1
|
Wang J, Gao Z, Jia Y, Tong X, Zhou Y, Hu F, Zhao YS. MAPbBr 3 Quantum Dots Encapsulated Within Lanthanide-MOFs for Time-Resolved Multicolor Dynamic Anticounterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501271. [PMID: 40059577 DOI: 10.1002/adma.202501271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/24/2025] [Indexed: 04/24/2025]
Abstract
Multicolor dynamic optical materials exhibit significant potential in the realms of anticounterfeiting and information encryption, benefitting from their capacity for generating unpredictable optical information that changes over time. Herein, a novel approach is presented utilizing quantum-confinement effect of MAPbBr3 quantum dots (QDs) embedded within lanthanide-metal organic frameworks (Ln-MOFs) for time-resolved multicolor dynamic anticounterfeiting applications. The dimensions of MAPbBr3 QDs undergo temporal variations during in situ growth, resulting in dynamic alterations in luminescent color due to the quantum-confinement effect. Furthermore, the emission colors of MAPbBr3@Eu-MOFs can be modulated by varying UV excitation wavelengths, thereby conferring a spatially distinguishable anticounterfeiting dimension. The time-resolved unpredictability of these dynamic color changes coupled with sustained luminescent intensity and multi-dimensional anticounterfeiting, render them suitable system for advanced graphical coding. These findings pave the way for the advancement of intelligent multicolor dynamic optical anticounterfeiting.
Collapse
Affiliation(s)
- Jiachen Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yajun Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaomeng Tong
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yifan Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Fengqin Hu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Bag SK, Ghosh S, Roy S, Jana S, Thakur A. Group 8 Organometallic Photochromic Compounds: Strategies and Applications. Chem Asian J 2025; 20:e202401384. [PMID: 39665448 DOI: 10.1002/asia.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Stimuli-responsive photochromic units have emerged as one of the key components in the development of multi-responsive switches, optoelectronics, biomedical sciences and many more. The photoswitchability of such compounds depends greatly on the molecular structure, where association of metallic species is found to produce fascinating results. This review is a comprehensive report of all such photoswitchable metal-bounded molecules with group 8 metals within a span of last six years (2018-2024). Apart from the regular photoswitching phenomenon, this review focusses on the enhanced tunability, structural flexibility and perturbation in the photophysical properties of the group 8 metal-based photoswitches. Previous reviews in this field have either focused on some specific applications or have been general with the type of metal incorporations. Herein, we have constructed the review with group 8 organometallic photochromic compounds that possess a wide range of real-life applications. Designing strategies, structure-property relationships and application-oriented approach of the photochromic organometallic compounds have been elucidated categorically for building up a comprehensive idea about this modern developing field of research.
Collapse
Affiliation(s)
- Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Swapnamoy Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Subha Roy
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Subhendu Jana
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India Phone
| |
Collapse
|
3
|
Meng Y, Gao J, Huang X, Liu P, Zhang C, Zhou P, Bai Y, Guo J, Zhou C, Li K, Huang F, Cao Y. Molecular Trojan Based on Membrane-Mimicking Conjugated Electrolyte for Stimuli-Responsive Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415705. [PMID: 39950504 DOI: 10.1002/adma.202415705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Indexed: 03/27/2025]
Abstract
Enhancing payload encapsulation stability while enabling controlled drug release are both critical objectives in drug delivery systems but are challenging to reconcile. This study introduces a zwitterionic conjugated electrolyte (CE) molecule named Zwit, which acts as a molecular Trojan by mimicking the lipid bilayers. When integrated into liposome membranes, Zwit rigidifies the bilayer structure likely due to its hydrophobic interactions providing structural support, thus inhibiting drug leakage. Upon 808 nm laser excitation, Zwit rapidly accelerates DOX release from liposome core, likely due to light-triggered conformational changes or photothermal effects that compromise membrane permeability. These findings demonstrate Zwit's ability to overcome the challenge of simultaneously preventing premature payload leakage and enabling stimuli-responsive drug release with a single component. Additionally, Zwit exhibits excellent biocompatibility with membranes, outperforming its quaternary ammonium counterpart and commonly used dye indocyanine green (ICG). By harnessing its NIR-II emission, Zwit enables durable in vivo biodistribution tracking of nanocarriers, whereas ICG suffers from significant dye leakage. In subcutaneous tumor models, the synergistic effects of chemotherapy and thermotherapy facilitated by this light-triggered system induced a potent antitumor immune response, further enhancing anticancer efficacy. This work underscores the potential of membrane-mimicking CEs as multifunctional tools in advanced drug delivery systems.
Collapse
Affiliation(s)
- Yingying Meng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ji Gao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xiaoran Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Pengke Liu
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chibin Zhang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Peirong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jingjing Guo
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, P. R. China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Yao K, Wang Z, Wang P, Li Y, Hu L, Cheng Y, Geng Z. Excitation-Dependent Circularly Polarized Luminescence Inversion Driven by Dichroic Competition of Achiral Dyes in Cholesteric Liquid Crystals. Angew Chem Int Ed Engl 2025; 64:e202420290. [PMID: 39611398 DOI: 10.1002/anie.202420290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
The development of stimuli-responsive chiral cholesteric liquid crystals (CLCs) materials holds significant potential for achieving three-dimensional (3D) anti-counterfeiting and multi-level information encryption. However, constructing phototunable CLCs systems with easy fabrication and fast response remains a great challenge. Herein, we exploit an excitation-dependent CLCs (ExD-CLCs) material by establishing dynamically photoresponsive dichroic competition between two achiral dyes: a negative dichroic dye (SP-COOH) and a positive dichroic dye (Nile Red, NR) within a CLCs medium. The ExD-CLCs exhibits a negative circularly polarized luminescence (CPL) signal (glum=-0.16) at 625 nm when excited at 365 nm. Remarkably, under excitation at 430 nm, the CPL signal is inverted, and the glum value increases to +0.26. Notably, the helical superstructure and handedness of the ExD-CLCs remain unchanged during this reversal process. The CPL signal reversal is driven by the dichroic competition between the SP-COOH dimer, which displays strong negative dichroism in its open-ring isomer form and silent negative dichroism in its closed-ring isomer form, and the NR dye, which exhibits static positive dichroism. Leveraging these excitation-dependent CPL properties, the quadruplex numerical anti-counterfeiting using ExD-CLCs is achieved.
