1
|
Jin Z, Shi Y, Zheng Z, Ding Y, Su W, Zhang C, Xie Y. A dual-radical process for tri/di-fluoromethylarylation of alkenes enabled by indirect electroreduction. Chem Commun (Camb) 2025; 61:7105-7108. [PMID: 40241657 DOI: 10.1039/d5cc00744e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
This study presents a stable and mild electrochemical dual-radical strategy for tri/di-fluoromethylarylation of alkenes. The synergistic combination of cyanoarene and phenanthrene as dual redox mediators constructs an efficient catalytic system.
Collapse
Affiliation(s)
- Zhening Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Zhangchi Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuxin Ding
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Weike Su
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - YuanYuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Zeng W, Wang Y, Peng C, Qiu Y. Organo-mediator enabled electrochemical transformations. Chem Soc Rev 2025; 54:4468-4501. [PMID: 40151968 DOI: 10.1039/d4cs01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Electrochemistry has emerged as a powerful means to facilitate redox transformations in modern chemical synthesis. This review focuses on organo-mediators that facilitate electrochemical reactions via outer-sphere electron transfer (ET) between active mediators and substrates, offering advantages over direct electrolysis due to their availability, ease of modification, and simple post-processing. They prevent overoxidation/reduction, enhance selectivity, and mitigate electrode passivation during the electrosynthesis. By modifying the structure of organo-mediators, those with tunable redox potentials enable electrosynthesis and avoid metal residues in the final products, making them promising for further application in synthetic chemistry, particularly in pharmacochemistry, where the maximum allowed level of the metal residue in synthetic samples is extremely strict. This review highlights the recent advancements in this rapidly growing area within the past two decades, including the electrochemical organo-mediated oxidation (EOMO) and electrochemical organo-mediated reduction (EOMR) events. The organo-mediator enabled electrochemical transformations are discussed according to the reaction type, which has been categorized into oxidation and reduction organic mediators.
Collapse
Affiliation(s)
- Weimei Zeng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Chengyi Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
3
|
He Y, Xiong C, Lv L, Li D, Shi S, Xue C, Ji H. Advancing Propylene Epoxidation: the Role of Ethyl Acetate Autoxidation via Cobalt-Nickel Catalyzed C(acyl)─O Bond Scission. Angew Chem Int Ed Engl 2025; 64:e202500384. [PMID: 40034004 DOI: 10.1002/anie.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The selective autoxidation for the synthesis of valuable oxygenates has provoked keen interest from both academic and industrial sectors. Although the generation of reactive oxygen species via oxygen attack on C─H bonds near ester linkages is well-established, research into aliphatic ester oxidation has primarily focused on combustion, neglecting their potential utility in oxidation processes. Herein, a protocol for producing propylene oxide through the autoxidation of ethyl acetate in tandem with propylene epoxidation is demonstrated. The ethoxy radical, generated by ester C(acyl)─O bond cleavage in situ, subsequently underwent proton-coupled electron transfer with the Co(OAc)(μ-H2O)2Ni, followed by the formation of the peracetic acid optimally suited for the epoxidation reaction. The research not only eliminates the need for co-substrates in the epoxidation process but also fills the application gap in bulk-ester autoxidation, offering insights into the effective utilization of oxy-intermediates in autoxidation reactions.
Collapse
Affiliation(s)
- Yaorong He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luotian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongpo Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sixuan Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Qin L, Zhu W, Yang L, Zheng M, Liu G. Persistent free radicals in the environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138332. [PMID: 40262311 DOI: 10.1016/j.jhazmat.2025.138332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Environmentally persistent free radicals (EPFRs) are environmental pollutants whose potential DNA damage and apoptosis toxicity may be mediated by reactive oxygen species (ROS). The currently available knowledge of their environmental characteristics and transformation mechanisms is not sufficient to understand the environmental behaviors and health effects of EPFRs and should be further expanded. This review offers a comprehensive review of the current state of EPFRs, including characterization methods, formation mechanisms, and environmental behavior of EPFRs. Electron paramagnetic resonance (EPR) spectroscopy directly probes EPFRs in environmental matrices. EPFRs can be simply categorized by g value, but structure confirmation solely by EPR is challenging because the complexity of environmental matrices results in the absence of a hyperfine splitting spectrum. Combined advanced EPR and multi-spectroscopic methods enable the structural identification of EPFRs in environmental samples. The environmental behavior and ecological impacts of EPFRs have been progressively studied. This review highlights the important role of EPFRs in natural environments and emphasizes the necessity of further research on EPFRs.
