1
|
Ucak-Astarlioglu MG, Fernando PUAI, Spane SA, Rodriguez SA, Kosgei GK, Weiss CA, Beckman IP, Villacorta B, Nouranian S, Al-Ostaz A. FIMOFs: Fiber-Integrated Metal-Organic Frameworks Through Electrospinning. Polymers (Basel) 2025; 17:1106. [PMID: 40284371 PMCID: PMC12030668 DOI: 10.3390/polym17081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Green synthesis plays a crucial role in advancing sustainability within materials science. This study explores the integration of metal-organic frameworks (MOFs), obtained through green synthesis, using an electrospinning post-processing technique to develop MOF-based composite materials. The resulting novel multifunctional composites demonstrate enhanced stability and functionality, compared to their control counterparts. The integration of four types of MOFs into an electrospun fiber network was investigated using a specific polymer solution. Characterization and preliminary adsorption studies were conducted to elucidate the chemistry, morphology, and adsorptive capabilities of the resulting MOF composites. Electrospinning MOFs into polymer fibers improved their stability and dye removal capabilities. More specifically, optimization of MOF-to-polymer ratios and processing conditions yielded composites that are thermally stable, with modified surface area and porosity. Post-processing MOFs resulted in a fiber diameter increase of 44 and 109%, enhancing the composites by providing more MOF active sites and improved mechanical strength. Zirconium-based post-processed MOFs demonstrated superior dye removal, different from the copper-based dyes. Electrospinning technology has demonstrated significant potential in the fabrication of high-performance multifunctional MOF composites. This has helped to create advanced sustainable composites with tailored properties, paving the way for more targeted and efficient applications. The applications of these composites show promise for military engineering where durable, light weight, and multifunctional materials are critical in contributing to improved performance, operational efficiency, and safety.
Collapse
Affiliation(s)
- Mine G. Ucak-Astarlioglu
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - P. U. Ashvin Iresh Fernando
- SIMETRI, Inc., Winter Park, FL 32792, USA;
- U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Rd, Hanover, NH 03755, USA;
| | - Spencer A. Spane
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - Sulymar A. Rodriguez
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.R.); (G.K.K.)
| | - Gilbert K. Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.R.); (G.K.K.)
| | - Charles A. Weiss
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA; (S.A.S.); (C.A.W.J.)
| | - Ivan P. Beckman
- U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Rd, Hanover, NH 03755, USA;
| | - Byron Villacorta
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (B.V.); (S.N.)
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (B.V.); (S.N.)
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
| | - Ahmed Al-Ostaz
- Center for Graphene Research and Innovation, University of Mississippi, Oxford, MS 38677, USA;
- Department of Civil Engineering, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
2
|
Huang C, Yang Y, Hu X, Wang Q, Fu H, Wang P, Zhou Y, Zhang L, Zhong Y. Synergistic effect of Lewis acid-base sites in Zr 4+-doped layered double hydroxides promotes rapid decontamination of nerve and blister agents under ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136565. [PMID: 39581028 DOI: 10.1016/j.jhazmat.2024.136565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Nerve and blister agents are among the deadliest chemicals posing a major threat to the society, and the development of materials that can rapidly decontaminate them under solvent-free ambient conditions is a major societal challenge. In this paper, layered double hydroxides (ZnAlxZr1-x-LDH) with varying Zr4+ doping content were synthesized and the decontamination properties of nerve and blister agents were investigated under ambient conditions. The results show that, compared to ZnAl-LDH, the ZnAl0.4Zr0.6-LDH with the highest amount of Zr4+ dopant reduced the decontamination reaction half-life of sarin (GB) and soman (GD) by 10 and 9 times, respectively. Mechanism studies revealed that ZnAl0.4Zr0.6-LDH employs the synergistic effect of Lewis acid-base sites to catalyze the decomposition of GB and GD into hydrolysis products and surface-bound hydrolysis products. The study also showed that under ambient conditions, ZnAl0.4Zr0.6-LDH demonstrated superior decontamination performance for the sulfur mustard (HD) simulant 2-chloroethyl ethyl sulfide (CEES) compared to ZnAl-LDH, effectively catalyzing the detoxification of CEES into dehydrohalogenation (EVS) and 1,2-bis-(ethylthio) ethane (BETE). ZnAl0.4Zr0.6-LDH also had satisfactory decontamination performance against HD. This work provides not only a green and efficient catalyst with potential for practical applications but also new insights for constructing broad-spectrum, highly efficient self-detoxifying materials.