Collapse
Affiliation(s)
- Kun Yao
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450007, Henan Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhentan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Yang Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Liangyu Hu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
| | - Yixiang Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| | - Zhongxing Geng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, 230601, Anhui Province, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
5
|
Thaggard GC, Wilson GR, Naik M, Quetel MA, Lim J, Maldeni Kankanamalage BKP, Smith MD, Shustova NB. A Change of Pace: Record Photoresponse through Spirooxazine Confinement in a Metal-Organic Matrix. J Am Chem Soc 2024; 146:31746-31756. [PMID: 39501763 DOI: 10.1021/jacs.4c10636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Modern and upcoming high-speed optoelectronics as well as secure data storage or solar energy harvesting technologies integrating stimuli-responsive materials fully rely on the fundamental concept of rapid transitions between discrete states possessing different properties. Relatively slow transition kinetics between those states for commonly used classes of photochromic compounds in solution or bulk solids severely restrict the applicability of stimuli-responsive materials for device development. Herein, we report a multivariate strategy based on a photochromic spirooxazine derivative, coordinatively integrated in the solvent-free confined space of a solid-state matrix, such as a metal-organic framework (MOF), for the first time, resulting in the fastest photoresponse reported for any solid-state material to date. The photoisomerization rate for the developed photochromic material was estimated to be 126 s-1, surpassing any literature reports to the best of our knowledge. We also shed light on the fundamentals of the correlation between framework topology, the nature of organic linkers, and the presence/absence of organic solvent within the scaffold voids on the material photoresponse using a series of isoreticular frameworks. Overall, the presented conceptual approach allows for tailoring the isomerization kinetics of photochromic molecules in the solid state over a range of 4 orders of magnitude-an unprecedented span that provides a pathway for addressing challenges associated with the response rate and photoisomerization, which are key criteria in stimuli-responsive material development.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
Thaggard GC, Kankanamalage BKPM, Park KC, Lim J, Quetel MA, Naik M, Shustova NB. Switching from Molecules to Functional Materials: Breakthroughs in Photochromism With MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410067. [PMID: 39374006 DOI: 10.1002/adma.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Photochromic materials with properties that can be dynamically tailored as a function of external stimuli are a rapidly expanding field driven by applications in areas ranging from molecular computing, nanotechnology, or photopharmacology to programable heterogeneous catalysis. Challenges arise, however, when translating the rapid, solution-like response of stimuli-responsive moieties to solid-state materials due to the intermolecular interactions imposed through close molecular packing in bulk solids. As a result, the integration of photochromic compounds into synthetically programable porous matrices, such as metal-organic frameworks (MOFs), has come to the forefront as an emerging strategy for photochromic material development. This review highlights how the core principles of reticular chemistry (on the example of MOFs) play a critical role in the photochromic material performance, surpassing the limitations previously observed in solution or solid state. The symbiotic relationship between photoresponsive compounds and porous frameworks with a focus on how reticular synthesis creates avenues toward tailorable photoisomerization kinetics, directional energy and charge transfer, switchable gas sorption, and synergistic chromophore communication is discussed. This review not only focuses on the recent cutting-edge advancements in photochromic material development, but also highlights novel, vital-to-pursue pathways for multifaceted functional materials in the realms of energy, technology, and biomedicine.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
7
|
Bai Z, Guo L, Zhao D, Wang Y. Photochromic Spiropyran-Based Dual-Emitting Luminescent Hybrid Films for Dynamic Information Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44018-44025. [PMID: 39120879 DOI: 10.1021/acsami.4c08938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Photoluminescent materials are widely used for information storage and anticounterfeiting, while most of them have the disadvantages of static information performance and weak processability, which is still a challenging task in developing dynamic anticounterfeiting materials with high security levels. Herein, we fabricated a novel photostimuli-responsive dual-emitting luminescent material UPTES-SPn-Tb-hfa, which was obtained by introducing the photochromic molecule spiropyran (SP) and lanthanide complex (Tb-hfa) into a siloxane-polyether matrix using the sol-gel process. Due to the conformation-dependent photochromic fluorescence resonance energy transfer between the Tb-hfa donor and SP acceptor, the ring-closing (SP)/ring-opening (MC) isomerization of the SP unit leads to a reversible luminescence switching in UPTES-SPn-Tb-hfa. This composite material has great potential for advanced anticounterfeiting because of the advantage of rapidly repeatable encryption/decryption for at least 8 times and dynamic luminescent colors within 15 s. In addition, due to its two luminescent centers (Tb3+ and MC), the luminescent color of this material can be regulated by 254 and 365 nm UV-light irradiation, which facilitates the design of multicolored anticounterfeiting labels. Our work presents a novel design methodology to fabricate dynamic anticounterfeiting materials, significantly enhancing the security of anticounterfeiting applications.