Collapse
Affiliation(s)
- Linjun Qin
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wuyuxin Zhu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Minghui Zheng
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- School of the Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Zhejiang Key Laboratory of Digital Intelligence Monitoring and Restoration of Watershed Environment, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China.
| |
Collapse
|
5
|
Jung H, Kweon J, Suh J, Arribas A, Kim D, Lim MH, Chang S. Catalytic Amino Group Transfer Reactions Mediated by Photoinduced Nitrene Formation from Rhodium-Hydroxamates. Angew Chem Int Ed Engl 2025; 64:e202422461. [PMID: 39961777 PMCID: PMC11976214 DOI: 10.1002/anie.202422461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Herein, we report a photocatalytic platform to access transient nitrenoids by designing photo-responsive neutral rhodium-hydroxamate complexes. Combined experimental and computational mechanistic studies, including electron paramagnetic resonance (EPR) and mass spectrometric analysis, suggest that electrophilic Fischer-type Rh-acylnitrenoid intermediates could be generated via photoactivation of corresponding Rh-hydroxamates via N-O bond homolysis and redox event. Moreover, catalytic acylnitrenoid transfer was explored toward the amidation of various hydrocarbons, amines, and alcohols to furnish new N-C, N-N, and N-O bonds.
Collapse
Affiliation(s)
- Hoimin Jung
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon 34141South Korea & Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Jeonguk Kweon
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon 34141South Korea & Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Jong‐Min Suh
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon 34141South Korea & Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Mi Hee Lim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon FunctionalizationsInstitute for Basic Science (IBS)Daejeon 34141South Korea & Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141South Korea
| |
Collapse
|
6
|
Laze L, Gonzalez-Gomez JC, Bosque I. Electrochemical heteroarylation and amidation of alkanes using activated glassy carbon electrodes without mediators. Commun Chem 2025; 8:94. [PMID: 40158022 PMCID: PMC11954948 DOI: 10.1038/s42004-025-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
The functionalization of challenging unactivated C(sp3)-H bonds was achieved electrocatalytically via hydrogen atom transfer and without mediators. This was possible through the sole activation of the surface of the Glassy Carbon Electrode (GCE) in an electrochemical fashion using a phosphate buffer. This activation produced oxygenated functional groups on the surface, capable of abstracting these hydrogen atoms from C(sp3)-H of alkanes. Minisci and Ritter-type reactions were achieved using this procedure. Extensive characterization of the activated GCE (AGCE) and preliminary mechanistic studies allow us to propose plausible reaction mechanisms. Furthermore, a regular battery can be used within this protocol to achieve the desired substituted alkanes under inexpensive and user-friendly conditions.
Collapse
Grants
- CIAICO/2022/017 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- SEJIGENT/2021/005 Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- Regional Government of Valencia | Conselleria d'Educació, Investigació, Cultura i Esport (Conselleria d'Educació, Investigació, Cultura i Esport de la Generalitat Valenciana)
- MCIN/AEI and the “European Union NextGenerationEU” for the Grant “Consolidación Investigadora” (CNS2022-135161).
Collapse
Affiliation(s)
- Loris Laze
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Jose C Gonzalez-Gomez
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.
| | - Irene Bosque
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.
| |
Collapse
|
7
|
Pal B, Mal P. Thermocontrolled Radical Nucleophilicity vs Radicophilicity in Regiodivergent C-H Functionalization. Org Lett 2025; 27:978-983. [PMID: 39778163 DOI: 10.1021/acs.orglett.4c04509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The temperature-dependent switching behavior of the saccharin radical is demonstrated, enabling the regiodivergent C3-H and C7-H functionalization of quinoxalin-2(1H)-ones. The saccharin radical was generated through N-Br bond cleavage in N-bromosaccharin (NBSA) and was observed to transition between radical and radicophile roles. At -10 °C, it was utilized as a radicophile, resulting in 100% C3-amination, while at +35 °C, it acted as a radical, leading to exclusive C7-bromination. Radical nucleophilicity was controlled by temperature modulation.
