1
|
Ma L, Fan ZY, Lian WQ, Wei XF, Bao RY, Yang W. Nanoplastics and microplastics released from an enzyme-embedded biodegradable polyester during hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137640. [PMID: 39970644 DOI: 10.1016/j.jhazmat.2025.137640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Embedding enzyme in biodegradable polyester accelerates hydrolysis in environments it ends up, but the release of microplastics (MPs) and nanoplastics (NPs) during this process remains underexplored. This work investigated the evolution of MPs and NPs released from poly(ε-caprolactone) (PCL) with embedded Lipase PS. The embedded enzyme significantly accelerated hydrolysis, causing the PCL film to disappear within 96 h. Notably, the formation rates and quantities of MPs and NPs were much higher compared to film with external enzyme. At 96 h, MPs (3.55 ×105 particles/mL) was 2.4 times, and NPs (4.65 ×107 particles/mL) was an order of magnitude higher than that with external enzyme. After 130 days, although both quantities and average size of MPs and NPs decreased due to only 90.6 % of enzymes were detected leaking, they did not completely disappear. The quantities of MPs and NPs were comparable to that with external enzyme, and the average size of MPs remained 1 μm. The simultaneous erosion inside film macroscopically, and severe chain cleavage microscopically, contributed to feasible film disintegration and formation of high amounts MPs and NPs. These findings underscore the importance of managing the release of MPs and NPs during the hydrolysis of enzyme-embedded biodegradable polyesters to ensure safety and mitigate environmental impact.
Collapse
Affiliation(s)
- Ling Ma
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Zi-Yang Fan
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Wen-Qian Lian
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Xin-Feng Wei
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Rheinberger T, Ankone MJK, Grijpma DW, Wurm FR. Rubber-like and Antifouling Poly(trimethylene carbonate-ethylphosphonate) Copolymers with Tunable Hydrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23513-23521. [PMID: 40230046 PMCID: PMC12022945 DOI: 10.1021/acsami.4c21079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Controlling the degradation and cell interaction of polymer materials is vital for numerous applications. Transitioning from enzymatic to nonenzymatic hydrolysis offers precise control over degradation processes. In this study, we synthesized high molar mass poly(trimethylene carbonate) (PTMC)-polyphosphonate copolymers to achieve distinctive antifouling and controlled degradation properties. 2-Ethyl-2-oxo-1,3,2-dioxaphospholane (EtPPn) is copolymerized with trimethylene carbonate (TMC) to random P(TMC-co-EtPPn) copolymers through ring-opening copolymerization, utilizing Sn(Oct)2 as the catalyst. Copolymers with molar masses reaching up to Mn = 218 kg/mol and molar mass dispersities of D̵ < 1.9 are obtained. To maintain hydrophobicity, 10 and 20 mol % of hydrophilic phosphonate units are incorporated into PTMC-copolymers. While copolymers with 10 mol % EtPPn display mechanical properties akin to the homopolymer PTMC, a deviation in elongation at break and yield strength results when 20 mol % EtPPN is incorporated. PTMC-PPE copolymers demonstrate antifouling behavior, i.e., cell repulsion for human mesenchymal stem cells (hMSCs) and inhibited enzymatic degradation by lipase in contrast to PTMC-homopolymers. Conversely, P(TMC-co-EtPPn) undergo abiotic hydrolytic degradation with hydrolysis rates increasing with increasing phosphonate contents. In conclusion, copolymerization with EtPPn enables the switch from enzymatic PTMC degradation to adjustable hydrolytic degradation, offering controlled stabilities of such copolymers in the desired applications.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marc J. K. Ankone
- Department
of Advanced Organ Bioengineering and Therapeutics (AOT), Faculty of
Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Dirk W. Grijpma
- Department
of Advanced Organ Bioengineering and Therapeutics (AOT), Faculty of
Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Frederik R. Wurm
- Sustainable
Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+
Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Dong Z, Wu J, Liu A, Hua Z, Liu G. Environmentally ion-dissociable high-performance supramolecular polyelectrolyte plastics. Chem Sci 2025; 16:5503-5511. [PMID: 40018664 PMCID: PMC11863135 DOI: 10.1039/d4sc08484e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Robust and stiff polymeric materials usually rely on dense covalent crosslinking, which endows them with excellent properties such as high durability and outstanding thermal stability. However, because of the strong covalent bonds within the network, these polymeric materials are not easily degraded or recycled, giving rise to uncontrolled accumulation of end-of-life plastics in seawater or soil. Here, we present a general strategy to fabricate high-performance supramolecular polyelectrolyte plastics with environmentally ion-dissociable properties in a facile manner. By combining dynamic supramolecular hydrogen bonding and multiple electrostatic crosslinking with hydrophobic interactions, the resulting stable supramolecular polyelectrolyte plastic possesses a tensile strength of 93.6 ± 3.3 MPa and a Young's modulus of 2.3 ± 0.3 GPa, outperforming most of the commercial plastics. More importantly, the unique supramolecular dynamic network structures endow the polyelectrolyte plastics with excellent remoldability, good recyclability, and efficient dissociation in seawater and soil under ambient conditions. The simple fabrication strategy developed herein for robust sustainable polyelectrolyte plastics appears to be applicable to other bio-sourced and synthetic polyelectrolytes. This work provides a practical way for fabricating sustainable high-performance plastics by elegantly designing the supramolecular networks of polyelectrolytes.