Collapse
Affiliation(s)
- Chengcheng Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China; Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ying Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongchen Fu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pingjing Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunshan Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Lijuan Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
3
|
Lee S, Lee G, Oh M. MOF-on-MOF Growth: Inducing Naturally Nonpreferred MOFs and Atypical MOF Growth. Acc Chem Res 2024; 57:3113-3125. [PMID: 39388366 DOI: 10.1021/acs.accounts.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
ConspectusOverflowing metal-organic frameworks (MOFs) have been synthesized from a wide range of metal and organic components for specific purposes and intellectual curiosity. Each MOF has unique chemical and structural characteristics directed by the incorporated components, metal ions (or clusters), organic linkers, and their intrinsic coordination interactions. These incorporated components and structural characteristics are two pivotal factors influencing MOFs' fundamental properties and subsequent applications. Therefore, selecting the appropriate metal and organic components, considering their innate chemical and structural properties, is crucial to endow the final MOFs with the desired properties. Ultimately, producing MOFs with a desired structure using ideal components is the best approach to achieving the best MOFs tailored for specific purposes with desired properties. However, achieving MOFs with the intended structure from chosen components remains underdeveloped. In many cases, the resulting MOF structure is governed by the thermodynamically and/or kinetically preferred configuration (refers to a naturally preferred structure) of the chosen components and given reaction conditions. Additionally, producing hybrid MOFs with complex components, structures, and morphologies presents a great opportunity to obtain special MOFs with advanced properties and functions. In this Account, we outline our group's efforts over the past few years to develop naturally nonpreferred MOFs through the induced MOF-on-MOF growth process and atypical hybrid MOFs via nonstandard MOF-on-MOF growth. First, we highlight the prime strategy for producing naturally nonpreferred MOFs based on template-induced MOF-on-MOF growth. In this section, we discuss the two basic growth behaviors, isotropic and anisotropic growth of naturally nonpreferred MOFs, determined by the degree of matching between the cell lattices of the two MOFs. Second, we introduce the MOF farming concept for the productive cultivation and effective harvesting of naturally nonpreferred MOFs made by MOF-on-MOF growth. Here we discuss the importance of selecting the ideal MOF template for productive growth and developing an efficient method for harvesting cultivated MOFs. Next, we describe atypical anisotropic MOF-on-MOF growths between two MOFs with mismatched cell lattices. In this section, we introduce tip-to-middle MOF-on-MOF growth involving self-structural adjustment of the secondary MOF, logical inference of unidentified MOF structures based on MOF-on-MOF growth behavior and morphological features, and MOF-on-MOF growth accompanied by etching and transformation of the template. Finally, we discuss the perspectives and challenges of MOF-on-MOF growth and the synthesis of naturally nonpreferred MOFs. We hope that this Account offers valuable insights into the rational design and development of MOFs with desired structural and compositional characteristics, leading to the creation of ideal MOFs.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Theyagarajan K, Kim YJ. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. BIOSENSORS 2024; 14:492. [PMID: 39451704 PMCID: PMC11506055 DOI: 10.3390/bios14100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
5
|
Preechakasedkit P, Pulsrikarn C, Nuanualsuwan S, Rattanadilok Na Phuket N, Citterio D, Ruecha N. Label-Free Detection of Waterborne Pathogens Using an All-Solid-State Laser-Induced Graphene Potentiometric Ion Flux Immunosensor. Anal Chem 2024; 96. [PMID: 39263981 PMCID: PMC11428094 DOI: 10.1021/acs.analchem.4c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Waterborne pathogens are harmful microorganisms transmitted through water sources. Early and rapid pathogen detection is important for preventing illnesses and implementing stringent water safety measures to minimize the risk of contamination. This work introduces a miniaturized all-solid-state potentiometric ion flux immunosensor for the rapid and label-free detection of waterborne pathogens. A screen-printed silver/silver chloride electrode coated with a reference electrode membrane and polyurethane as an all-solid-state reference electrode was combined with a solid-state contact ion-selective electrode (ISE). An all-solid-state ISE was constructed on laser-induced graphene by coating it with a cationic marker and a carboxylated poly(vinyl chloride)-based membrane for immobilizing antibodies and controlling ion fluxes through the membrane. Proof-of-concept was achieved by detecting Escherichia coli and Salmonella enterica serovar Typhimurium using the assembled immunosensors within 10 min. The potentiometric response shift attributed to the blocking effect in the ion flux caused by pathogen-antibody interaction corresponded to pathogen concentration, indicating detection limits of 0.1 CFU/mL and working ranges of 0.1-105 CFU/mL. Furthermore, the developed sensors revealed high selectivity and were directly applied in groundwater and tap water without any sample preparation, demonstrating high recovery percentages. The simple operation and elimination of sample preparation are key benefits to further usability of the developed immunosensors for efficient pathogen detection.