Collapse
Affiliation(s)
- Buddhadeb Pal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
8
|
Liu XH, Zhou ZH, Feng JR, Zheng SY, Wen TT, Zhong HK, Xue C, Zhou XT. Selective Generation of Reactive Oxygen Species in Photocatalytic Oxidation by Tuning Porphyrin-Based COFs' Dimensionality. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52550-52558. [PMID: 39300808 DOI: 10.1021/acsami.4c12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Regulating the selective generation of reactive oxygen species (ROS) is a significant challenge in the field of photocatalytic oxidation, with successful approaches still being limited. Herein, we present a strategy to selectively generate singlet oxygen (1O2) and superoxide radicals (O2•-) by tuning the dimensionality of porphyrin-based covalent organic frameworks (COFs). The transformation of COFs from three-dimensional (3D) solids to two-dimensional (2D) sheets was achieved through the reversible protonation of the imine bond. Upon irradiation, both bulk and thin-layer COF-367 can transfer energy to O2 to generate 1O2. However, thin-layer COF-367 exhibited a superior performance compared to its bulk counterpart in activating O2 to form the O2•- radicals via electron transfer. After excluding the influences of the band structure, O2 adsorption energy, and frontier orbital composition attributed to the dimensionality of the COFs, it is reasonably speculated that the variance in ROS generation arises from the differential exposure ratios of the active surfaces, leading to distinct reaction pathways between the carrier and O2. This study is the first to explore the modulation mechanism of COF dimensionality on the activation of the O2 pathway, underscoring the importance of considering COF dimensionality in photocatalytic reactions.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Zhe-Han Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Jing-Ru Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuo-Yun Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Tian-Tian Wen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Han-Kang Zhong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xian-Tai Zhou
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Huizhou Research Institute Sun Yat-sen University, Huizhou 516081, P. R. China
| |
Collapse
|
9
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
10
|
Li H, Li Y, Chen J, Lu L, Wang P, Hu J, Ma R, Gao Y, Yi H, Li W, Lei A. Scalable and Selective Electrochemical Hydrogenation of Polycyclic Arenes. Angew Chem Int Ed Engl 2024; 63:e202407392. [PMID: 39031667 DOI: 10.1002/anie.202407392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/22/2024]
Abstract
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1 kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
Collapse
Affiliation(s)
- Hao Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yan Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jiaye Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rui Ma
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Wu Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
| |
Collapse
|
11
|
Li X, Zhou J, Deng W, Wang Z, Wen Y, Li Z, Qiu Y, Huang Y. Electroreductive deuteroarylation of alkenes enabled by an organo-mediator. Chem Sci 2024; 15:11418-11427. [PMID: 39054999 PMCID: PMC11268466 DOI: 10.1039/d4sc03049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Electroreduction mediated by organo-mediators has emerged as a concise and effective strategy, holding significant potential in the site-specific introduction of deuterium. In this study, we present an environmentally friendly electroreduction approach for anti-Markovnikov selective deuteroarylation of alkenes and aryl iodides with D2O as the deuterium source. The key to the protocol lies in the employment of a catalytic amount of 2,2'-bipyiridine as an efficient organo-mediator, which facilitates the generation of aryl radicals by assisting in the cleavage of the C-X (X = I or Br) bonds in aryl halides. Because its reduction potential matches that of aryl iodides, the organo-mediator can control the chemoselectivity of the reaction and avoid the side reactions of competitive substrate deuteration. These phenomena are theoretically supported by CV experiments and DFT calculations. Our protocol provides a series of mono-deuterated alkylarenes with excellent deuterium incorporation through two single-electron reductions (SER), without requiring metal catalysts, external reductants, and sacrificial anodes.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University 94 Weijin Road Tianjin 300071 People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University Jiangmen 529090 P. R. China
| |
Collapse
|
12
|
Qiao K, Yang JF, Chen Z, Zhu Y, Jiang WF, Li F, Shi L. Minisci-Type Dehydrogenative Coupling of C(sp 3)-H and N-Heteroaromatics Enabled by Photoelectrochemical Hydrogen Atom Transfer. Org Lett 2024; 26:5805-5810. [PMID: 38949597 DOI: 10.1021/acs.orglett.4c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Minisci-type dehydrogenative coupling of C(sp3)-H and N-heteroaromatics was performed with N-hydroxysuccinimide as a hydrogen atom transfer catalyst in a photoelectrochemical cell composed of a mesoporous BiVO4 photoanode and a Pt electrode. In the absence of metal catalysts and chemical oxidants, a range of N-heteroarenes (e.g., quinolines, isoquinolines, and quinoxaline) can undergo coupling with various C(sp3)-H partners to form the corresponding products in excellent yields.
Collapse
Affiliation(s)
- Kaikai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wen-Feng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
13
|
Zeng L, Yang Q, Wang J, Wang X, Wang P, Wang S, Lv S, Muhammad S, Liu Y, Yi H, Lei A. Programmed alternating current optimization of Cu-catalyzed C-H bond transformations. Science 2024; 385:216-223. [PMID: 38991063 DOI: 10.1126/science.ado0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024]
Abstract
Direct current (DC) electrosynthesis, which has undergone optimization over the past century, plays a pivotal role in a variety of industrial processes. Alternating current (AC) electrosynthesis, characterized by polarity reversal and periodic fluctuations, may be advantageous for multiple chemical reactions, but apparatus, principles, and application scenarios remain underdeveloped. In this work, we introduce a protocol for programmed AC (pAC) electrosynthesis that systematically adjusts currents, frequencies, and duty ratios. The application of representative pAC waveforms facilitates copper-catalyzed carbon-hydrogen bond cleavage in cross-coupling and difunctionalization reactions that exhibit suboptimal performance under DC and chemical oxidation conditions. Moreover, observing catalyst dynamic variation under diverse waveform applications provides mechanistic insight.
