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuo Ye
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
31
|
He Y, Tian X, Zhang M, Xu H, Gong X, Yang B, Zhou F. Fenton-like nanoparticles capable of H 2O 2 self-supply and glutathione consumption for chemodynamic and chemotherapy of cancer. Biomater Sci 2024; 12:5534-5546. [PMID: 39267609 DOI: 10.1039/d4bm00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Chemodynamic therapy (CDT) utilizing the Fenton reaction to convert hydrogen peroxide (H2O2) into cytotoxic hydroxyl radicals (˙OH) has recently drawn extensive interest in tumor treatment. However, the therapeutic efficiency of CDT often suffers from high concentrations of glutathione (GSH), insufficient endogenous H2O2 and inefficient Fenton activity. Herein, a GSH-depleting and H2O2 self-providing nanosystem that can efficiently load copper ions and doxorubicin (DOX) (MSN-Cu2+-DOX) to induce enhanced CDT and chemotherapy is proposed. The results show that MSN-Cu2+-DOX could release Cu2+ and DOX under acidic conditions. Particularly, both the released Cu2+ and Cu2+ in MSN-Cu2+-DOX are available for ˙OH production via a Fenton-like reaction for CDT. Meanwhile, Cu2+ undergoes a reduction to Cu+ by depleting overexpressed GSH, thereby enhancing CDT. Moreover, the released DOX could not only be used for chemotherapy, but also promote the generation of endogenous H2O2 to improve the efficiency of a Cu-based Fenton-like reaction. Resultantly, this nanosystem featuring Fenton-like activity, GSH consumption, H2O2 self-sufficiency and chemotherapy exhibits a great antitumor effect with a tumor inhibition ratio of 93.05%. Overall, this study provides a promising strategy to enhance CDT for effective tumor therapy.
Collapse
Affiliation(s)
- Yongju He
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiangjie Tian
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Meiru Zhang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Binbin Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Fangfang Zhou
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
32
|
Bai J, Zhang X, Zhao Z, Sun S, Cheng W, Yu H, Chang X, Wang B. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400326. [PMID: 38813723 DOI: 10.1002/smll.202400326] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The latest research identifies that cysteine (Cys) is one of the key factors in tumor proliferation, metastasis, and recurrence. The direct depletion of intracellular Cys shows a profound antitumor effect. However, using nanozymes to efficiently deplete Cys for tumor therapy has not yet attracted widespread attention. Here, a (3-carboxypropyl) triphenylphosphonium bromide-derived hyaluronic acid-modified copper oxide nanorods (denoted as MitCuOHA) are designed with cysteine oxidase-like, glutathione oxidase-like and peroxidase-like activities to realize Cys depletion and further induce cellular ferroptosis and cuproptosis for synergistic tumor therapy. MitCuOHA nanozymes can efficiently catalyze the depletion of Cys and glutathione (GSH), accompanied by the generation of H2O2 and the subsequent conversion into highly active hydroxyl radicals, thereby successfully inducing ferroptosis in cancer cells. Meanwhile, copper ions released by MitCuOHA under tumor microenvironment stimulation directly bind to lipoylated proteins of the tricarboxylic acid cycle, leading to the abnormal aggregation of lipoylated proteins and subsequent loss of iron-sulfur cluster proteins, which ultimately triggers proteotoxic stress and cell cuproptosis. Both in vitro and in vivo results show the drastically enhanced anticancer efficacy of Cys oxidation catalyzed by the MitCuOHA nanozymes, demonstrating the high feasibility of such catalytic Cys depletion-induced synergistic ferroptosis and cuproptosis therapeutic concept.