Collapse
Affiliation(s)
- Zhi Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Anhong Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
4
|
Schick S, Weinberger A, Groten R, Seide GH. Effect of Fiber Cross-Sectional and Surface Properties on the Degradation of Biobased Polymers. Polymers (Basel) 2024; 16:3096. [PMID: 39518305 PMCID: PMC11548424 DOI: 10.3390/polym16213096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Biobased polymers such as polylactic acid (PLA) and polybutylene succinate (PBS) break down naturally under certain environmental conditions. The efficiency of degradation can be linked directly to fiber surface properties, which influence polymer accessibility. Here, the degradation of PLA and PBS fibers with six different cross-sections was investigated. The fibers were aged by hydrolysis and UV exposure in an accelerated weathering test, followed by an ISO 20200 laboratory-scale disintegration test with non-aged fibers as controls. The polymers were analyzed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and gel permeation chromatography, comparing the polymer granulate, virgin fibers, and UV-exposed fibers. It was found that the molecular mass and crystallinity of PBS changed more than PLA during spinning. Several PLA samples were completely degraded, whereas all the PBS samples remained intact. Furthermore, surface openings appeared on the PLA fibers during weathering, suggesting greater sensitivity to UV exposure and hydrolysis than PBS. A clear correlation between the fiber surface area and the degradation rate was observed for all samples, but the correlation was positive for PLA and negative for PBS. The slower degradation of PBS fibers with a larger surface area may reflect the ability of PBS to preserve itself by further crystallization during degradation processes at temperatures higher than the glass transition point. The data clearly show that the analysis of single degradation mechanisms is insufficient to predict the behavior of material under real-world conditions, where different degradation mechanisms may work in parallel or consecutively, and may show interdependencies.
Collapse
Affiliation(s)
- Simon Schick
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167RD Geleen, The Netherlands;
| | - Andreas Weinberger
- International Fibers Group (IFG) ASOTA, Schachermayerstr 22, 4070 Linz, Austria
| | - Robert Groten
- Department of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Campus Mönchengladbach, Webschulstrasse 31, 41065 Mönchengladbach, Germany
| | - Gunnar H. Seide
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167RD Geleen, The Netherlands;
| |
Collapse
|
5
|
Banerjee A, Borah A, Chah CN, Dhal MK, Madhu K, Katiyar V, Sekharan S. Decoding the complex interplay of biological and chemical factors in Polylactic acid biodegradation: A systematic review. Int J Biol Macromol 2024; 282:136956. [PMID: 39489234 DOI: 10.1016/j.ijbiomac.2024.136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Polylactic Acid is a sustainable, compostable bioplastic that requires specific geoenvironmental conditions for degradation. The complexity of managing the PLA waste has limited the scope of its seamless application. There have been a significant number of studies exploring PLA degradation. Majorly they have explored degradability as a material property with limited discussions on the fundamental factors affecting degradation. The knowledge of the influence of biotic and abiotic factors and their complex interplay is critical for enhancing PLA degradation research, specifically accelerated degradation. This understanding is necessary for PLA waste upcycling and generating industrial-scale value-added products. Using the PRISMA framework, a database of articles on PLA degradation (1974-2023) has been created with each entry being annotated with 11 critical parameters depending on the scale and scope of the research. Abiotic hydrolysis, biotic hydrolysis and assimilation of PLA were discussed in detail with information on experiment design analytical techniques and background mechanisms to achieve systematic recommendations. Enzymes responsible for PLA degradation have been categorised and catalogued. The review highlights the need for future research related to PLA degradation in terms of molecular mechanisms of enzymatic degradation, bioengineering enzymes for accelerating degradation, and mathematical models for predicting degradation kinetics in complex environmental conditions.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India
| | - Abhinav Borah
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India
| | - Charakho N Chah
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Manoj Kumar Dhal
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Kshitij Madhu
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Vimal Katiyar
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India.
| | - Sreedeep Sekharan
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India.
| |
Collapse
|
6
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
He M, Hsu YI, Uyama H. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134819. [PMID: 38850940 DOI: 10.1016/j.jhazmat.2024.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.