Collapse
Affiliation(s)
- Li Zeng
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Qinghong Yang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jianxing Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xin Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Pengjie Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shengchun Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shide Lv
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shabbir Muhammad
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yichang Liu
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
14
|
Zou L, Sun R, Tao Y, Wang X, Zheng X, Lu Q. Photoelectrochemical Fe/Ni cocatalyzed C-C functionalization of alcohols. Nat Commun 2024; 15:5245. [PMID: 38898017 PMCID: PMC11187109 DOI: 10.1038/s41467-024-49557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
The simultaneous activation of reactants on the anode and cathode via paired electrocatalysis has not been extensively demonstrated. This report presents a paired oxidative and reductive catalysis based on earth-abundant iron/nickel cocatalyzed C-C functionalization of ubiquitous alcohols. A variety of alcohols (i.e., primary, secondary, tertiary, or unstrained cyclic alcohols) can be activated at very low oxidation potential of (~0.30 V vs. Ag/AgCl) via photoelectrocatalysis coupled with versatile electrophiles. This reactivity yields a wide range of structurally diverse molecules with broad functional group compatibility (more than 50 examples).
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xiaofan Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
15
|
Seif-Eddine M, Cobb SJ, Dang Y, Abdiaziz K, Bajada MA, Reisner E, Roessler MM. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts. Nat Chem 2024; 16:1015-1023. [PMID: 38355827 PMCID: PMC11636982 DOI: 10.1038/s41557-024-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The development of surface-immobilized molecular redox catalysts is an emerging research field with promising applications in sustainable chemistry. In electrocatalysis, paramagnetic species are often key intermediates in the mechanistic cycle but are inherently difficult to detect and follow by conventional in situ techniques. We report a new method, operando film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR), which enables mechanistic studies of surface-immobilized electrocatalysts. This technique enables radicals formed during redox reactions to be followed in real time under flow conditions, at room temperature and in aqueous solution. Detailed insight into surface-immobilized catalysts, as exemplified here through alcohol oxidation catalysis by a surface-immobilized nitroxide, is possible by detecting active-site paramagnetic species sensitively and quantitatively operando, thereby enabling resolution of the reaction kinetics. Our finding that the surface electron-transfer rate, which is of the same order of magnitude as the rate of catalysis (accessible from operando FE-EPR), limits catalytic efficiency has implications for the future design of better surface-immobilized catalysts.
Collapse
Affiliation(s)
- Maryam Seif-Eddine
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yunfei Dang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Kaltum Abdiaziz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark A Bajada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
16
|
Wan Q, Wu XD, Hou ZW, Ma Y, Wang L. Organophotoelectrocatalytic C(sp 2)-H alkylation of heteroarenes with unactivated C(sp 3)-H compounds. Chem Commun (Camb) 2024; 60:5502-5505. [PMID: 38699797 DOI: 10.1039/d4cc01335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
An organophotoelectrocatalytic method for the C(sp2)-H alkylation of heteroarenes with unactivated C(sp3)-H compounds through dehydrogenation cross-coupling has been developed. The C(sp2)-H alkylation combines organic catalysis, photochemistry and electrochemistry, avoiding the need for external metal-reagents, HAT-reagents, and oxidants. This protocol exhibits good substrate tolerance and functional group compatibility, providing a straightforward and powerful pathway to access a variety of alkylated heteroarenes under green conditions.
Collapse
Affiliation(s)
- Qinhui Wan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Xia-Die Wu
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Yongmin Ma
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| |
Collapse
|
17
|
Cui J, Niu KK, Zhang RZ, Liu H, Yu S, Xing LB. Photocatalytic selective oxidation of toluene under encapsulated air conditions. Chem Commun (Camb) 2024; 60:4310-4313. [PMID: 38533635 DOI: 10.1039/d4cc00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Benzaldehydes are indispensable building blocks in chemistry. However, the selective oxidation of toluene to benzaldehyde remains an ongoing challenge due to the low oxidation potential of benzaldehyde compared to toluene. We report herein a mild protocol that combines hydrogen atom transfer (HAT) with encapsulated air conditions and suitable catalyst loading for selective oxidation of toluene with high selectivity as well as good functional-group tolerance and a broad substrate scope for the synthesis of various high-value aromatic aldehydes. Moreover, the compatibility of this reaction with toluene derivatives of bioactive molecules further demonstrated the practicality of this approach. Mechanism studies have demonstrated that the collaboration between the oxygen quantity and the HAT catalytic system has a major impact on the high selectivity of the reaction. This study not only showcases the effectiveness of HAT strategies toward selective oxidation of toluene to benzaldehyde, but also provides an approach to controlling the selectivity of HAT reactions.