Collapse
Affiliation(s)
- Ziyi Bai
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Lei Guo
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Di Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yige Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
8
|
Liman G, Mutluturk E, Demirel G. Light- and Solvent-Responsive Bilayer Hydrogel Actuators with Reversible Bending Behaviors. ACS MATERIALS AU 2024; 4:385-392. [PMID: 39006397 PMCID: PMC11240406 DOI: 10.1021/acsmaterialsau.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 07/16/2024]
Abstract
Light-responsive hydrogel systems have gained significant attention due to their unique ability to undergo controlled and reversible swelling behavior in response to light stimuli. Combining light-responsive hydrogels with nonresponsive polymers offers a unique self-folding feature that can be used in soft robotic actuator designs. However, simple formulation of such systems with rapid response time is still a challenging task. Herein, we demonstrate a simple but versatile bilayer polymeric design combining light-responsive spiropyran-polyacrylamide (SP-PAAm) with polyacrylamide (PAAm) hydrogels. The photochromic spiropyran in our polymer design is a closed-ring, hydrophobic compound and turns into an open-ring, hydrophilic merocyanine isomer under light irradiation. The swelling degree of SP-PAAm and PAAm hydrogels was evaluated using LED lights with different wavelengths and solvent media (e.g., water, ethanol, DMF, and DMSO). We observed that SP-PAAm hydrogels reached a swelling ratio of ∼370% with the illumination of the blue LED in the DMF medium. By combining light-responsive SP-PAAm hydrogels with nonresponsive PAAm, a proof-of-concept demonstration was performed to demonstrate the applicability of our fabricated platforms. Although fabricated one-armed bilayer hydrogels possessed self-folding ability with a folding angle of ∼40° in 30 min, the four-armed bilayer platforms demonstrated more efficient and rapid folding behavior and reached a folding angle of ∼75° in ∼15 min. Given their simplicity and efficiency, we believe that such polymeric designs may offer new avenues for the fields of polymeric actuators and soft robotic systems.
Collapse
Affiliation(s)
- Gorkem Liman
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Türkiye
| | - Esma Mutluturk
- Department of Chemistry, Polatlı Faculty of Arts and Sciences, Ankara Hacı Bayram Veli University, 06900 Ankara, Türkiye
| | - Gokhan Demirel
- Bio-inspired Materials Research Laboratory (BIMREL), Department of Chemistry, Gazi University, 06500 Ankara, Türkiye
| |
Collapse
|
9
|
Zou J, Liao J, He Y, Zhang T, Xiao Y, Wang H, Shen M, Yu T, Huang W. Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0392. [PMID: 38894714 PMCID: PMC11184227 DOI: 10.34133/research.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Photochromic polymer is defined as a series of materials based on photochromic units in polymer chains, which produces reversible color changes under irradiation with a particular wavelength. Currently, as the research progresses, it shows increasing potential applications in various fields, such as anti-counterfeiting, information storage, super-resolution imaging, and logic gates. However, there is a paucity of published reviews on the topic of photochromic polymers. Herein, this review discusses and summarizes the research progress and prospects of such materials, mainly summarizing the basic mechanisms, classification, and applications of azobenzene, spiropyran, and diarylethene photochromic polymers. Moreover, 3-dimensional (3D) printable photochromic polymers are worthy to be summarized specifically because of its innovative approach for practical application; meanwhile, the developing 3D printing technology has shown increasing potential opportunities for better applications. Finally, the current challenges and future directions of photochromic polymer materials are summarized.
Collapse
Affiliation(s)
- Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Jimeng Liao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province,
Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
10
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Parashar RK, Jash P, Zharnikov M, Mondal PC. Metal-organic Frameworks in Semiconductor Devices. Angew Chem Int Ed Engl 2024; 63:e202317413. [PMID: 38252076 DOI: 10.1002/anie.202317413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/23/2024]
Abstract
Metal-organic frameworks (MOFs) are a specific class of hybrid, crystalline, nano-porous materials made of metal-ion-based 'nodes' and organic linkers. Most of the studies on MOFs largely focused on porosity, chemical and structural diversity, gas sorption, sensing, drug delivery, catalysis, and separation applications. In contrast, much less reports paid attention to understanding and tuning the electrical properties of MOFs. Poor electrical conductivity of MOFs (~10-7-10-10 S cm-1), reported in earlier studies, impeded their applications in electronics, optoelectronics, and renewable energy storage. To overcome this drawback, the MOF community has adopted several intriguing strategies for electronic applications. The present review focuses on creatively designed bulk MOFs and surface-anchored MOFs (SURMOFs) with different metal nodes (from transition metals to lanthanides), ligand functionalities, and doping entities, allowing tuning and enhancement of electrical conductivity. Diverse platforms for MOFs-based electronic device fabrications, conductivity measurements, and underlying charge transport mechanisms are also addressed. Overall, the review highlights the pros and cons of MOFs-based electronics (MOFtronics), followed by an analysis of the future directions of research, including optimization of the MOF compositions, heterostructures, electrical contacts, device stacking, and further relevant options which can be of interest for MOF researchers and result in improved devices performance.
Collapse
Affiliation(s)
- Ranjeev Kumar Parashar
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Priyajit Jash
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| | - Michael Zharnikov
- Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
12
|
de Vries A, Goloviznina K, Reiter M, Salanne M, Lukatskaya MR. Solvation-Tuned Photoacid as a Stable Light-Driven pH Switch for CO 2 Capture and Release. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1308-1317. [PMID: 38385123 PMCID: PMC10877570 DOI: 10.1021/acs.chemmater.3c02435] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/23/2024]
Abstract
Photoacids are organic molecules that release protons under illumination, providing spatiotemporal control of the pH. Such light-driven pH switches offer the ability to cyclically alter the pH of the medium and are highly attractive for a wide variety of applications, including CO2 capture. Although photoacids such as protonated merocyanine can enable fully reversible pH cycling in water, they have a limited chemical stability against hydrolysis (<24 h). Moreover, these photoacids have low solubility, which limits the pH-switching ability in a buffered solution such as dissolved CO2. In this work, we introduce a simple pathway to dramatically increase stability and solubility of photoacids by tuning their solvation environment in binary solvent mixtures. We show that a preferential solvation of merocyanine by aprotic solvent molecules results in a 60% increase in pH modulation magnitude when compared to the behavior in pure water and can withstand stable cycling for >350 h. Our results suggest that a very high stability of merocyanine photoacids can be achieved in the right solvent mixtures, offering a way to bypass complex structural modifications of photoacid molecules and serving as the key milestone toward their application in a photodriven CO2 capture process.