Collapse
Affiliation(s)
- Manjie He
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Zhang X, Xia Y, Sun Y, Zhang C, Zhang X. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angew Chem Int Ed Engl 2024; 63:e202315524. [PMID: 38279840 DOI: 10.1002/anie.202315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Researchers have been chasing plastics that can automatically and fully degrade into valuable products under natural conditions. Here, we develop a series of water-degradable polymers from the first reported fast and selective cationic copolymerization of formaldehyde (B) with cyclic anhydrides (A). In addition to readily accessible monomers, the method is performed at industrially relevant temperatures (~100 °C), takes tens or even minutes, and uses common acid as the catalyst. Interestingly, such polymers possess tunable AB/ABB-type repeating units, which are considered to be thermodynamic and kinetic products, respectively, resulting in low carbon content ([O] : [C] up to 1 : 1). Notably, the polymers can completely degrade to valuable diacids within 150 days in water at ambient temperature owing to the incorporation of carboxyl terminals and acid-responsive acetal units. By washing with aqueous sodium carbonate, the polymers are relatively stable over several months.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
9
|
Luan Q, Hu H, Ouyang X, Jiang X, Lin C, Zhu H, Shi T, Zhao YL, Wang J, Zhu J. New modifications of PBAT by a small amount of oxalic acid: Fast crystallization and enhanced degradation in all natural environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133475. [PMID: 38219588 DOI: 10.1016/j.jhazmat.2024.133475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Biodegradable plastics are often mistakenly thought to be capable of degrading in any environment, but their slow degradation rate in the natural environment is still unsatisfactory. We synthetized a novel series of poly(butylene oxalate-co-adipate-co-terephthalate) (PBOAT) with unchanged melting point (135 °C), high elastic modulus (140 - 219 MPa) and elongation at break (478 - 769%). Fast isothermal crystallization with a semi-crystallization time < 20 s was demonstrated by the PBOAT. In N2 and air atmospheres, the PBOAT maintained the Td,5% higher than 329 °C. They also had good thermal stability at melt processing temperature for more than 20 min. PBOAT exhibited faster hydrolysis and seawater degradation, even under natural soil burial without light, but still kept stable under low humidity conditions during the storage and the shelf-life. Moreover, the hydrolysis mechanisms were clarified based on Fukui function analysis and DFT calculation, indicating that the hydrolysis of PBOAT would be more straightforward. The mechanism of soil burial is also elucidated through detailed characterization of the structure changes. The PBOAT offered a fresh approach to the development of high-performing, naturally degradable materials.
Collapse
Affiliation(s)
- Qingyang Luan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Jiang
- Cambridge A level Center, Zhenhai High School of Zhejiang, No.32 Gulou East Road, Zhenhai, Ningbo 315200, China
| | - Chen Lin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hanxu Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Seo HJ, Seo YH, Park SU, Lee HJ, Lee MR, Park JH, Cho WY, Lee PC, Lee BY. Glycerol-derived organic carbonates: environmentally friendly plasticizers for PLA. RSC Adv 2024; 14:4702-4716. [PMID: 38318613 PMCID: PMC10840682 DOI: 10.1039/d3ra08922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.
Collapse
Affiliation(s)
- Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| |
Collapse
|
11
|
Tan R, Zhang K, Si Y, Zhang S, Yang J, Hu J. Implantable Epigallocatechin Gallate Sustained-Release Nanofibers for the Prevention of Immobilization-Induced Muscle Atrophy. ACS NANO 2024; 18:919-930. [PMID: 38142426 DOI: 10.1021/acsnano.3c09634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Long-term immobilization of joints can lead to disuse atrophy of the muscles in the joints. Oral nutrients are used clinically for rehabilitation and therapeutic purposes, but bioavailability and targeting are limited. Here, we report tea polyphenols (dietary polyphenols), sustained-release nanofilms that release tea polyphenols through slow local degradation of core-shell nanofibers in muscles. This dietary polyphenol does not require gastrointestinal consumption and multiple doses and can directly remove inflammatory factors and superoxide generated in muscle tissue during joint fixation. The quality of muscles is increased by 30%, and muscle movement function is effectively improved. Although nanofibers need to be implanted into muscles, they can improve bacterial infections after joint surgery. To investigate the biological mechanism of this core-shell nanomembrane prevention, we conducted further transcriptomic studies on muscle, confirming that in addition to achieving antioxidation and anti-inflammation by inhibiting TNF-α and NF-κB signaling pathways, tea polyphenol core-shell nanofibers can also promote muscle formation by activating the p-Akt signaling pathway.
Collapse
Affiliation(s)
- Renjie Tan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jieqiong Yang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
Zhu Y, Wang Z, Chen Z, Xin X, Gan W, Lai H, Lin C. Highly Stretchable, Biodegradable, and Recyclable Green Electronic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305181. [PMID: 37699749 DOI: 10.1002/smll.202305181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 09/14/2023]
Abstract
As a steady stream of electronic devices being discarded, a vast amount of electronic substrate waste of petroleum-based nondegradable polymers is generated, raising endless concerns about resource depletion and environmental pollution. With coupled reagent (CR)-grafted artificial marble waste (AMW@CR) as functional fillers, polylactic acid (PLA)-based highly stretchable biodegradable green composite (AMW@CR-SBGC) is prepared, with elongation at break up to more than 250%. The degradation mechanism of AMW@CR-SBGC is deeply revealed. AMW@CR not only contributed to the photodegradation of AMW@CR-SBGC but also significantly promoted the water degradation of AMW@CR-SBGC. More importantly, AMW@CR-SBGC showed great potential as sustainable green electronic substrates and AMW@CR-SBGC-based electronic skin can simulate the perception of human skin to strain signals. The outstanding programmable degradability, recyclability, and reusability of AMW@CR-SBGC enabled its application in transient electronics. As the first demonstration of artificial marble waste in electronic substrates, AMW@CR-SBGC killed three birds with one stone in terms of waste resourcing, e-waste reduction, and saving nonrenewable petroleum resources, opening up vast new opportunities for green electronics applications in areas such as health monitoring, artificial intelligence, and security.