Collapse
Affiliation(s)
- Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
18
|
Zubčić G, You J, Zott FL, Ashirbaev SS, Kolympadi Marković M, Bešić E, Vrček V, Zipse H, Šakić D. Regioselective Rearrangement of Nitrogen- and Carbon-Centered Radical Intermediates in the Hofmann-Löffler-Freytag Reaction. J Phys Chem A 2024; 128:2574-2583. [PMID: 38516723 PMCID: PMC11000220 DOI: 10.1021/acs.jpca.3c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
The Hofmann-Löffler-Freytag (HLF) reaction serves as a late-stage functionalization technique for generating pyrrolidine heterocyclic ring systems. Contemporary HLF protocols utilize in situ halogenated sulfonamides as precursors in the radical-mediated rearrangement cycle. Despite its well-established reaction mechanism, experiments toward the detection of radical intermediates using EPR techniques have only recently been attempted. However, the obtained spectra lack the distinct features of the N-centered radicals expected for the employed reactants. This paper presents phenylbutylnitrone spin-trapped C-centered and N-centered radicals, generated via light irradiation from N-halogen-tosyl-sulfonamide derivatives and detected using EPR spectroscopy. NMR spectroscopy and DFT calculations are used to explain the observed regioselectivity of the HLF reaction.
Collapse
Affiliation(s)
- Gabrijel Zubčić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Jiangyang You
- Division
of Physical Chemistry, Rud̵er Bošković
Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Fabian L. Zott
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Salavat S. Ashirbaev
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Maria Kolympadi Marković
- Faculty
of Physics, and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Erim Bešić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Hendrik Zipse
- Department
of Chemistry, Ludwig-Maximilians-Universität
München, Butenandtstrasse 5-13, D-81377 München, Germany
| | - Davor Šakić
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Yang JF, Liu YF, Wei LL, Qiao KK, Zhao YQ, Shi L. Minisci-Type Dehydrogenative Coupling of N-Heteroaromatic Rings with Inert C(sp 3)-H Enabled by a Visible-Light-Catalyzed Intermolecular Hydrogen Atom Transfer Process. J Org Chem 2024; 89:4249-4260. [PMID: 38443760 DOI: 10.1021/acs.joc.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Minisci-type dehydrogenative coupling of N-heteroaromatic rings with inert C-H or Si-H partners via visible-light-catalyzed hydrogen atom transfer has been reported. This methodology allows the coupling reactions to be carried out in water as a solvent under air atmospheric conditions with visible-light illumination. A wide range of inert C-H and Si-H partners could be directly coupled with various N-aromatic heterocycles to deliver products in good to excellent yields.
Collapse
Affiliation(s)
- Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yun-Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lin-Lin Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai-Kai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan-Qiu Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
20
|
Liu CY, Chen Y, Hu J. Identification of the Electrogenerated Hidden Nitrenium Ions by In Situ Mass Spectrometry. Anal Chem 2024; 96:3354-3361. [PMID: 38295431 DOI: 10.1021/acs.analchem.3c04315] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The identification of the electrogenerated reactive intermediates is essential for an in-depth understanding of the electroredox processes. Although various short-lived intermediates are well characterized by coupling electrochemistry with mass spectrometry (EC/MS), many electrogenerated transient species (τ < 1 μs) are still rarely captured by the currently available EC/MS approaches. Here, we present a low-delay coupling device, which was constructed by decorating a microelectrode into the front tip of a microsized ion emitter. For the first time, the in situ detection of a previously hidden intermediate, i.e., the transient nitrenium ion of carbazole (τ = 333 ns), was achieved. The electrochemical generation of indole nitrenium ion, whose half-life is estimated to be shorter compared to the carbazole nitrenium ion due to less resonance stabilization, was also confirmed by direct observation. This clog-free microelectrode/ion emitter is cheap and easy to fabricate and offers a general and powerful approach to monitoring the fast reactions of electrogenerated reactive intermediates. We believe that our integrated EC/MS approach holds substantial potential for broad applicability, particularly in probing the intricate and ultrafast electroredox processes occurring at the electrode-solution interface.
Collapse
Affiliation(s)
- Chun-Yan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jun Hu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
21
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
22
|
Zhao P, Jiang H, Shen H, Yang S, Gao R, Guo Y, Zhang Q, Zhang H. Construction of Low-Coordination Cu-C 2 Single-Atoms Electrocatalyst Facilitating the Efficient Electrochemical CO 2 Reduction to Methane. Angew Chem Int Ed Engl 2023; 62:e202314121. [PMID: 37875780 DOI: 10.1002/anie.202314121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
Constructing Cu single-atoms (SAs) catalysts is considered as one of the most effective strategies to enhance the performance of electrochemical reduction of CO2 (e-CO2 RR) towards CH4 , however there are challenges with activity, selectivity, and a cumbersome fabrication process. Herein, by virtue of the meta-position structure of alkynyl in 1,3,5-triethynylbenzene and the interaction between Cu and -C≡C-, a Cu SAs electrocatalyst (Cu-SAs/HGDY), containing low-coordination Cu-C2 active sites, was synthesized through a simple and efficient one-step method. Notably, this represents the first achievement of preparing Cu SAs catalysts with Cu-C2 coordination structure, which exhibited high CO2 -to-CH4 selectivity (72.1 %) with a high CH4 partial current density of 230.7 mA cm-2 , and a turnover frequency as high as 2756 h-1 , dramatically outperforming currently reported catalysts. Comprehensive experiments and calculations verified the low-coordination Cu-C2 structure not only endowed the Cu SAs center more positive electricity but also promoted the formation of H•, which contributed to the outstanding e-CO2 RR to CH4 electrocatalytic performance of Cu-SAs/HGDY. Our work provides a novel H⋅-transferring mechanism for e-CO2 RR to CH4 and offers a protocol for the preparation of two-coordinated Cu SAs catalysts.