Collapse
Affiliation(s)
- Pattarachaya Preechakasedkit
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
| | - Chaiwat Pulsrikarn
- National
Institute of Health, Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Suphachai Nuanualsuwan
- Department
of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Daniel Citterio
- Department
of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Nipapan Ruecha
- Metallurgy
and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd, Pathumwan, Bangkok 10330, Thailand
- Center
of Excellence for Food and Water Risk Analysis (FAWRA), Department
of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Qiu X, Yang H, Shen M, Xu H, Wang Y, Liu S, Liu Q, Sun M, Ding Z, Zhang L, Wang J, Liang T, Luo D, Gao M, Chen M, Bao J. Multiarmed DNA jumper and metal-organic frameworks-functionalized paper-based bioplatform for small extracellular vesicle-derived miRNAs assay. J Nanobiotechnology 2024; 22:274. [PMID: 38773614 PMCID: PMC11110235 DOI: 10.1186/s12951-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.
Collapse
Affiliation(s)
- Xiaopei Qiu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Huisi Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Man Shen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Hanqing Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Yingran Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Shuai Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Qian Liu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Minghui Sun
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Zishan Ding
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Ligai Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China
| | - Taotao Liang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Department of Clinical Laboratory Medicine, Southwest Hospital, the Third Military Medical University, Chongqing, 400038, P.R. China
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853-5701, USA
| | - Mingxuan Gao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University, Chongqing, 400038, China.
| | - Jing Bao
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P. R. China.
| |
Collapse
|
7
|
Marlar T, Harb JN. MOF-Enabled Electrochemical Sensor for Rapid and Robust Sensing of V-Series Nerve Agents at Low Concentrations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9569-9580. [PMID: 38329224 DOI: 10.1021/acsami.3c19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Among nerve agents, V-series nerve agents are some of the most toxic, making low-concentration detection critical for the protection of individuals, populations, and strategic resources. Electrochemical sensors are ideally suited for the real-time and in-field sensing of these agents. While V-series nerve agents are inherently nonelectroactive, they can be hydrolyzed to electroactive products compatible with electrochemical sensing. Zr(IV) MOFs are next-generation nanoporous materials that have been shown to rapidly catalyze the hydrolysis of nerve agents. This work makes use of these nanomaterials to develop, for the first time, an MOF-enabled electrochemical sensor for V-series nerve agents. Our work demonstrates that the VX thiol hydrolysis product can be electrochemically detected at low concentrations using commercially available gold electrodes. We demonstrate that low-concentration thiol oxidation is an irreversible reaction that is dependent on both mass transport and adsorption. Demeton-S-methylsulfon, a VX simulant, is used to demonstrate the full range of sensor operation that includes hydrolysis and electrochemical detection. We demonstrate that MOF-808 rapidly, selectively, and completely hydrolyzes demeton-S-methylsulfon to less-hazardous dimethyl phosphate and 2-ethylsulfonylethanethiol. Low-concentration measurements of 2-ethylsulfonylethanethiol are performed by using electrochemical techniques. This sensor has a limit of detection of 30 nM or 7.87 μg/L for 2-ethylsulfonylethanethiol, which is near the nerve agent exposure limit for water samples established by the United States military. Our work demonstrates the feasibility of rapid, robust electrochemical sensing of V-series nerve agents at low concentrations for in-field applications.