Collapse
Affiliation(s)
- Yan Zhu
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zhongmin Wang
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, P. R. China
| | - Xiaozhou Xin
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Weijiang Gan
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Huajun Lai
- Advanced Materials Industry Institute, Guangxi Academy of Sciences, 530007, Nanning, P. R. China
| | - Cheng Lin
- School of Astronautics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
13
|
Fukaura S, Iwasaki Y. Effect of phosphodiester composition in polyphosphoesters on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2319-2331. [PMID: 37530459 DOI: 10.1080/09205063.2023.2244737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Osteoporosis is a common bone disorder characterized by reduced bone density and increased risk of fractures. The modulation of bone cell functions, particularly the inhibition of osteoclastic differentiation, plays a crucial role in osteoporosis treatment. Polyphosphoesters (PPEs) have shown the potential in reducing the function of osteoclast cells, but the effect of their chemical structure on osteoclastic differentiation remains largely unexplored. In this study, we evaluated the effect of PPE's chemical structure on the inhibition of osteoclastic differentiation of murine bone marrow mononuclear cells (BMNCs). PPEs containing phosphotriester and phosphodiester units at varying compositions were synthesized. Cytotoxicity testing confirmed the biocompatibility of the copolymers at concentrations below 0.5 mg/mL. Isolated from long bones, BMNCs were cultured in a differentiation medium supplemented with different PPE concentrations. Osteoclast formation was assessed through tartrate-resistant acid phosphatase and phalloidin staining. A significant decrease in the size of osteoclast cells formed upon BMNC contact with PPEs was observed, with a more pronounced effect observed at higher PPE concentrations. In addition, an increased composition of phosphodiester units in the PPEs yielded a decreased density of differentiated osteoclasts. Furthermore, real-time PCR analysis of major osteoclastic markers provided gene expression data that correlated with microscopic observations, confirming the effect of phosphodiester units in suppressing osteoclast differentiation of BMNCs from the early stages. These findings highlight the potential of PPEs as polymers are capable of modulating bone cell functions through their chemical structures.
Collapse
Affiliation(s)
- Sota Fukaura
- Graduate School of Science and Technology, Kansai University, Osaka, Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, Osaka, Japan
- ORDIST, Kansai University, Osaka, Japan
| |
Collapse
|
14
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
15
|
Rheinberger T, Flögel U, Koshkina O, Wurm FR. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials. Commun Chem 2023; 6:182. [PMID: 37658116 PMCID: PMC10474120 DOI: 10.1038/s42004-023-00954-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olga Koshkina
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands.
| |
Collapse
|
16
|
Le Gué L, Davies P, Arhant M, Vincent B, Tanguy E. Mitigating plastic pollution at sea: Natural seawater degradation of a sustainable PBS/PBAT marine rope. MARINE POLLUTION BULLETIN 2023; 193:115216. [PMID: 37437477 DOI: 10.1016/j.marpolbul.2023.115216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
This paper evaluates the use of a PBS/PBAT biodegradable rope to reduce the environmental impact of fishing gear lost at sea. The study aims to better understand the degradation mechanisms that the rope and its monofilaments may encounter due to the long term exposure to seawater. The monofilaments were immersed in natural seawater for up to 18 months, and rope samples were also immersed to study aging at a larger scale and evaluate the ability of a modelling tool to predict initial and aged states of the rope. At low temperatures, no loss of properties was observed for the monofilament and rope. However, at higher temperatures, biodegradation and hydrolysis processes were observed, leading to a faster loss of properties in the monofilament compared to the rope. The modelling tool provided conservative predictions due to severe mechanical test conditions of aged monofilament and a degradation gradient within the rope structure.