Collapse
Affiliation(s)
- Anna de Vries
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Kateryna Goloviznina
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Manuel Reiter
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mathieu Salanne
- Sorbonne
Université, CNRS, Physico-Chimie des Électrolytes et
Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Institut
Universitaire de France (IUF), 75231 Paris, France
| | - Maria R. Lukatskaya
- Electrochemical
Energy Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Wu X, Zhang H, Zhang X, Guan Q, Tang X, Wu H, Feng M, Wang H, Ou R. Sustainable lithium extraction enabled by responsive metal-organic frameworks with ion-sieving adsorption effects. Proc Natl Acad Sci U S A 2024; 121:e2309852121. [PMID: 38306476 PMCID: PMC10861930 DOI: 10.1073/pnas.2309852121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024] Open
Abstract
Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.
Collapse
Affiliation(s)
- Xu Wu
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC3000, Australia
| | - Xinyu Zhang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Qian Guan
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Xiaocong Tang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Hao Wu
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| | - Mingbao Feng
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC3800, Australia
| | - Ranwen Ou
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| |
Collapse
|
14
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
15
|
Sheng J, Perego J, Bracco S, Czepa W, Danowski W, Krause S, Sozzani P, Ciesielski A, Comotti A, Feringa BL. Construction of Multi-Stimuli Responsive Highly Porous Switchable Frameworks by In Situ Solid-State Generation of Spiropyran Switches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305783. [PMID: 37643306 DOI: 10.1002/adma.202305783] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Stimuli-responsive molecular systems support within permanently porous materials offer the opportunity to host dynamic functions in multifunctional smart materials. However, the construction of highly porous frameworks featuring external-stimuli responsiveness, for example by light excitation, is still in its infancy. Here a general strategy is presented to construct spiropyran-functionalized highly porous switchable aromatic frameworks by modular and high-precision anchoring of molecular hooks and an innovative in situ solid-state grafting approach. Three spiropyran-grafted frameworks bearing distinct functional groups exhibiting various stimuli-responsiveness are generated by two-step post-solid-state synthesis of a parent indole-based material. The quantitative transformation and preservation of high porosity are demonstrated by spectroscopic and gas adsorption techniques. For the first time, a highly efficient strategy is provided to construct multi-stimuli-responsive, yet structurally robust, spiropyran materials with high pore capacity which is proved essential for the reversible and quantitative isomerization in the bulk as demonstrated by solid-state NMR spectroscopy. The overall strategy allows to construct dynamic materials that undergoes reversible transformation of spiropyran to zwitterionic merocyanine, by chemical and physical stimulation, showing potential for pH active control, responsive gas uptake and release, contaminant removal, and water harvesting.
Collapse
Affiliation(s)
- Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands. Nijenborgh 4, Groningen, AG, 9747, The Netherlands
| | - Jacopo Perego
- Department of Materials Science, University of Milano Bicocca, Milan, Italy. Via R. Cozzi 55, Milan, 20125, Italy
| | - Silvia Bracco
- Department of Materials Science, University of Milano Bicocca, Milan, Italy. Via R. Cozzi 55, Milan, 20125, Italy
| | - Włodzimierz Czepa
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61614, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61614, Poland
| | - Wojciech Danowski
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands. Nijenborgh 4, Groningen, AG, 9747, The Netherlands
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Simon Krause
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands. Nijenborgh 4, Groningen, AG, 9747, The Netherlands
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Piero Sozzani
- Department of Materials Science, University of Milano Bicocca, Milan, Italy. Via R. Cozzi 55, Milan, 20125, Italy
| | - Artur Ciesielski
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61614, Poland
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Angiolina Comotti
- Department of Materials Science, University of Milano Bicocca, Milan, Italy. Via R. Cozzi 55, Milan, 20125, Italy
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands. Nijenborgh 4, Groningen, AG, 9747, The Netherlands
| |
Collapse
|
16
|
Thaggard GC, Park KC, Lim J, Maldeni Kankanamalage BKP, Haimerl J, Wilson GR, McBride MK, Forrester KL, Adelson ER, Arnold VS, Wetthasinghe ST, Rassolov VA, Smith MD, Sosnin D, Aprahamian I, Karmakar M, Bag SK, Thakur A, Zhang M, Tang BZ, Castaño JA, Chaur MN, Lerch MM, Fischer RA, Aizenberg J, Herges R, Lehn JM, Shustova NB. Breaking the photoswitch speed limit. Nat Commun 2023; 14:7556. [PMID: 37985777 PMCID: PMC10660956 DOI: 10.1038/s41467-023-43405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material's optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | | | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Esther R Adelson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Virginia S Arnold
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Shehani T Wetthasinghe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Minjie Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Jorge A Castaño
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
| | - Manuel N Chaur
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
- Centro de Excelencia en Neuvos Materiales (CENM), Universidad del Valle, AA 25360, Cali, Colombia
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, University of Kiel, 24118, Kiel, Germany
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67000, Strasbourg, France
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
17
|
Yang Y, Li A, Yang Y, Wang J, Chen Y, Yang K, Tang BZ, Li Z. Multi-stimulus Room Temperature Phosphorescent Polymers Sensitive to Light and Acid cyclically with Energy Transfer. Angew Chem Int Ed Engl 2023; 62:e202308848. [PMID: 37590031 DOI: 10.1002/anie.202308848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The stimulus-responsive room temperature phosphorescent (RTP) materials have endowed wide potential applications. In this work, by introducing naphthalene and spiropyran (SP) into polyacrylamide as the energy donor and acceptor respectively, a new kind of brilliant dynamic color-tunable amorphous copolymers were prepared with good stability and processibility, and afterglow emissions from green to orange in response to the stimulus of photo or acid, thanks to multi-responsibility of SP and the energy transfer between naphthalene and SP. In addition to the deeply exploring of the inherent mechanism, these copolymers have been successfully applied in dynamically controllable applications in information protection and delivery.