Collapse
Affiliation(s)
- Peng Zhao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hao Jiang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Haidong Shen
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Shaowei Yang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Runze Gao
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Ying Guo
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Qiuyu Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Hepeng Zhang
- Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
- Research & Development Institute of, Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
23
|
Zou L, Xiang S, Sun R, Lu Q. Selective C(sp 3)-H arylation/alkylation of alkanes enabled by paired electrocatalysis. Nat Commun 2023; 14:7992. [PMID: 38042911 PMCID: PMC10693613 DOI: 10.1038/s41467-023-43791-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
We report a combination of electrocatalysis and photoredox catalysis to perform selective C(sp3)-H arylation/alkylation of alkanes, in which a binary catalytic system based on earth-abundant iron and nickel is applied. Reaction selectivity between two-component C(sp3)-H arylation and three-component C(sp3)-H alkylation is tuned by modulating the applied current and light source. Importantly, an ultra-low anodic potential (~0.23 V vs. Ag/AgCl) is applied in this protocol, thus enabling compatibility with a variety of functional groups (>70 examples). The robustness of the method is further demonstrated on a preparative scale and applied to late-stage diversification of natural products and pharmaceutical derivatives.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Siqi Xiang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
24
|
Alam T, Patel BK. Electrochemical N-Aroylation of Sulfoximines by Using Benzoyl Hydrazines with H 2 Generation. Chemistry 2023:e202303444. [PMID: 37990751 DOI: 10.1002/chem.202303444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Developed here is a robust electrochemical cross-coupling reaction between aroyl hydrazine and NH-sulfoximine via concomitant cleavage and formation of C(sp2 )-N bonds with the evolution of H2 and N2 as innocuous by-products. This sustainable protocol avoids the use of toxic reagents and occurs at room temperature. The reaction proceeds via the generation of an aroyl and a sulfoximidoyl radical via anodic oxidation under constant current electrolysis (CCE), affording N-aroylated sulfoximine. The strategy is applied to late-stage sulfoximidation of L-menthol, (-)-borneol, D-glucose, vitamin-E derivatives, and marketed drugs such as probenecid, ibuprofen, flurbiprofen, ciprofibrate, and sulindac. In addition, the present methodology is mild, high functional group tolerance with broad substrate scope and scalable.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| |
Collapse
|
25
|
Yang K, Feng T, Qiu Y. Organo-Mediator Enabled Electrochemical Deuteration of Styrenes. Angew Chem Int Ed Engl 2023; 62:e202312803. [PMID: 37698174 DOI: 10.1002/anie.202312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Despite widespread use of the deuterium isotope effect, selective deuterium labeling of chemical molecules remains a major challenge. Herein, a facile and general electrochemically driven, organic mediator enabled deuteration of styrenes with deuterium oxide (D2 O) as the economical deuterium source was reported. Importantly, this transformation could be suitable for various electron rich styrenes mediated by triphenylphosphine (TPP). The reaction proceeded under mild conditions without transition-metal catalysts, affording the desired products in good yields with excellent D-incorporation (D-inc, up to >99 %). Mechanistic investigations by means of isotope labeling experiments and cyclic voltammetry tests provided sufficient support for this transformation. Notably, this method proved to be a powerful tool for late-stage deuteration of biorelevant compounds.
Collapse
Affiliation(s)
- Keming Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
26
|
Kong X, Chen Y, Chen X, Ma C, Chen M, Wang W, Xu YQ, Ni SF, Cao ZY. Organomediated electrochemical fluorosulfonylation of aryl triflates via selective C-O bond cleavage. Nat Commun 2023; 14:6933. [PMID: 37907478 PMCID: PMC10618246 DOI: 10.1038/s41467-023-42699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China.
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Cheng Ma
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, 213164, Changzhou, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, 213032, Changzhou, China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, 515063, Shantou, Guangdong, China.