Collapse
Affiliation(s)
- Tyler Marlar
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
8
|
Xu Z, Jin X, Li Y, Zhang M, Yin W, Yang Y, Jia W, Xie D. Conductive imprinted polymeric interfacially modified electrochemical sensors based on covalently bonded layer-by-layer assembly of Gr/Au with flower-like morphology for sensitive detection of 2,4,6-TCP. RSC Adv 2024; 14:3834-3840. [PMID: 38274160 PMCID: PMC10809438 DOI: 10.1039/d3ra06668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Polymeric membrane sensors based on molecular imprinted polymers (MIPs) have been attractive analytical tools for detecting organic species. However, the MIPs in electrochemical sensors developed so far are usually prepared by in situ polymerization of pre-polymers and non-covalent adsorption on the surface of the working electrode. Meanwhile, the MIPs in the electrochemical sensors developed are typically made of a non-conductive polymer film. This results in a relatively low current due to the lack of electron transfer. Additionally, the smoothness of the traditional electrochemical substrate results in a low specific surface area, which reduces the sensitivity of the electrochemical sensor. Here, we describe a novel electrochemical sensor with a conductive interface and MIPs modification. The electrochemical sensor was modified by covalent coupled layer by layer self-assembly with the imprinted polymer film. The incorporation of these two conductive functional materials improves the conductivity of the electrodes and provides interface support materials to obtain high specific surface area. By using 2,4,6-trichlorophenol as the model, the sensitivity of the developed conductive sensor was greatly improved compared to that of the traditional MIPs sensor. We believe that the proposed MIPs-based sensing strategy provides a general and convenient method for making sensitive and selective electrochemical sensors.
Collapse
Affiliation(s)
- Ziang Xu
- College of Chemistry and Environmental Science, Hebei University Baoding 071002 China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Xiangying Jin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yuqing Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Manwen Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenhua Yin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Yanyan Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Wenchao Jia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment Guangzhou 510655 China
| |
Collapse
|
9
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
10
|
Xu W, Cai X, Wu Y, Wen Y, Su R, Zhang Y, Huang Y, Zheng Q, Hu L, Cui X, Zheng L, Zhang S, Gu W, Song W, Guo S, Zhu C. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat Commun 2023; 14:6064. [PMID: 37770453 PMCID: PMC10539540 DOI: 10.1038/s41467-023-41765-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yu Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuteng Huang
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Qihui Zheng
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
| |
Collapse
|
11
|
Xu W, Zhong H, Wu Y, Qin Y, Jiao L, Sha M, Su R, Tang Y, Zheng L, Hu L, Zhang S, Beckman SP, Gu W, Yang Y, Guo S, Zhu C. Photoexcited Ru single-atomic sites for efficient biomimetic redox catalysis. Proc Natl Acad Sci U S A 2023; 120:e2220315120. [PMID: 37186847 PMCID: PMC10214184 DOI: 10.1073/pnas.2220315120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The unsatisfactory catalytic activity of nanozymes owing to their inefficient electron transfer (ET) is the major challenge in biomimetic catalysis-related biomedical applications. Inspired by the photoelectron transfers in natural photoenzymes, we herein report a photonanozyme of single-atom Ru anchored on metal-organic frameworks (UiO-67-Ru) for achieving photoenhanced peroxidase (POD)-like activity. We demonstrate that the atomically dispersed Ru sites can realize high photoelectric conversion efficiency, superior POD-like activity (7.0-fold photoactivity enhancement relative to that of UiO-67), and good catalytic specificity. Both in situ experiments and theoretical calculations reveal that photoelectrons follow the cofactor-mediated ET process of enzymes to promote the production of active intermediates and the release of products, demonstrating more favorable thermodynamics and kinetics in H2O2 reduction. Taking advantage of the unique interaction of the Zr-O-P bond, we establish a UiO-67-Ru-based immunoassay platform for the photoenhanced detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Hong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA99164
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Ying Qin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Meng Sha
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Yinjun Tang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan430205, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing100871, P.R. China
| | - Scott P. Beckman
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA99164
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an710072, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing100871, P.R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan430079, P.R. China
| |
Collapse
|
12
|
Kummari S, Panicker LR, Rao Bommi J, Karingula S, Sunil Kumar V, Mahato K, Goud KY. Trends in Paper-Based Sensing Devices for Clinical and Environmental Monitoring. BIOSENSORS 2023; 13:bios13040420. [PMID: 37185495 PMCID: PMC10135896 DOI: 10.3390/bios13040420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Environmental toxic pollutants and pathogens that enter the ecosystem are major global issues. Detection of these toxic chemicals/pollutants and the diagnosis of a disease is a first step in efficiently controlling their contamination and spread, respectively. Various analytical techniques are available to detect and determine toxic chemicals/pathogens, including liquid chromatography, HPLC, mass spectroscopy, and enzyme-linked immunosorbent assays. However, these sensing strategies have some drawbacks such as tedious sample pretreatment and preparation, the requirement for skilled technicians, and dependence on large laboratory-based instruments. Alternatively, biosensors, especially paper-based sensors, could be used extensively and are a cost-effective alternative to conventional laboratory testing. They can improve accessibility to testing to identify chemicals and pollutants, especially in developing countries. Due to its low cost, abundance, easy disposal (by incineration, for example) and biocompatible nature, paper is considered a versatile material for the development of environmentally friendly electrochemical/optical (bio) sensor devices. This review presents an overview of sensing platforms constructed from paper, pointing out the main merits and demerits of paper-based sensing systems, their fabrication techniques, and the different optical/electrochemical detection techniques that they exploit.