Collapse
Affiliation(s)
- Yuqi Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Aisen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yujie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yi Chen
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Kun Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Ben Zhong Tang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Shenzhen Institute of Molecular Aggregates Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
18
|
Li J, Ma Z, Li A, Huang S, Zhang Y, Xue Y, Song X, Zhang Y, Hong S, Wang M, Wu Z, Zhang X. A spiropyran-decorated nanocoating for dynamically regulating bacteria/cell adhesion and detachment. J Mater Chem B 2023; 11:9525-9531. [PMID: 37747051 DOI: 10.1039/d3tb01719b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Microorganism adhesion and the resulting contamination of the biomaterial is one of the major causes of biomedical device failure. Stimuli-responsive materials based on dynamically regulating interactions with reversible characteristics of on-off states have attracted increasing attention. Here, a facile self-assembled biomaterial nanocoating constructed using acidity- and photoregulated spiropyran-modified nanoparticles was developed for reversibly regulating bacteria or mammalian cell adhesion-and-detachment. The coating was formed by coating a solution of spiropyran-conjugated nanoparticles around the surface of a silica gel followed by curing and drying at 60 °C for 30 min. Importantly, efficient adhesion-and-detachment of bacteria or cells could be controlled even after 8 cycles owing to the excellent acidity- and light-switched ability. Collectively, this well-defined self-assembled nanocoating as a dynamical and reversible agent provides promising insight for the development of biomedical devices, especially for biomaterial medical coatings.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhuang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Anran Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yun Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xianhui Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ye Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Shihao Hong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mo Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Zhongming Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Shi Y, Han J, Li C, Zhao T, Jin X, Duan P. Recyclable soft photonic crystal film with overall improved circularly polarized luminescence. Nat Commun 2023; 14:6123. [PMID: 37777553 PMCID: PMC10542380 DOI: 10.1038/s41467-023-41884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Existing circularly polarized luminescence materials can hardly satisfy the requirements of both large luminescence dissymmetry factor and high luminescent quantum yield, which hinders their practical applications. Here, we present a soft photonic crystal film embedded with chiral nanopores that possesses excellent circularly polarized luminescence performance with a high luminescence dissymmetry factor as well as a large luminescent quantum yield when loaded with various luminescent dyes. Benefitting from the retention of chiral nanopores imprinted from a chiral liquid crystal arrangement, the chiral soft photonic crystal film can not only endow dyes with chiral properties, but also effectively avoid severe aggregation of guest dye molecules. More importantly, the soft photonic crystal film can be recycled many times by loading and eluting guest dye molecules while retaining good stability as well as circularly polarized luminescence performance, enabling various applications, including smart windows, multi-color circularly polarized luminescence and anticounterfeiting.
Collapse
Affiliation(s)
- Yonghong Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Chengxi Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
- University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Tonghan Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, 100190, Beijing, PR China.
- University of Chinese Academy of Sciences, 100049, Beijing, PR China.
| |
Collapse
|
20
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
21
|
Guan X, Zhang B, Zhu Y, Zheng S, Li D, Liu S, Han Q. Fascinating Pathway to Facilitate the Photoisomerization of Spiropyran-Based Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39827-39836. [PMID: 37578118 DOI: 10.1021/acsami.3c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recently, spiropyran-based composites have gained more attention on account of their stimuli-responsive essence, especially of the fascinating and green photo stimulus. However, the great dipole moment change between the ring-opened merocyanine and ring-closed spiropyran requires a large free volume available for isomerization, which significantly restrains the photoisomerization of spiropyran-based nanocomposites. Herein, a fascinating pathway by regulating the states both of spiropyran and the immobilized nanoparticle supports was put forward to facilitate the photoisomerization. The results demonstrated that the spiropyran grafting percentage of 5.18% and immobilized supports with less aggregation, high specific surface area, large pore size, and noncrystalline structure were suitable to fabricate spiropyran-based nanocomposites, which showed a significant improvement for Pb2+ and Cr3+ removal from aqueous solution on account of free photoisomerization of spiropyran on the support's surface. This work will pave the pathway to extend the exploitation of spiropyran-based nanocomposites in various fields such as biotechnology, physiology, and electronics to photonics and environmental-friendly fields.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Saitama, Japan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, PR China
| | - Bingyuan Zhang
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Yanxia Zhu
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Sai Zheng
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Dongping Li
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Shiyong Liu
- Chengdu Decoli Polymer Materials Corporation Limited, Chengdu 610065, PR China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
22
|
Zhong W, Liang K, Liu W, Shang L. Ligand-protected nanocluster-mediated photoswitchable fluorescent nanoprobes towards dual-color cellular imaging. Chem Sci 2023; 14:8823-8830. [PMID: 37621438 PMCID: PMC10445476 DOI: 10.1039/d3sc03593j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Development of robust multi-color photoswitchable fluorescent probes is critical for many optical applications, but it remains a challenge to rationally design these probes. Here, we report a new design of Förster resonance energy transfer-based dual-color photoswitchable fluorescent nanoparticles (DPF NPs) by taking advantage of the distinct properties of ligand-protected gold nanoclusters (AuNCs). Detailed photophysical studies revealed that ultrasmall-sized AuNCs not only act as the FRET donors due to their intrinsic fluorescence properties, but also play a significant role in regulating the photochromic and aggregate properties of spiropyran through ligand-spiropyran interactions. These DPF NPs exhibit a high fluorescence on/off ratio (∼90%) for both green and red fluorescence emission, and good reversibility during cycled photo-stimulation. Cell imaging experiments showed that DPF NPs could specifically accumulate in lipid droplets, and enable photoswitchable dual-color imaging in living cells. Moreover, by labeling mitochondria with a green-emitting marker, we demonstrated that DPF NPs can distinguish different targets based on dynamic and static fluorescence signals at the sub-cellular level in two emission channels reliably. This study provides a new strategy for designing robust photoswitchable fluorescent probes by modulating the properties of photochromic dyes through ligand-protected nanoclusters, which can be generalized for the development of other photoswitch systems towards advanced optical applications.