Collapse
Affiliation(s)
- Louis Le Gué
- Ifremer RDT, Research and Technology Development Unit, 1625 route de Sainte-Anne, Plouzané, 29280, France; DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, 56325, France.
| | - Peter Davies
- Ifremer RDT, Research and Technology Development Unit, 1625 route de Sainte-Anne, Plouzané, 29280, France
| | - Mael Arhant
- Ifremer RDT, Research and Technology Development Unit, 1625 route de Sainte-Anne, Plouzané, 29280, France
| | - Benoit Vincent
- DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Lorient, 56325, France
| | - Erwan Tanguy
- Le Drezen, 12 rue de Kélareun, Le Guilvinec, 29730, France
| |
Collapse
|
17
|
Luan Q, Hu H, Jiang X, Lin C, Zhang X, Wang Q, Dong Y, Wang J, Zhu J. Melt polycondensation of poly (butylene oxalate-co-succinate) with great potential in curbing marine plastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131801. [PMID: 37302185 DOI: 10.1016/j.jhazmat.2023.131801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Marine plastic pollution, with annual emissions into the marine over 53 million metric tons, has been a major worldwide concern. Many of so-called "biodegradable" polymers degrade very slowly in seawater. Oxalate have attracted attention because the electron-withdrawing effect of adjacent ester bonds promotes their natural hydrolysis, particularly in the ocean. However, the low boiling point and poor thermal stability of oxalic acids severely limits their applications. The successful synthesis of light-colored poly(butylene oxalate-co-succinate) (PBOS), with weight average molecular weight higher than 1 × 105 g/mol, displays the breakthroughs in the melt polycondensation of oxalic acid-based copolyesters. The copolymerization of oxalic acid retains the crystallization rate of PBS, with minimum half-crystallization times from 16 s (PBO10S) to 48 s (PBO30S). PBO10S-PBO40S exhibit good mechanical properties with elastic modulus of 218-454 MPa, and tensile strength between 12 and 29 MPa, better than packaging materials such as biodegradable PBAT and non-degradable LLDPE. PBOS achieve rapid degradation in the marine environment, with a mass loss 8%- 45% after 35 days. The characterization of structural changes demonstrate that the introduced oxalic acid plays a key role in the process of seawater degradation. This new class of polymers therefore provide highly promising materials for sustainable packaging with unique seawater degradation properties.
Collapse
Affiliation(s)
- Qingyang Luan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
| | - Xiaoyu Jiang
- Cambridge A level Center, Zhenhai High School of Zhejiang, No.32 Gulou East Road, Zhenhai, Ningbo 315200, People's Republic of China
| | - Chen Lin
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Xiaoqin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yunxiao Dong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
18
|
Liu TY, Zhen ZC, Zang XL, Xu PY, Wang GX, Lu B, Li F, Wang PL, Huang D, Ji JH. Fluorescence tracing the degradation process of biodegradable PBAT: Visualization and high sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131572. [PMID: 37148790 DOI: 10.1016/j.jhazmat.2023.131572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Biodegradable plastics have emerged as a potential solution to the mounting plastic pollution crisis. However, current methods for evaluating the degradation of these plastics are limited in detecting structural changes rapidly and accurately, particularly for PBAT, which contains worrying benzene rings. Inspired by the fact that the aggregation of conjugated groups can endow polymers with intrinsic fluorescence, this work found that PBAT emits a bright blue-green fluoresces under UV irradiation. More importantly, we pioneered a degradation evaluation approach to track the degradation process of PBAT via fluorescence. A blue shift of fluorescence wavelength as the thickness and molecular weight of PBAT film decreased during degradation in an alkali solution was observed. Additionally, the fluorescence intensity of the degradation solution increased gradually as the degradation progressed, and was found to be exponentially correlated with the concentration of benzene ring-containing degradation products following filtration with the correlation coefficient is up to 0.999. This study proposes a promising new strategy for monitoring the degradation process with visualization and high sensitivity.
Collapse
Affiliation(s)
- Tian-Yuan Liu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Chao Zhen
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Ling Zang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Peng-Yuan Xu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Xia Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Lu
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Li
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping-Li Wang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dan Huang
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jun-Hui Ji
- National Engineering Research Center of Engineering and Ecological Plastics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
19
|
Zheng K, Gu F, Wei H, Zhang L, Chen X, Jin H, Pan S, Chen Y, Wang S. Flexible, Permeable, and Recyclable Liquid-Metal-Based Transient Circuit Enables Contact/Noncontact Sensing for Wearable Human-Machine Interaction. SMALL METHODS 2023; 7:e2201534. [PMID: 36813751 DOI: 10.1002/smtd.202201534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Indexed: 06/18/2023]
Abstract
The past several years have witnessed a rapid development of intelligent wearable devices. However, despite the splendid advances, the creation of flexible human-machine interfaces that synchronously possess multiple sensing capabilities, wearability, accurate responsivity, sensitive detectivity, and fast recyclability remains a substantial challenge. Herein, a convenient yet robust strategy is reported to craft flexible transient circuits via stencil printing liquid metal conductor on the water-soluble electrospun film for human-machine interaction. Due to the inherent liquid conductor within porous substrate, the circuits feature high-resolution, customized patterning viability, attractive permeability, excellent electroconductivity, and superior mechanical stability. More importantly, such circuits display appealing noncontact proximity capabilities while maintaining compelling tactile sensing performance, which is unattainable by traditional systems with compromised contact sensing. As such, the flexible circuit is utilized as wearable sensors with practical multifunctionality, including information transfer, smart identification, and trajectory monitoring. Furthermore, an intelligent human-machine interface composed of the flexible sensors is fabricated to realize specific goals such as wireless object control and overload alarm. The transient circuits are quickly and efficiently recycled toward high economic and environmental values. This work opens vast possibilities of generating high-quality flexible and transient electronics for advanced applications in soft and intelligent systems.