Collapse
Affiliation(s)
- Jinwei Bai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xuan Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhiwen Zhao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shihao Sun
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenyuan Cheng
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongxiang Yu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xinyue Chang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Baodui Wang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
33
|
Zhang M, Lu M, Gong Y, Yang Y, Song J, Li J, Chen Z, Ling Y, Zhou Y. Tadpole-Like Carbon Nanotube with Fe Nanoparticle Encapsulated at the Head and Zn Single-Atom Anchored on the Body: One-Pot Carbonization for Tetramodal Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400587. [PMID: 38837673 DOI: 10.1002/smll.202400587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Precise integration of diverse therapeutic approaches into nanomaterials is the key to the development of multimodal synergistic cancer therapy. In this work, tadpole-like carbon nanotubes with Fe nanoparticle encapsulated at the head and Zn single-atom anchored on the body (Fe@CNT-Zn) is precisely designed and facilely prepared via one-pot carbonization. In vitro studies revealed the integration of chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT) in Fe@CNT-Zn as well as the near-infrared light (NIR)-responsive cascade therapeutic efficacy. Furthermore, in vivo studies demonstrated the NIR-triggered cascade-amplifying synergistic cancer therapy in a B16 tumor-bearing mouse model. The results not only showcased the Fe@CNT-Zn as a potential tetramodal therapeutic platform, but also demonstrated a proof-of-concept on metal-organic framework-based "one stone for multiple birds" strategy for in situ functionalization of carbon materials.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yimin Gong
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junfei Song
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jianing Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
34
|
Xiong R, Zhu X, Zhao J, Ling G, Zhang P. Nanozymes-Mediated Cascade Reaction System for Tumor-Specific Diagnosis and Targeted Therapy. SMALL METHODS 2024; 8:e2301676. [PMID: 38480992 DOI: 10.1002/smtd.202301676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Indexed: 10/18/2024]
Abstract
Cascade reactions are described as efficient and versatile tools, and organized catalytic cascades can significantly improve the efficiency of chemical interworking between nanozymes. They have attracted great interest in many fields such as chromogenic detection, biosensing, tumor diagnosis, and therapy. However, how to selectively kill tumor cells by enzymatic reactions without harming normal cells, as well as exploring two or more enzyme-engineered nanoreactors for cascading catalytic reactions, remain great challenges in the field of targeted and specific cancer diagnostics and therapy. The latest research advances in nanozyme-catalyzed cascade processes for cancer diagnosis and therapy are described in this article. Here, various sensing strategies are summarized, for tumor-specific diagnostics. Targeting mechanisms for tumor treatment using cascade nanozymes are classified and analyzed, "elements" and "dimensions" of cascade nanozymes, types, designs of structure, and assembly modes of highly active and specific cascade nanozymes, as well as a variety of new strategies of tumor targeting based on the cascade reaction of nanozymes. Finally, the integrated application of the cascade nanozymes systems in tumor-targeted and specific diagnostic therapy is summarized, which will lay the foundation for the design of more rational, efficient, and specific tumor diagnostic and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Ruru Xiong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
35
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
36
|
Yu L, Qiu Y, Tong X. Ferroptosis in Renal Cancer Therapy: A Narrative Review of Drug Candidates. Cancers (Basel) 2024; 16:3131. [PMID: 39335103 PMCID: PMC11430741 DOI: 10.3390/cancers16183131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Renal cancer is a common and serious malignant tumor of the urinary system. While surgery effectively treats early-stage renal cancer, advanced cases pose a significant challenge due to poor treatment outcomes and chemotherapy resistance. Therefore, there is an urgent need to develop alternative therapeutic strategies. Ferroptosis is a newly defined form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which plays a critical role in tumor progression and drug resistance. Recent studies have shown that ferroptosis is involved in the occurrence and development of renal cancer, and ferroptosis-related genes can induce cell apoptosis and can be used as potential biomarkers for early diagnosis of renal cancer and participate in drug resistance of renal cancer chemotherapy. With the continuous improvement of the mechanism of ferroptosis, drugs targeting ferroptosis for the treatment of renal cancer are emerging in an endless stream. Based on the theoretical basis of the occurrence of ferroptosis, this paper reviewed drug-induced ferroptosis in renal cancer cells from the aspects of herbal medicine, natural compounds, drug resistance mechanisms, and nanomaterials, and delves into the clinical application potential of ferroptosis-related drugs in the treatment of renal cancer.