Collapse
Affiliation(s)
- Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU) Xi'an 710072 China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen 518057 China
- Chongqing Science and Technology Innovation Center of Northwestern Polytechnical University Chongqing 401135 China
| |
Collapse
|
23
|
Zhao Y, Xu W, Zheng H, Jia Q. Light, pH, and Temperature Triple-Responsive Magnetic Composites for Highly Efficient Phosphopeptide Enrichment. Anal Chem 2023. [PMID: 37262441 DOI: 10.1021/acs.analchem.3c01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Smart materials can dynamically and reversibly change their structures and functions in response to external stimuli. In this study, we designed a smart magnetic composite (MNP-pSPA-b-pNIPAm) with a triple response to ultraviolet (UV) light, pH, and temperature. Relying on the response of spiropyranyl acrylate (SPA) and N-isopropylacrylamide (NIPAm) to external stimuli (light, pH, and temperature), MNP-pSPA-b-pNIPAm was used for the controlled capture and release of phosphopeptides. The established phosphopeptide enrichment platform exhibits high sensitivity (detection limit of 0.04 fmol), high selectivity (BSA/β-casein, 1000:1), and good reusability (6 cycles). In addition, the method was also applied to the enrichment of phosphopeptides in real samples (skim milk, human saliva, and serum), demonstrating the feasibility of this method for phosphoproteomic analysis. After enriching from human nonsmall cell lung cancer cell (A549) lysates with MNP-pSPA-b-pNIPAm, 2595 phosphopeptides corresponding to 2281 phosphoproteins were identified. The novel responsive enrichment probe is highly specific for phosphoproteomic analysis and provides an effective method for studying the significance of protein phosphorylation in complex biological samples.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Wenhui Xu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Nekoonam N, Vera G, Goralczyk A, Mayoussi F, Zhu P, Böcherer D, Shakeel A, Helmer D. Controllable Wetting Transitions on Photoswitchable Physical Gels. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37217181 DOI: 10.1021/acsami.2c22979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Softness plays a key role in the deformation of soft elastic substrates at the three-phase contact line, and the acting forces lead to the formation of a wetting ridge due to elastocapillarity. The change in wetting ridge and surface profiles at different softness has a great impact on the droplet behavior in different phenomena. Commonly used materials to study soft wetting are swollen polymeric gels or polymer brushes. These materials offer no possibility to change the softness on demand. Therefore, adjustable surfaces with tunable softness are highly sought-after to achieve on-demand transition between wetting states on soft surfaces. Here, we present a photorheological physical soft gel with adjustable stiffness based on the spiropyran photoswitch that shows the formation of wetting ridges upon droplet deposition. The presented photoswitchable gels allow the creation of reversibly switchable softness patterns with microscale resolution using UV light-switching of the spiropyran molecule. Gels with varying softness are analyzed, showing a decrease in the wetting ridge height at higher gel stiffness. Furthermore, wetting ridges before and after photoswitching are visualized using confocal microscopy, showing the transition in the wetting properties from soft wetting to liquid/liquid wetting.
Collapse
Affiliation(s)
- Niloofar Nekoonam
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Grace Vera
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Andreas Goralczyk
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Fadoua Mayoussi
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Pang Zhu
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - David Böcherer
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Ahmad Shakeel
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Dorothea Helmer
- Laboratory of Process Technology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Freiburg Center of Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| |
Collapse
|
25
|
Yang Y, Zhao H, Li Y, Chen Y, Wang Z, Wu W, Hu L, Zhu J. Tuning the Photochromism of Spiropyran in Functionalized Nanoporous Silica Nanoparticles for Dynamic Anticounterfeiting Applications. ACS OMEGA 2023; 8:16459-16470. [PMID: 37179600 PMCID: PMC10173341 DOI: 10.1021/acsomega.3c01604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
Here, we report a novel invisible ink with different decay times based on thin films with different molar ratios of spiropyran (SP)/Si, which allows the encryption of messages over time. Nanoporous silica has been found to be an excellent substrate to improve the solid photochromism of spiropyran, but the hydroxyl groups of silica have a serious effect on fade speeds. The density of silanol groups in silica has an influence on the switching behavior of spiropyran molecules, as they stabilize the amphiphilic merocyanine isomers and thus slow down the fading process from the open to the closed form. Here, we investigate the solid photochromic behavior of spiropyran by sol-gel modification of the silanol groups and explore its potential application in UV printing and dynamic anticounterfeiting. To extend its applications, spiropyran is embedded in organically modified thin films prepared by the sol-gel method. Notably, by using the different decay times of thin films with different SP/Si molar ratios, time-dependent information encryption can be realized. It provides an initial "false" code, which does not display the required information, and only after a given time will the encrypted data appear.