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, 475004, Kaifeng, China.
| |
Collapse
|
27
|
Zhong PF, Tu JL, Zhao Y, Zhong N, Yang C, Guo L, Xia W. Photoelectrochemical oxidative C(sp 3)-H borylation of unactivated hydrocarbons. Nat Commun 2023; 14:6530. [PMID: 37845202 PMCID: PMC10579347 DOI: 10.1038/s41467-023-42264-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Organoboron compounds are of high significance in organic synthesis due to the unique versatility of boryl substituents to access further modifications. The high demand for the incorporation of boryl moieties into molecular structures has witnessed significant progress, particularly in the C(sp3)-H borylation of hydrocarbons. Taking advantage of special characteristics of photo/electrochemistry, we herein describe the development of an oxidative C(sp3)-H borylation reaction under metal- and oxidant-free conditions, enabled by photoelectrochemical strategy. The reaction exhibits broad substrate scope (>57 examples), and includes the use of simple alkanes, halides, silanes, ketones, esters and nitriles as viable substrates. Notably, unconventional regioselectivity of C(sp3)-H borylation is achieved, with the coupling site of C(sp3)-H borylation selectively located in the distal methyl group. Our method is operationally simple and easily scalable, and offers a feasible approach for the one-step synthesis of high-value organoboron building blocks from simple hydrocarbons, which would provide ample opportunities for drug discovery.
Collapse
Affiliation(s)
- Ping-Fu Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Nan Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
28
|
Wan Q, Chen K, Dong X, Ruan X, Yi H, Chen S. Elucidating the Underlying Reactivities of Alternating Current Electrosynthesis by Time-Resolved Mapping of Short-Lived Reactive Intermediates. Angew Chem Int Ed Engl 2023; 62:e202306460. [PMID: 37593930 DOI: 10.1002/anie.202306460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Alternating current (AC) electrolysis is an emerging field in synthetic chemistry, however its mechanistic studies are challenged by the effective characterization of the elusive intermediate processes. Herein, we develop an operando electrochemical mass spectrometry platform that allows time-resolved mapping of stepwise electrosynthetic reactive intermediates in both direct current and alternating current modes. By dissecting the key intermediate processes of electrochemical functionalization of arylamines, the unique reactivities of AC electrosynthesis, including minimizing the over-oxidation/reduction through the inverse process, and enabling effective reaction of short-lived intermediates generated by oxidation and reduction in paired electrolysis, were evidenced and verified. Notably, the controlled kinetics of reactive N-centered radical intermediates in multistep sequential AC electrosynthesis to minimize the competing reactions was discovered. Overall, this work provides direct evidence for the mechanism of AC electrolysis, and clarifies the underlying reasons for its high efficiency, which will benefit the rational design of AC electrosynthetic reactions.
Collapse
Affiliation(s)
- Qiongqiong Wan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Kaixiang Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xin Dong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xianqin Ruan
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Suming Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
29
|
Velasco-Rubio Á, Martínez-Balart P, Álvarez-Constantino AM, Fañanás-Mastral M. C-C bond formation via photocatalytic direct functionalization of simple alkanes. Chem Commun (Camb) 2023; 59:9424-9444. [PMID: 37417212 PMCID: PMC10392964 DOI: 10.1039/d3cc02790b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
The direct functionalization of alkanes represents a very important challenge in the goal to develop more atom-efficient and clean C-C bond forming reactions. These processes, however, are hampered by the low reactivity of the aliphatic C-H bonds. Photocatalytic processes based on hydrogen atom transfer C-H bond activation strategies have become a useful tool to activate and functionalize these inert compounds. In this article, we summarize the main achievements in this field applied to the development of C-C bond forming reactions, and we discuss the key mechanistic features that enable these transformations.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Pol Martínez-Balart
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Andrés M Álvarez-Constantino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Zhang S, Findlater M. Electrochemically Driven Hydrogen Atom Transfer Catalysis: A Tool for C(sp 3)/Si-H Functionalization and Hydrofunctionalization of Alkenes. ACS Catal 2023; 13:8731-8751. [PMID: 37441236 PMCID: PMC10334887 DOI: 10.1021/acscatal.3c01221] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Indexed: 07/15/2023]
Abstract
Electrochemically driven hydrogen atom transfer (HAT) catalysis provides a complementary approach for the transformation of redox-inactive substrates that would be inaccessible to conventional electron transfer (ET) catalysis. Moreover, electrochemically driven HAT catalysis could promote organic transformations with either hydrogen atom abstraction or donation as the key step. It provides a versatile and effective tool for the direct functionalization of C(sp3)-H/Si-H bonds and the hydrofunctionalization of alkenes. Despite these attractive properties, electrochemically driven HAT catalysis has been largely overlooked due to the lack of understanding of both the catalytic mechanism and how catalyst selection should occur. In this Review, we give an overview of the HAT catalysis applications in the direct C(sp3)-H/Si-H functionalization and hydrofunctionalization of alkenes. The mechanistic pathways, physical properties of the HAT mediators, and state-of-the-art examples are described and discussed.