Collapse
Affiliation(s)
- Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | | | - Sampath Karingula
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India
| | - Venisheety Sunil Kumar
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Warangal 506015, Telangana, India
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| |
Collapse
|
13
|
Liu K, Zhang J, Shi Q, Ding L, Liu T, Fang Y. Precise Manipulation of Excited-State Intramolecular Proton Transfer via Incorporating Charge Transfer toward High-Performance Film-Based Fluorescence Sensing. J Am Chem Soc 2023; 145:7408-7415. [PMID: 36930832 DOI: 10.1021/jacs.2c13843] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has been widely employed for the design of a variety of functionality-led molecular systems. However, precise manipulation of the excited-state reaction is challenging. Herein, we report a new tactic for tuning ESIPT via incorporating an excited-state intramolecular charge transfer (ESICT) process. Specifically, three o-carborane derivatives, NaCBO, PaCBO, and PyCBO, were designed, where the 2-(2'-hydroxyphenyl)-benzothiazole is a typical ESIPT unit functioning as an electron acceptor, and the electron-donating units are naphthyl-(Na), phenanthrenyl-(Pa), and pyrenyl-(Py), respectively. The architectures of the molecules are featured with a face-to-face alignment of the two units. Spectroscopy and theoretical calculation studies revealed that the electron-donating capacity of the donors and solvent polarity continuously modulate the ESIPT/ESICT energetics and dynamics, resulting in distinct emissions. Moreover, the molecules depicted not only highly porous structures but also very different fluorescent colors in the solid state, enabling highly selective film-based fluorescence sensing of mustard gas simulant, 2-chloroethyl ethyl sulfide, with a detection limit of 50 ppb and a response time of 5 s. This work thus provides a reliable strategy for the creation of high-performance sensing fluorophores via ESIPT manipulation.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, Xi'an 710062, China
| |
Collapse
|
14
|
A polydiacetylene-based smart cellulose aerogel functionalized by ZnO/MoS2 heterojunction for simultaneous visual detection and photocatalytic degradation of gaseous VOCs. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Li M, Wang P, Luo S, Wu Y, Tian X, Pan J. Construction of Anti-Biofouling Imprinted Sorbents Based on Anisotropic Polydopamine Nanotubes for Fast and Selective Capture of 2′-Deoxyadenosine. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
16
|
Jeong SY, Moon YK, Wang J, Lee JH. Exclusive detection of volatile aromatic hydrocarbons using bilayer oxide chemiresistors with catalytic overlayers. Nat Commun 2023; 14:233. [PMID: 36697397 PMCID: PMC9877030 DOI: 10.1038/s41467-023-35916-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
The accurate detection and identification of volatile aromatic hydrocarbons, which are highly toxic pollutants, are essential for assessing indoor and outdoor air qualities and protecting humans from their sources. However, real-time and on-site monitoring of aromatic hydrocarbons has been limited by insufficient sensor selectivity. Addressing the issue, bilayer oxide chemiresistors are developed using Rh-SnO2 gas-sensing films and catalytic CeO2 overlayers for rapidly and cost-effectively detecting traces of aromatic hydrocarbons in a highly discriminative and quantitative manner, even in gas mixtures. The sensing mechanism underlying the exceptional performance of bilayer sensor is systematically elucidated in relation to oxidative filtering of interferants by the CeO2 overlayer. Moreover, CeO2-induced selective detection is validated using SnO2, Pt-SnO2, Au-SnO2, In2O3, Rh-In2O3, Au-In2O3, WO3, and ZnO sensors. Furthermore, sensor arrays are employed to enable pattern recognition capable of discriminating between aromatic gases and non-aromatic interferants and quantifying volatile aromatic hydrocarbon classifications.