Collapse
Affiliation(s)
- Yuhui Yang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
- Department
of Polymer Materials, Zhejiang Sci-Tech
University, Hangzhou 310018, China
- Institute
of Smart Biomedical Materials, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Huimin Zhao
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yuqing Li
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Yilong Chen
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zhaohui Wang
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Wu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Leilei Hu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Jiangkun Zhu
- College
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
26
|
Ye X, Wang A, Zhang D, Zhou P, Zhu P. Light and pH dual-responsive spiropyran-based cellulose nanocrystals. RSC Adv 2023; 13:11495-11502. [PMID: 37063713 PMCID: PMC10093094 DOI: 10.1039/d3ra01637d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
Reversibly light and pH dual-responsive spiropyran-based cellulose nanocrystals (SP-CNCs) is synthesized by the attachment of carboxyl-containing spiropyran (SP-COOH) onto cellulose nanocrystals (CNCs). The resulting structure and properties of SP-CNCs are examined by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic laser light scattering (DSL), ζ-potential measurements and ultraviolet-visible (UV-Vis) light absorption spectroscopy. SP-CNCs exhibit excellent photochromic and photoswitching properties. Spiropyran moieties on SP-CNCs can be switched between open-ring merocyanine (MC) and closed ring spiropyran (SP) forms under UV/Vis irradiation, leading to color changes. Moreover, SP-CNCs display improved photoresponsiveness, photoreversibility, fatigue resistance, and stability in DMSO than in H2O. We further investigate the pH-responsive behavior of SP-CNCs in H2O. SP-CNCs aqueous solution display different colors at different pH values, which can be directly observed by naked eye, indicating that SP-CNCs can function as a visual pH sensor. These results suggest that light and pH dual-responsive SP-CNCs possess great potential for applications in reversible data storage, sensing, optical switching and light-controlled nanomaterials.
Collapse
Affiliation(s)
- Xiu Ye
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Anzhe Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology Nanjing 211167 China
| | - Dongyang Zhang
- Institute of Critical Materials for Integrated Circuits, Shenzhen Polytechnic Shenzhen 518055 China
| | - Peng Zhou
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic Shenzhen 518055 China
| | - Pengli Zhu
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 China +86-755-26731946
| |
Collapse
|
27
|
Javorskis T, Rakickas T, Janku̅naitė A, Vaitekonis Š, Ulčinas A, Orentas E. Maskless, Reusable Visible-Light Direct-Write Stamp for Microscale Surface Patterning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11259-11267. [PMID: 36797999 PMCID: PMC11008783 DOI: 10.1021/acsami.2c20568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We report a straightforward method for creating large-area, microscale resolution patterns of functional amines on self-assembled monolayers by the photoinduced local acidification of a flat elastomeric stamp enriched with photoacid. The limited diffusivity of the photoactivated merocyanine acid in poly(dimethylsiloxane) (PDMS) enabled to confine efficient deprotection of N-tert-butyloxycarbonyl amino group (N-Boc) to line widths below 10 μm. The experimental setup is very simple and is built around the conventional HD-DVD optical pickup. The method allows cost-efficient, maskless, large-area chemical patterning while avoiding potentially cytotoxic photochemical reaction products. The activation of the embedded photoacid occurs within the stamp upon illumination with the laser beam and the process is fully reversible. Preliminary positive results highlight the possibility of repeatable use of the same stamp for the creation of different patterns.
Collapse
Affiliation(s)
- Tomas Javorskis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Tomas Rakickas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Alberta Janku̅naitė
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Šaru̅nas Vaitekonis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Artu̅ras Ulčinas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Edvinas Orentas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
28
|
Li C, Zhang C, Zhao R, Zhao N, Liu R, Zhang Y, Jia M, Wang S. Porous Electrospun Films with Reversible Photoresponsive Microenvironmental Humidity Regulation: A Controllable Hydrogen-Bonding Synergistic Effect Exhibited by Acrylic Acid Segments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6187-6201. [PMID: 36655841 DOI: 10.1021/acsami.2c20035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Suitable relative humidity is essential for the preservation of cultural relics, food storage, and so on. A special material that can regulate the relative humidity in the microenvironment is particularly important. In this work, several innovative electrospun films with reversible photoresponsive wettability and the ability to regulate microenvironmental relative humidity were prepared. The spiropyran unit of the synthesized copolymer played the most important role in humidity regulation due to its reversible transition between a nonpolar ring-closed state and a polar ring-opened state induced by alternating ultraviolet/visible illumination. More interestingly, the introduction of acrylic acid segments exhibited a controllable hydrogen bond synergistic effect for increasing the range of humidity regulation. The color change and the reversible change ranges of wettability and microenvironmental relative humidity under ultraviolet/visible irradiation are all closely related to the number of acrylic acid segments. Cassie theory, density functional theory (DFT), and interaction region indicator (IRI) analysis were used to characterize this phenomenon. Electrospinning is a promising method to achieve large-scale production that can put such material into practical applications.
Collapse
Affiliation(s)
- Chunhao Li
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ce Zhang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ning Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Ruian Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Yang Zhang
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Meilin Jia
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| | - Shuai Wang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhhot010022, China
| |
Collapse
|
29
|
Controlling the LCST-Phase Transition in Azobenzene-Functionalized Poly ( N-Isopropylacrlyamide) Hydrogels by Light. Gels 2023; 9:gels9020075. [PMID: 36826244 PMCID: PMC9956105 DOI: 10.3390/gels9020075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Poly(N-isopropylacrylamide) PNIPAAm hydrogels were modified with a new azobenzene-containing co-monomer. In this work, light responsiveness as an additional functionality, is conceptualized to induce two phase transitions in the same material, which can be controlled by light. For a hydrogel with merely 2.5 mol% of this co-monomer, the lower critical solution transition temperature (LCST) was lowered by 12 °C (to 20 °C) compared to PNIPAAm (LCST at 32 °C), as analyzed by differential scanning calorimetry (DSC). The untreated unimodal endotherm split into a bimodal peak upon irradiation with UV-light, giving a second onset due to the switched (Z) isomer-rich regions, LCST*H2.5%-(Z) = 26 °C. On irradiation with 450 nm, leading to the reverse (Z) to (E) isomerization, the endotherm was also reversible. Thus, a photo-switchable hydrogel whose LCST and structure are tunable with the hydrophobicity-hydrophilicity of the (E) and (Z) isomeric state of azobenzene was obtained. The influence of the increase in the mol% of azoacrylate on the LCST was evaluated via DSC, in combination with NMR studies, UV-vis spectroscopy and control experiments with linear polymers. The large light-driven modulation of the LCST adds bistability in thermoresponsive hydrogels, which may open diverse applications in the field of soft robotics actuators.