Collapse
Affiliation(s)
- Kai Zheng
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Fan Gu
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Hongjin Wei
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Lijie Zhang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xi'an Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Huile Jin
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shuang Pan
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yihuang Chen
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
20
|
Delacuvellerie A, Brusselman A, Cyriaque V, Benali S, Moins S, Raquez JM, Gobert S, Wattiez R. Long-term immersion of compostable plastics in marine aquarium: Microbial biofilm evolution and polymer degradation. MARINE POLLUTION BULLETIN 2023; 189:114711. [PMID: 36807047 DOI: 10.1016/j.marpolbul.2023.114711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The best-selling compostable plastics, polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT), can accidentally end up in the marine environment due to plastic waste mismanagement. Their degradation and colonization by microbial communities are poorly documented in marine conditions. To better understand their degradation, as well as the dynamics of bacterial colonization after a long immersion time (99, 160, and 260 days), PBAT, semicrystalline, and amorphous PLA films were immersed in a marine aquarium. Sequencing and chemical analyses were used in parallel to characterize these samples. Despite the variation in the chemical intrinsic parameters of these plastics, their degradation remains very slow. Microbial community structure varied according to the immersion time with a high proportion of Archaea. Moreover, the plastisphere structure of PBAT was specific. A better understanding of compostable plastic degradability is crucial to evaluate their impact on ecosystems and to eco-design new recyclable plastics with optimal degradation properties.
Collapse
Affiliation(s)
- Alice Delacuvellerie
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium
| | - Axelle Brusselman
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium
| | - Valentine Cyriaque
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Samira Benali
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sébastien Moins
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Sylvie Gobert
- Oceanology department, UR FOCUS, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium; STARESO, Pointe Revellata, BP33, 20260 Corse, France
| | - Ruddy Wattiez
- Proteomics and Microbiology department, University of Mons, 20 place du parc, 7000 Mons, Belgium.
| |
Collapse
|
21
|
Eck M, Bernabeu L, Mecking S. Polyethylene-Like Blends Amenable to Abiotic Hydrolytic Degradation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4523-4530. [PMID: 37008182 PMCID: PMC10052336 DOI: 10.1021/acssuschemeng.2c07537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Long-chain aliphatic polyester-18,18 (PE-18,18) exhibits high density polyethylene-like material properties and, as opposed to high density polyethylene (HDPE), can be recycled in a closed loop via depolymerization to monomers under mild conditions. Despite the in-chain ester groups, its high crystallinity and hydrophobicity render PE-18,18 stable toward hydrolysis even under acidic conditions for one year. Hydrolytic degradability, however, can be a desirable material property as it can serve as a universal backstop to plastic accumulation in the environment. We present an approach to render PE-18,18 hydrolytically degradable by melt blending with long-chain aliphatic poly(H-phosphonate)s (PP). The blends can be processed via common injection molding and 3D printing and exhibit HDPE-like tensile properties, namely, high stiffness (E = 750-940 MPa) and ductility (εtb = 330-460%) over a wide range of blend ratios (0.5-20 wt % PP content). Likewise, the orthorhombic solid-state structure and crystallinity (χ ≈ 70%) of the blends are similar to HDPE. Under aqueous conditions in phosphate-buffered media at 25 °C, the blends' PP component is hydrolyzed completely to the underlying long-chain diol and phosphorous acid within four months, as evidenced by NMR analyses. Concomitant, the PE-18,18 major blend component is partially hydrolyzed, while neat PE-18,18 is inert under identical conditions. The hydrolysis of the blend components proceeded throughout the bulk of the specimens as confirmed by gel permeation chromatography (GPC) measurements. The significant molar mass reduction upon extended immersion in water (M n(virgin blends) ≈ 50-70 kg mol-1; M n(hydrolyzed blends) ≈ 7-11 kg mol-1) resulted in embrittlement and fragmentation of the injection molded specimens. This increases the surface area and is anticipated to promote eventual mineralization by abiotic and biotic pathways of these HDPE-like polyesters in the environment.
Collapse
|
22
|
Rheinberger T, Deuker M, Wurm FR. The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to years. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
23
|
Bao Q, Zhang Z, Luo H, Tao X. Evaluating and Modeling the Degradation of PLA/PHB Fabrics in Marine Water. Polymers (Basel) 2022; 15:polym15010082. [PMID: 36616431 PMCID: PMC9823644 DOI: 10.3390/polym15010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Developing degradable bio-plastics has been considered feasible to lessen marine plastic pollution. However, unanimity is still elusive regarding the actual degradability of bio-plastics such as polylactide (PLA) and poly(hydroxybutyrate) (PHB). Thus, herein, we studied the degradability of fabrics made from PLA/PHB blends in marine seawater. The dry-mass percentage of the PLA/PHB fabrics decreased progressively from 100% to 85~90% after eight weeks of immersion. Two environmental aging parameters (UV irradiation and aerating) were also confirmed to accelerate the abiotic hydrolysis of the incubated fabrics. The variation in the molecular structure of the PLA/PHB polymers after the degradation process was investigated by electrospray ionization mass spectrometry (ESI-MS). However, the hydrolysis degradability of bulky PLA/PHB blends, which were used to produce such PLA/PHB fabrics, was negligible under identical conditions. There was no mass loss in these solid PLA/PHB plastics except for a decrease in their tensile strength. Finally, a deep learning artificial neural network model was proposed to model and predict the nonlinear abiotic hydrolysis behavior of PLA/PHB fabrics. The degradability of PLA/PHB fabrics in marine water under the synergistic destructive effects of seawater, UV, and dissolved oxygen provides a pathway for more sustainable textile fibers and apparel products.