Collapse
Affiliation(s)
- Lingyan Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuyueyang Qiu
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China
- Department of Laboratory Medicine, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| |
Collapse
|
37
|
Ning X, Zhong Y, Cai Q, Wang Y, Jia X, Hsieh JT, Zheng J, Yu M. Gold Nanoparticle Transport in the Injured Kidneys with Elevated Renal Function Biomarkers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402479. [PMID: 39073056 PMCID: PMC11410533 DOI: 10.1002/adma.202402479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Renal function biomarkers such as serum blood urea nitrogen (BUN) and creatinine (Cr) serve as key indicators for guiding clinical decisions before administering kidney-excreted small-molecule agents. With engineered nanoparticles increasingly designed to be renally clearable to expedite their clinical translation, understanding the relationship between renal function biomarkers and nanoparticle transport in diseased kidneys becomes crucial to their biosafety in future clinical applications. In this study, renal-clearable gold nanoparticles (AuNPs) are used as X-ray contrast agents to noninvasively track their transport and retention in cisplatin-injured kidneys with varying BUN and Cr levels. The findings reveal that AuNP transport is significantly slowed in the medulla of severely injured kidneys, with BUN and Cr levels elevated to 10 times normal. In mildly injured kidneys, where BUN and Cr levels only four to five times higher than normal, AuNP transport and retention are not predictable by BUN and Cr levels but correlate strongly with the degree of tubular injury due to the formation of gold-protein casts in the Henle's loop of the medulla. These results underscore the need for caution when employing renal-clearable nanomedicines in compromised kidneys and highlight the potential of renal-clearable AuNPs as X-ray probes for assessing kidney injuries noninvasively.
Collapse
Affiliation(s)
- Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuncheng Zhong
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qi Cai
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yaohong Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xun Jia
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Jer-Tsong Hsieh
- Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
38
|
Liu Y, Chen G, You X, Wang X. Cuproptosis Nanomedicine: Clinical challenges and opportunities for anti-tumor therapy. CHEMICAL ENGINEERING JOURNAL 2024; 495:153373. [DOI: 10.1016/j.cej.2024.153373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
39
|
Zhu W, Cheng X, Xu P, Gu Y, Xu H, Xu J, Wang Y, Zhang LW, Wang Y. Radiotherapy-Driven Nanoprobes Targeting for Visualizing Tumor Infiltration Dynamics and Inducing Ferroptosis in Myeloid-Derived Suppressor Cells. J Am Chem Soc 2024; 146:22455-22468. [PMID: 39094119 DOI: 10.1021/jacs.4c05650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) significantly hinder the immune response to tumor radiotherapy (RT) because of their massive accumulation in tumors after RT, resulting in immunosuppression and poor clinical prognosis. Herein, we developed an anti-PD-L1 antibody-conjugated iron oxide nanoprobe (Fe3O4-αPD-L1) to target and induce ferroptosis in MDSCs, thereby alleviating RT resistance. Overexpression of PD-L1 in MDSCs following RT enables noninvasive in vivo magnetic resonance and positron emission tomography imaging using 89Zr-labeled nanoprobes to track the movement of MDSCs and their infiltration into the tumor. After uptake by MDSCs that infiltrated the tumor, Fe3O4-αPD-L1 nanoprobes were mainly found within the lysosome and triggered the Fenton reaction, resulting in the generation of abundant reactive oxygen species. This process leads to ferroptosis of MDSCs, characterized by lipid peroxidation and mitochondrial dysfunction, and effectively reprograms the immunosuppressive environment within the tumor following RT. This study highlights a strategy for monitoring and regulating the fate of MDSCs to alleviate RT resistance and ultimately achieve improved treatment outcomes.
Collapse
Affiliation(s)
- Wen Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Hanye Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, PR China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
40
|
Chen K, Sun R, Guan Y, Fang T, Tao J, Li Z, Zhang B, Yu Z, Tian J, Teng Z, Wang J. Manganese-induced Photothermal-Ferroptosis for Synergistic Tumor Therapy. J Control Release 2024; 372:386-402. [PMID: 38909699 DOI: 10.1016/j.jconrel.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor's physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.
Collapse
Affiliation(s)
- Kun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Rui Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Yudong Guan
- Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Tao Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China.
| | - Bingchen Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, China.
| | - Jiahang Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jigang Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Urology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
41
|
Yu L, Huang K, Liao Y, Wang L, Sethi G, Ma Z. Targeting novel regulated cell death: Ferroptosis, pyroptosis and necroptosis in anti-PD-1/PD-L1 cancer immunotherapy. Cell Prolif 2024; 57:e13644. [PMID: 38594879 PMCID: PMC11294428 DOI: 10.1111/cpr.13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.