Collapse
|
30
|
Wu J, Cui Z, Yu Y, Han H, Tian D, Hu J, Qu J, Cai Y, Luo J, Li J. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129900. [PMID: 36096060 DOI: 10.1016/j.jhazmat.2022.129900] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Oily sewage discharged from indiscriminate industrial and frequent oil spills have become a serious global problem. There is an urgent need to separate stable oil/water emulsions by efficient and environmentally friendly methods. Membrane separation technology has the advantages of low energy consumption and low cost, thus is an effective solution to the problems of oily wastewater. However, the manufacture of multifunctional membranes with high efficiency, high flux and self-cleaning using renewable materials remains a challenge. Herein, three-dimensional (3D) smart membranes with switchable superhydrophobic-hydrophilic surfaces were prepared by grafting photo-responsive poly-spiropyran (PSP) on wood-based substrates via surface atom transfer radical polymerization. This novel membrane can efficiently separate stabilized water-in-oil and oil-in-water emulsions due to reversible hydrophilic-hydrophobic transition by switching UV and visible light irradiation. Remarkably, after immobilization, the PSP grafted on the wood substrate exhibited a faster photo response effect than the free spiropyran (SP). More importantly, the prepared 3D smart membranes showed exceptional high flux (4392 L•m-2•h-1) and efficiency (above 99.99 %), good cycle stability (99.99 % after 12 times) and durability (available for at least 60 days) for the separation of surfactant-stabilized water-in-oil emulsions. This work opens a new avenue for the design of functional biomass-derived membranes for efficient and sustainable oily wastewater treatment with high flux, easy scale-up, and green regeneration.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - He Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China.
| | - Jianlin Luo
- Guizhou Provincial Engineering Research Center for Biological Resources Protection and Effificient Utilization of the Mountainous Region, Guiyang University, Guiyang 550005, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China; Key Laboratory of Wood-Based Materials Science and Utilization, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
31
|
Deng T, Lin FC, Zink JI, Yu Q. Regulation of Bacterial Behavior by Light and Magnetism Mediated by Mesoporous Silica-Coated MnFe 2O 4@CoFe 2O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56007-56017. [PMID: 36509713 DOI: 10.1021/acsami.2c12589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Unicellular bacterial cells exhibit diverse population behaviors (i.e., aggregation, dispersion, directed assembly, biofilm formation, etc.) to facilitate communication and cooperation. Suitable bacterial behaviors are required for efficient nutrient uptake, cell recycling, and stress response for environmental and industrial application of bacterial populations. However, it remains a great challenge to artificially control bacterial behaviors because of complicated genetic and biochemical mechanisms. In this study, we designed facile mesoporous silica nanoparticle (MSN)-based assemblies to intelligently regulate bacterial behaviors with the help of light and magnetic field. This system was composed of magnetic MSNs, i.e., MnFe2O4@CoFe2O4@MSN modified by photoactive spiropyran (SP), and the chitosan-based polymers ChiPSP, i.e., chitosan grafted by triphenylphosphine and SP. The assembly strongly bound bacterial cells, inducing reversible bacterial aggregation by visible-light irradiation and dark. Moreover, the formed bacterial aggregates could be further governed by a directed magnetic field (DMF) to form microfibers and by an alternating magnetic field (AMF) to form biofilms. This study realized stimulus-triggered regulation of bacterial behaviors by MSNs and implied the great power of chemical strategies in intelligent control of diverse biological processes for environmental and industrial applications.
Collapse
Affiliation(s)
- Tian Deng
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fang-Chu Lin
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
32
|
Sharma S, Sharma KP. Light-responsive self-assembled microstructures of branched polyethyleneimine at low pH. Chem Commun (Camb) 2022; 58:13779-13782. [PMID: 36437788 DOI: 10.1039/d2cc04996a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soft materials comprising polyethyleneimine (PEI), which integrate low pH-stimulated higher-order assemblies (fibres and sheets) with light responsiveness, have been shown. Excitation wavelength light-driven interactions enable the formation of bead-necklace-type structures in fibres or volume collapse of sheets. This work can have significant implications for transfection or encapsulation through PEI-based complexes.
Collapse
Affiliation(s)
- Shivalika Sharma
- Soft Materials Research Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| | - Kamendra P Sharma
- Soft Materials Research Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.
| |
Collapse
|
33
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Wei J, Li R, Li L, Wang W, Chen T. Touch-Responsive Hydrogel for Biomimetic Flytrap-Like Soft Actuator. NANO-MICRO LETTERS 2022; 14:182. [PMID: 36063236 PMCID: PMC9445118 DOI: 10.1007/s40820-022-00931-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/07/2023]
Abstract
Stimuli-responsive hydrogel is regarded as one of the most promising smart soft materials for the next-generation advanced technologies and intelligence robots, but the limited variety of stimulus has become a non-negligible issue restricting its further development. Herein, we develop a new stimulus of "touch" (i.e., spatial contact with foreign object) for smart materials and propose a flytrap-inspired touch-responsive polymeric hydrogel based on supersaturated salt solution, exhibiting multiple responsive behaviors in crystallization, heat releasing, and electric signal under touch stimulation. Furthermore, utilizing flytrap-like cascade response strategy, a soft actuator with touch-responsive actuation is fabricated by employing the touch-responsive hydrogel and the thermo-responsive hydrogel. This investigation provides a facile and versatile strategy to design touch-responsive smart materials, enabling a profound potential application in intelligence areas.
Collapse
Affiliation(s)
- Junjie Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Rui Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Long Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
35
|
Zhang K, He N, Zhang C, Wang X. Erasable polymer hydrogel wells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|