Collapse
Affiliation(s)
- Qi Bao
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ziheng Zhang
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Heng Luo
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiaoming Tao
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Correspondence: ; Tel.: +852-2766-6470; Fax: +852-2766-6470
| |
Collapse
|
24
|
Pokora M, Rheinberger T, Wurm FR, Paneth A, Paneth P. Environment-friendly transesterification to seawater-degradable polymers expanded: Computational construction guide to breaking points. CHEMOSPHERE 2022; 308:136381. [PMID: 36088968 DOI: 10.1016/j.chemosphere.2022.136381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Marine plastic pollution caused by non-biodegradable polymers is a major worldwide concern. So-called "biodegradable" polymers should reduce plastic pollution in the environment by the safeguard of biodegradation. However, many polyesters degrade very slowly in seawater. We therefore designed a systematic library of "breaking points" that are installed into a polylactide backbone and simulated their degradation mechanisms, including internal and external SN2 mechanisms, Addition-Elimination (AE) mechanisms, and RNA-inspired mechanisms. The breaking points are composed of phosphoesters with pendant nucleophiles directly at the P-atom, or structurally similar silicones, or side-chain functional polyesters. All P-containing breaking points react via the RNA-inspired mechanism, while Si-containing linkers undergo decomposition via the A-E mechanism. For C-containing linkers, only when a long pendant chain (4 carbon atoms) is present can the reaction proceed via the RNA-inspired mechanism. In cases of shorter pendants, the Addition-Elimination (AE) mechanism is energetically favorable. We believe that these calculations will pave the way for the synthesis of exceptionally seawater-degradable polyesters in the future that can act as a safeguard to prevent microplastic formation after eventual littering.
Collapse
Affiliation(s)
- Mateusz Pokora
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland
| | - Timo Rheinberger
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, Enschede, 7500 AE, the Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, Enschede, 7500 AE, the Netherlands
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 3a, 20-093, Lublin, Poland
| | - Piotr Paneth
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| |
Collapse
|
25
|
Mironov VV, Trofimchuk ES, Zagustina NA, Ivanova OA, Vanteeva AV, Bochkova EA, Ostrikova VV, Zhang S. Solid-Phase Biodegradation of Polylactides (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Liu Q, Hong Y, Wang C, Liu Y, Liu C. Tri(3‐alkoxyl‐3‐oxopropyl) phosphine oxides derived from
PH
3
tail gas as a novel phosphorus‐containing plasticizer for polylactide. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qing‐Wen Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Yu‐Lin Hong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Chang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan People's Republic of China
| | - Yun Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan People's Republic of China
- School of Chemical and Environmental Engineering Jianghan University Wuhan People's Republic of China
| | - Cheng‐Mei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan People's Republic of China
| |
Collapse
|
27
|
Si C, Hu G, Jiang W, Sun P, Cao J, Ji R, Li AM, Zhang Q. Hydrophobic Biodegradable Hyperbranched Copolymers with Excellent Marine Diatom Resistance. Biomacromolecules 2022; 23:4327-4338. [PMID: 36069679 DOI: 10.1021/acs.biomac.2c00779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the utilization of degradable polymer coatings increased, the accompanying trade-off between good degradability and high-efficiency antidiatom adhesion due to their hydrophobic nature remains unresolved. The study presents a new hydrophobic surface-fragmenting coating consisting of degradable hyperbranched polymers (hereafter denoted as h-LLAx) synthesized by reversible complexation-mediated copolymerization with isobornyl acrylate (IBOA) and divinyl-functional oligomeric poly(l-lactide) (OLLA-V2), both derived from biomass, that exhibited superior resistance (∼0 cell mm-2) to marine diatom Navicula incerta (N. incerta) attachment with higher OLLA content. The combined impact of the microscale hollow semisphere micelles that self-assembled degradable hyperbranched copolymers and hydrolysis-driven self-renewable surfaces following immersion in seawater may account for the remarkable resistance of h-LLAx coatings against N. incerta. Detailed investigations were conducted across multiple perspectives, from hydrolytic degradation to broad-spectrum antibacterial attachment to ecotoxicity assessment. The excellent features of high resistance to marine diatoms and bacterial attachment, degradability, and environmental friendliness make the as-prepared h-LLAx coatings widely sought after for antifouling coating applications.