Collapse
Affiliation(s)
- Li Yu
- Health Science CenterYangtze UniversityJingzhouHubeiChina
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Ke Huang
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| | - Yixiang Liao
- Department of UrologyJingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze UniversityJingzhouHubeiChina
| | - Lingzhi Wang
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
42
|
Wang X, Ren X, Lin X, Li Q, Zhang Y, Deng J, Chen B, Ru G, Luo Y, Lin N. Recent progress of ferroptosis in cancers and drug discovery. Asian J Pharm Sci 2024; 19:100939. [PMID: 39246507 PMCID: PMC11378902 DOI: 10.1016/j.ajps.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 09/10/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron dependence and lipid peroxidation. Ferroptosis is involved in a range of pathological processes, such as cancer. Many studies have confirmed that ferroptosis plays an essential role in inhibiting cancer cell proliferation. In addition, a series of small-molecule compounds have been developed, including erastin, RSL3, and FIN56, which can be used as ferroptosis inducers. The combination of ferroptosis inducers with anticancer drugs can produce a significant synergistic effect in cancer treatment, and patients treated with these combinations exhibit a better prognosis than patients receiving traditional therapy. Therefore, a thorough understanding of the roles of ferroptosis in cancer is of great significance for the treatment of cancer. This review mainly elaborates the molecular biological characteristics and mechanism of ferroptosis, summarizes the function of ferroptosis in cancer development and treatment,illustrates the application of ferroptosis in patient's prognosis prediction and drug discovery, and discusses the prospects of targeting ferroptosis.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Xinxin Ren
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Li
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Yingqiong Zhang
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Deng
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Binxin Chen
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ying Luo
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou 310024, China
| |
Collapse
|
43
|
Liu H, Yu B, Zhou C, Deng Z, Wang H, Zhang X, Wang K. Nickel atom-clusters nanozyme for boosting ferroptosis tumor therapy. Mater Today Bio 2024; 27:101137. [PMID: 39040221 PMCID: PMC11260854 DOI: 10.1016/j.mtbio.2024.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024] Open
Abstract
The translation of Fe-based agents for ferroptosis tumor therapy is restricted by the unstable iron valence state, the harsh catalytic environment, and the complex tumor self-protection mechanism. Herein, we developed a stable nickel-based single-atom-metal-clusters (NSAMCs) biocatalyst for efficient tumor ferroptosis therapy. NSAMCs with a nanowire-like nanostructure and hydrophilic functional groups exhibit good water-solubility, colloidal stability, negligible systemic toxicity, and target specificity. In particular, NSAMCs possess excellent peroxidase-like and glutathione oxidase-like activities through the synergistic influence between metal clusters and single atoms. The dual-enzymatic performance enables NSAMCs to synergistically promote efficient ferroptosis of cancer cells through lipid peroxidization aggregation and glutathione peroxidase 4 inactivation. Importantly, NSAMCs highlight the boost of ferroptosis tumor therapy via the synergistic effect between single-atoms and metal clusters, providing a practical and feasible paradigm for further improving the efficiency of ferroptosis tumor treatment.
Collapse
Affiliation(s)
- Hongji Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Can Zhou
- Reproductive and Genetic Hospital of CITIC-Xiangya and Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, Hunan, PR China
| | - Zhiming Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, PR China
| | - Kai Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, PR China
| |
Collapse
|
44
|
Ruan F, Liu C, Zeng J, Zhang F, Jiang Y, Zuo Z, He C. Multi-omics integration identifies ferroptosis involved in black phosphorus quantum dots-induced renal injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174532. [PMID: 38972417 DOI: 10.1016/j.scitotenv.2024.174532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have recently emerged as a highly promising contender in biomedical applications ranging from drug delivery systems to cancer therapy modalities. Nevertheless, the potential toxicity and its effects on human health need to be thoroughly investigated. In this study, we utilized multi-omics integrated approaches to explore the complex mechanisms of BPQDs-induced kidney injury. First, histological examination showed severe kidney injury in male mice after subacute exposure to 1 mg/kg BPQDs for 28 days. Subsequently, transcriptomic and metabolomic analyses of kidney tissues exposed to BPQDs identified differentially expressed genes and metabolites associated with ferroptosis, an emerging facet of regulated cell death. Our findings highlight the utility of the multi-omics integrated approach in predicting and elucidating potential toxicological outcomes of nanomaterials. Furthermore, our study provides a comprehensive understanding of the mechanisms driving BPQDs-induced kidney injury, underscoring the importance of recognizing ferroptosis as a potential toxic mechanism associated with BPQDs.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Jiang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China; Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
45
|
Guo S, Li Z, Zhou R, Feng J, Huang L, Ren B, Zhu J, Huang Y, Wu G, Cai H, Zhang Q, Ke Y, Guan T, Chen P, Xu Y, Yan C, Ou C, Shen Z. MRI-Guided Tumor Therapy Based on Synergy of Ferroptosis, Immunosuppression Reversal and Disulfidptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309842. [PMID: 38431935 DOI: 10.1002/smll.202309842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.