Collapse
Affiliation(s)
- Seong-Yong Jeong
- grid.222754.40000 0001 0840 2678Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea ,grid.266100.30000 0001 2107 4242Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Young Kook Moon
- grid.222754.40000 0001 0840 2678Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Joseph Wang
- grid.266100.30000 0001 2107 4242Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Jong-Heun Lee
- grid.222754.40000 0001 0840 2678Department of Materials Science and Engineering, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
17
|
Luo HB, Lin FR, Liu ZY, Kong YR, Idrees KB, Liu Y, Zou Y, Farha OK, Ren XM. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2933-2939. [PMID: 36602325 PMCID: PMC9869327 DOI: 10.1021/acsami.2c18691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have been demonstrated as potent catalysts for the hydrolytic detoxification of organophosphorus nerve agents and their simulants. However, the practical implementation of these Zr-MOFs is limited by the poor processability of their powdered form and the necessity of water media buffered by a volatile liquid base in the catalytic reaction. Herein, we demonstrate the efficient solid-state hydrolysis of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) catalyzed by Zr-MOF-based mixed matrix membranes. The mixed matrix membranes were fabricated by incorporating MOF-808 into the blending matrix of poly(vinylidene fluoride) (PVDF), poly(vinylpyrrolidone) (PVP), and imidazole (Im), in which MOF-808 provides highly active catalytic sites, the hydrophilic PVP helps to retain water for promoting the hydrolytic reaction, and Im serves as a base for catalytic site regeneration. Impressively, the mixed matrix membranes displayed excellent catalytic performance for the solid-state hydrolysis of DMNP under high humidity, representing a significant step toward the practical application of Zr-MOFs in chemical protective layers against nerve agents.
Collapse
Affiliation(s)
- Hong-Bin Luo
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Fang-Ru Lin
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhi-Yuan Liu
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Karam B. Idrees
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yangyang Liu
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yang Zou
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Xiao-Ming Ren
- State
Key Laboratory of Materials-Oriented Chemical Engineering and College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State
Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Xiong Y, Su L, Peng Y, Zhao S, Ye F. Dextran-coated Gd-based ultrasmall nanoparticles as phosphatase-like nanozyme to increase ethanol yield via reduction of yeast intracellular ATP level. J Colloid Interface Sci 2022; 627:405-414. [PMID: 35863199 DOI: 10.1016/j.jcis.2022.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Nanozymes-functional materials that possess intrinsic enzyme-like characteristics-have gained tremendous attention in recent years owing to their unique advantages; however, further research is required to understand their scope in biological applications. In this study, dextran-coated nanogadolinia (DCNG) was synthesised, and its phosphatase mimetic activity was demonstrated. Specifically, the dephosphorylation of adenosine triphosphate (ATP), an important biomolecule, by DCNG was investigated. The results showed that DCNG could selectively catalyse the hydrolysis of the terminal high-energy phosphate bonds of ATP under physiological conditions. Furthermore, the biocompatible DCNG, with remarkable phosphatase mimicking activity, decreased the intracellular ATP content by dephosphorylation and increased ethanol yield during glucose fermentation by S. cerevisiae. These results indicate potential alternatives for improving ethanol yields and exploring novel biological applications of nanozymes.