Collapse
Affiliation(s)
- Chunying Si
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guoming Hu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ping Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingjing Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruixiang Ji
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ai-Min Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Quanxing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Lee HJ, Cho WY, Lee HC, Seo YH, Baek JW, Lee PC, Lee BY. Rapid Biodegradable Ionic Aggregates of Polyesters Constructed with Fertilizer Ingredients. J Am Chem Soc 2022; 144:15911-15915. [PMID: 35938930 DOI: 10.1021/jacs.2c05258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic biodegradable polyesters tend to undergo slow biodegradation under ambient natural conditions and, hence, have been rejected or even banned recently in ecofriendly applications. Here, we demonstrate the preparation of polyesters exhibiting enhanced biodegradability, which were generated through a combination of old controversial macromolecules and aggregate theories. H3PO4-catalyzed diacid/diol polycondensation afforded polyester chains bearing chain-end -CH2OP(O)(OH)2 and inner-chain (-CH2O)2P(O)(OH) groups, which were subsequently treated with M(2-ethylhexanoate)2 (M = Zn, Mg, Mn, and Ca) to form ionic aggregates of polyesters. The prepared ionic aggregates of polyesters, which were constructed with fertilizer ingredients (such as M2+ and phosphate), exhibit much faster biodegradability than that of the conventional polyesters under controlled soil conditions at 25 °C, while displaying comparable or superior rheological and mechanical properties.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hong Cheol Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jun Won Baek
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| |
Collapse
|
29
|
Cheng Y, Ueda M, Iwasaki Y. Polyphosphoester/tannic acid composite sticky coacervates as adhesives. CHEM LETT 2022. [DOI: 10.1246/cl.220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yichen Cheng
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| | - Masato Ueda
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
- ORDIST, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
- ORDIST, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| |
Collapse
|
30
|
Hardy C, Kociok-Köhn G, Buchard A. UV degradation of poly(lactic acid) materials through copolymerisation with a sugar-derived cyclic xanthate. Chem Commun (Camb) 2022; 58:5463-5466. [PMID: 35416817 DOI: 10.1039/d2cc01322c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copolymerisation of L-Lactide with a cyclic xanthate monomer derived from tri-O-acetyl-D-glucal has been used to incorporate thionocarbonate and thioester linkages into a polyester backbone. The poly(lactide-co-xanthate) copolymers show enhanced UV-degradability compared to PLA, with 40% mass loss within 6 hours of UV exposure (365 nm) for only 3% of sulfur-containing linkages.
Collapse
Affiliation(s)
- Craig Hardy
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - Antoine Buchard
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
31
|
Haider TP, Suraeva O, Lieberwirth I, Paneth P, Wurm FR. RNA-inspired intramolecular transesterification accelerates the hydrolysis of polyethylene-like polyphosphoesters. Chem Sci 2021; 12:16054-16064. [PMID: 35024127 PMCID: PMC8672729 DOI: 10.1039/d1sc05509g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023] Open
Abstract
To synthesize new (bio)degradable alternatives to commodity polymers, adapting natural motives can be a promising approach. We present the synthesis and characterization of degradable polyethylene (PE)-like polyphosphoesters, which exhibit increased degradation rates due to an intra-molecular transesterification similar to RNA. An α,ω-diene monomer was synthesized in three steps starting from readily available compounds. By acyclic diene metathesis (ADMET) polymerization, PE-like polymers with molecular weights up to 38 400 g mol-1 were obtained. Post-polymerization functionalization gave fully saturated and semicrystalline polymers with a precise spacing of 20 CH2 groups between each phosphate group carrying an ethoxy hydroxyl side chain. This side chain was capable of intramolecular transesterification with the main-chain similar to RNA-hydrolysis, mimicking the 2'-OH group of ribose. Thermal properties were characterized by differential scanning calorimetry (DSC (T m ca. 85 °C)) and the crystal structure was investigated by wide-angle X-ray scattering (WAXS). Polymer films immersed in aqueous solutions at different pH values proved an accelerated degradation compared to structurally similar polyphosphoesters without pendant ethoxy hydroxyl groups. Polymer degradation proceeded also in artificial seawater (pH = 8), while the polymer was stable at physiological pH of 7.4. The degradation mechanism followed the intra-molecular "RNA-inspired" transesterification which was detected by NMR spectroscopy as well as by monitoring the hydrolysis of a polymer blend of a polyphosphoester without pendant OH-group and the RNA-inspired polymer, proving selective hydrolysis of the latter. This mechanism has been further supported by the DFT calculations. The "RNA-inspired" degradation of polymers could play an important part in accelerating the hydrolysis of polymers and plastics in natural environments, e.g. seawater.
Collapse
Affiliation(s)
- Tobias P Haider
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Piotr Paneth
- International Center for Research on Innovative Biobased Materials (ICRI-BioM), Lodz University of Technology Zeromskiego 116 90-924 Lodz Poland
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|