Collapse
Affiliation(s)
- Shuai Guo
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Zongheng Li
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Ruilong Zhou
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jie Feng
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Lin Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Bin Ren
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Jiaoyang Zhu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Ya Huang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Guochao Wu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Haobin Cai
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Qianqian Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Yushen Ke
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Tianwang Guan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Peier Chen
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Yikai Xu
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Chenggong Yan
- Medical Imaging Center, Nanfang Hospital, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai South Road, Baiyun, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
46
|
Ren Q, Wang H, Li D, Dao A, Luo J, Wang D, Zhang P, Huang H. An Electron Donor-Acceptor Structured Rhenium(I) Complex Photo-Sensitizer Evokes Mutually Reinforcing "Closed-Loop" Ferroptosis and Immunotherapy. Adv Healthc Mater 2024; 13:e2304067. [PMID: 38597369 DOI: 10.1002/adhm.202304067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
The hypoxic microenvironment of solid tumors severely lowers the efficacy of oxygen-dependent photodynamic therapy (PDT). The development of hypoxia-tolerant photosensitizers for PDT is an urgent requirement. In this study, a novel rhenium complex (Re-TTPY) to develop a "closed-loop" therapy based on PDT-induced ferroptosis and immune therapy is reported. Due to its electron donor-acceptor (D-A) structure, Re-TTPY undergoes energy transfer and electron transfer processes under 550 nm light irradiation and displays hypoxia-tolerant type I/II combined PDT capability, which can generate 1O2, O2 -, and ·OH simultaneously. Further, the reactive oxygen species (ROSs) leads to the depletion of 1,4-dihydronicotinamide adenine dinucleotide (NADH), glutathione peroxidase 4 (GPX4), and glutathione (GSH). As a result, ferroptosis occurs in cells, simultaneously triggers immunogenic cell death (ICD), and promotes the maturation of dendritic cells (DCs) and infiltration of T cells. The release of interferon-γ (IFN-γ) by CD8+ T cells downregulates the expression of GPX4, further enhancing the occurrence of ferroptosis, and thereby, forming a mutually reinforcing "closed-loop" therapeutic approach.
Collapse
Affiliation(s)
- Qingyan Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anyi Dao
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| | - Jiajun Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Rd. No. 759, Huzhou, 313000, China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Shenzhen campus of Sun Yat-sen University, No.66, Gongchang Road, Shenzhen, 518107, China
| |
Collapse
|
47
|
Tian X, Ai J, Tian X, Wei X. cGAS-STING pathway agonists are promising vaccine adjuvants. Med Res Rev 2024; 44:1768-1799. [PMID: 38323921 DOI: 10.1002/med.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.