Collapse
Affiliation(s)
- Yuhao Xiong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China; College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou 542899, PR China
| | - Yan Peng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
19
|
Wang QY, Sun ZB, Zhang M, Zhao SN, Luo P, Gong CH, Liu WX, Zang SQ. Cooperative Catalysis between Dual Copper Centers in a Metal–Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J Am Chem Soc 2022; 144:21046-21055. [DOI: 10.1021/jacs.2c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qian-You Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Bing Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Chun-Hua Gong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Xiao Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
20
|
Zhou Y, Ban Y, Yang W. Reversibly Phase-Transformative Zeolitic Imidazolate Framework-108 and the Membrane Separation Utility. Inorg Chem 2022; 61:17342-17352. [PMID: 36266773 DOI: 10.1021/acs.inorgchem.2c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Reversible phase transformations (RPTs) of metal-organic frameworks not only create material diversity but also promise a self-restoration of crystals in a controllable manner. However, there are only limited examples because seeking for a convenient and effective trigger for RPTs, especially for RPTs with respect to spatiotemporal harmony in cleavage and reconstruction of metal-linker chemical bonds, is challenging. In this work, we found that zeolitic imidazolate framework (ZIF)-108 with Zn-N coordination bonds showing moderate strength was an ideal platform. We reported three crystal phases of ZIF-108, namely, sodalite (SOD), diamondoid (DIA), and large pore_sodalite (lp_SOD) topologies, and identified RPTs between phases: (1) when exposed to water or water vapor, the SOD structure could transform to a compact DIA version as a result of the decomposition of four-membered rings and synchronous reorganization of six-membered rings. Then, the DIA structure could also return back to SOD when soaked in dimethylformamide (DMF) or DMF vapor. (2) High-temperature treatment of SOD gives rise to lp_SOD, which then reverts to SOD by DMF. (3) lp_SOD could also be compressed into the DIA phase by water or water vapor and can then be restored via a two-step treatment, namely, soaking in DMF (DIA → SOD) right before a high-temperature therapy (SOD → lp_SOD). From the perspective of the separation utility, we found that the lp_SOD version of ZIF-108, relative to SOD-structured ZIF-108, can produce mixed matrix membranes having an interesting interfacial structure with the polymer chains, though both share the same chemical composition. We verified that the large pore of lp_SOD can allow being penetrated by polymer chains, which contributed to not only reinforcing the bi-phase interface but also sharpening the molecule sieve properties of fillers toward CO2 and CH4.
Collapse
Affiliation(s)
- Yingwu Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian116023, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100039, China
| |
Collapse
|
21
|
Wang X, Wang X, Feng R, Fu T, Zhang J, Sun X. Recent advances of chemosensors for nerve agents. Chem Asian J 2022; 17:e202200284. [DOI: 10.1002/asia.202200284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Xuechuan Wang
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology College of Chemistry and Chemical Engineering CHINA
| | - Rong Feng
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Tao Fu
- Xi'an Jiaotong University School of Life Science and Technology CHINA
| | - Jie Zhang
- Fourth Military Medical University: Air Force Medical University Institute of Preventive medicine CHINA
| | - Xiaolong Sun
- Xi'an Jiaotong University School of life science and technology 28, Xianning West Road, Xi'an, Shaanxi 710049 XiAn CHINA
| |
Collapse
|
22
|
Kotagiri YG, Sandhu SS, Morales JF, Fernando PUAI, Tostado N, Harvey SP, Moores LC, Wang J. Sensor array chip for real‐time field detection and discrimination of organophosphorus neurotoxins. ChemElectroChem 2022. [DOI: 10.1002/celc.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yugender G. Kotagiri
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Samar S. Sandhu
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Jose F. Morales
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - P. U. Ashvin I. Fernando
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 1100 Crescent Green, #250 27518 Cary UNITED STATES
| | - Nicholas Tostado
- University of California San Diego Jacobs School of Engineering Nanoengineering 9500 Gilman Drive 92093-0448 La Jolla UNITED STATES
| | - Steven P. Harvey
- US Army Combat Capabilities Development Command Chemical Biological Center Department of Defense U.S. Army Combat Capabilities and Development Command-Chemical Biological Center 21010 Aberdeen Proving Ground UNITED STATES
| | - Lee C. Moores
- US Army Engineer Research and Development Center Environmental Laboratory Department of Defense 3909 Halls Ferry Road 39180 Vicksburg UNITED STATES
| | - Joseph Wang
- UCSD Department of Nanoengineering 9500 Gilman Drive 92093-0403 La Jolla UNITED STATES
| |
Collapse
|