Collapse
Affiliation(s)
- Xinyu Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jiayuan Ai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
48
|
Li F, Li T, Li K, Meng M, Guo X, He S, Tian H. Organic Semiconducting Sono-Metallo-Detonated Immunobombs for Ultrasensitized Domestication of Immunosuppressive Cells. NANO LETTERS 2024. [PMID: 38848322 DOI: 10.1021/acs.nanolett.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cancer immunotherapy harnesses the immune system to combat cancer, yet tumors often evade immune surveillance through immunosuppressive cells. Herein, we report an organic semiconducting sono-metallo-detonated immunobomb (SMIB) to spatiotemporally tame immunosuppressive cells in situ. SMIB consists of an amphiphilic semiconducting polymer (SP) with a repeatable thiophene-based Schiff base serving as an iron ion chelator (Fe3+). SMIB increases sonochemical activity through iron chelation and reduces immunosuppressive cell differentiation with metals and sonochemicals, thereby decreasing the irradiation dose. Upon ultrasound irradiation, SMIB acts as a sono-metallo-detonated immunobomb and inhibits Tregs via the mTOR pathway and M2 macrophage polarization through GPX4 regulation. Ultrasensitized sono-generated reactive oxygen species also promote activation of antigen-presenting cells in deep solid tumors (1 cm), resulting in cytotoxic T cell infiltration and enhanced antitumor efficacy. This platform provides a versatile approach for synergistic sono- and metalloregulation of immunosuppressive cells in situ.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Keyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
49
|
Wang H, Liu X, Yan X, Du Y, Pu F, Ren J, Qu X. An ATPase-Mimicking MXene nanozyme pharmacologically breaks the ironclad defense system for ferroptosis cancer therapy. Biomaterials 2024; 307:122523. [PMID: 38432004 DOI: 10.1016/j.biomaterials.2024.122523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/04/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Anticancer nanomedicines used for ferroptosis therapy generally rely on the direct delivery of Fenton catalysts to drive lipid peroxidation in cancer cells. However, the therapeutic efficacy is limited by the ferroptosis resistance caused by the intracellular anti-ferroptotic signals. Herein, we report the intrinsic ATPase-mimicking activity of a vanadium carbide MXene nanozyme (PVCMs) to pharmacologically modulate the nuclear factor erythroid 2-related factor 2 (Nrf2) program, which is the master anti-ferroptotic mediator in the ironclad defense system in triple-negative breast cancer (TNBC) cells. The PVCMs perform high ATPase-like activity that can effectively and selectively catalyze the dephosphorylation of ATP to generate ADP. Through a cascade mechanism initiated by falling energy status, PVCMs can powerfully hinder the Nrf2 program to selectively drive ferroptosis in TNBC cells in response to PVCMs-induced glutathione depletion. This study provides a paradigm for the use of pharmacologically active nanozymes to moderate specific cellular signals and elicit desirable pharmacological activities for therapeutic applications.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School of Stomatology, Jilin University, Changchun 130021, PR China
| | - Xiangyu Yan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Yong Du
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China
| | - Fang Pu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| |
Collapse
|
50
|
Su Y, Liu B, Wang B, Chan L, Xiong C, Lu L, Zhang X, Zhan M, He W. Progress and Challenges in Tumor Ferroptosis Treatment Strategies: A Comprehensive Review of Metal Complexes and Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310342. [PMID: 38221682 DOI: 10.1002/smll.202310342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Ferroptosis is a new form of regulated cell death featuring iron-dependent lipid peroxides accumulation to kill tumor cells. A growing body of evidence has shown the potential of ferroptosis-based cancer therapy in eradicating refractory malignancies that are resistant to apoptosis-based conventional therapies. In recent years, studies have reported a number of ferroptosis inducers that can increase the vulnerability of tumor cells to ferroptosis by regulating ferroptosis-related signaling pathways. Encouraged by the rapid development of ferroptosis-driven cancer therapies, interdisciplinary fields that combine ferroptosis, pharmaceutical chemistry, and nanotechnology are focused. First, the prerequisites and metabolic pathways for ferroptosis are briefly introduced. Then, in detail emerging ferroptosis inducers designed to boost ferroptosis-induced tumor therapy, including metal complexes, metal-based nanoparticles, and metal-free nanoparticles are summarized. Subsequently, the application of synergistic strategies that combine ferroptosis with apoptosis and other regulated cell death for cancer therapy, with emphasis on the use of both cuproptosis and ferroptosis to induce redox dysregulation in tumor and intracellular bimetallic copper/iron metabolism disorders during tumor treatment is discussed. Finally, challenges associated with clinical translation and potential future directions for potentiating cancer ferroptosis therapies are highlighted.
Collapse
Affiliation(s)
- Yanhong Su
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Binghan Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Chan Xiong
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
| | - Weiling He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, P. R. China
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|