Collapse
Affiliation(s)
- Sheng Zhang
- Institutes
of Physical Science and Information Technology, Key Laboratory of
Structure and Functional Regulation of Hybrid Materials of Ministry
of Education, Anhui University, Hefei, Anhui 230601, China
| | - Michael Findlater
- Department
of Chemistry and Biochemistry, University
of California Merced, Merced, California 95343, United States
| |
Collapse
|
31
|
Ni P, Yang L, Yang J, Cheng R, Zhu W, Ma Y, Ye J. para-Selective, Direct C(sp 2)-H Alkylation of Electron-Deficient Arenes by the Electroreduction Process. J Org Chem 2023; 88:5248-5253. [PMID: 37023248 DOI: 10.1021/acs.joc.2c02412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Direct para-selective C(sp2)-H alkylation of electron-deficient arenes based on the electroreduction-enabled radical addition of alkyl bromides has been developed under mild conditions. In the absence of any metals and redox agents, the simple electrolysis system tolerates a variety of primary, secondary, and tertiary alkyl bromides and behaves as an important complement to the directed alkylation of the C(sp2)-H bond and the classic Friedel-Crafts alkylation. This electroreduction process provides a more straightforward, environmentally benign, and effective alkylation method for electron-deficient arenes.
Collapse
Affiliation(s)
- Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiasheng Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiping Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
32
|
The future of organic electrochemistry current transfer. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
33
|
Liu X, Yang D, Liu Z, Wang Y, Liu Y, Wang S, Wang P, Cong H, Chen YH, Lu L, Qi X, Yi H, Lei A. Unraveling the Structure and Reactivity Patterns of the Indole Radical Cation in Regioselective Electrochemical Oxidative Annulations. J Am Chem Soc 2023; 145:3175-3186. [PMID: 36705997 DOI: 10.1021/jacs.2c12902] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.
Collapse
Affiliation(s)
- Xing Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Zhao Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yunkun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yichang Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hengjiang Cong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Yi-Hung Chen
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, Hubei, P. R. China.,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
34
|
Liu XH, Yu HY, Huang JY, Zhou XT, Xue C, Ji HB. Time-resolved EPR revealed C(sp 3)–H activation through a photo-enhanced phthalimide- N-oxyl (PINO) radical. Chem Commun (Camb) 2023; 59:243-246. [DOI: 10.1039/d2cc05906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The time-resolved EPR technique under operando photochemical conditions as an efficient strategy to investigate the fast formation of abundant long-lived PINO radicals and their activation of the C(sp3)–H reaction is reported.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 516003, China
| |
Collapse
|
35
|
Wang C, Song S, Chen Z, Shen D, Wang Z, Zhou J, Guo J, Li J. Phototriggered Self-Catalyzed Three-Component Minisci Reaction: A Route to β-C(sp 3) Heteroarylated Alcohols/Ethers. J Org Chem 2022; 87:16794-16806. [PMID: 36427193 DOI: 10.1021/acs.joc.2c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Herein, a visible-light-triggered photocatalyst-free radical cascade Minisci reaction of heteroarenes, alkenes, and water/alcohols to obtain diverse β-C(sp3) heteroarylated alcohols/ethers has been developed. Achieved under mild and simple conditions, this protocol is scalable and features broad substrate scope and functional group tolerance. Mechanistic studies demonstrate that the heteroarene can be served as a photocatalyst to engage single-electron transfer with persulfate.
Collapse
Affiliation(s)
- Chaodong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengjie Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dengjian Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhenhui Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jingjing Guo
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Research Institute, Zhejiang University of Technology, Taizhou 318000, P. R. China
| |
Collapse
|
36
|
An overview of solid-state electron paramagnetic resonance spectroscopy for artificial fuel reactions. iScience 2022; 25:105360. [DOI: 10.1016/j.isci.2022.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue X, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022; 61:e202210201. [DOI: 10.1002/anie.202210201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Deng Pan
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Kangping Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
38
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO
2
for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022; 61:e202207746. [DOI: 10.1002/anie.202207746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Yanwei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Guoqing Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
39
|
Alam T, Rakshit A, Dhara HN, Palai A, Patel BK. Electrochemical Amidation: Benzoyl Hydrazine/Carbazate and Amine as Coupling Partners. Org Lett 2022; 24:6619-6624. [PMID: 36069423 DOI: 10.1021/acs.orglett.2c02626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An electrochemical amidation of benzoyl hydrazine/carbazate and primary/secondary amine as coupling partners via concomitant cleavage and formation of C(sp2)-N bonds has been achieved. This methodology proceeds under metal-free and exogenous oxidant-free conditions producing N2 and H2 as byproducts. Mechanistic studies reveal the in situ generations of both acyl and N-centered radicals from benzoyl hydrazines and amines. The utility of this protocol is demonstrated through a large-scale, and synthesis of bezafibrate, a hyperlipidemic drug.
Collapse
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Angshuman Palai
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
40
|
Zhang LM, Yuan DF, Fu ZH, Li HR, Li M, Wen LR, Zhang LB. Electrochemical synthesis of α-thiocyanato-α-carbonyl sulfoxonium ylides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Wang Y, Zhao Z, Pan D, Wang S, Jia K, Ma D, Yang G, Xue XS, Qiu Y. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | - Zhiwei Zhao
- Nankai University College of Chemistry CHINA
| | - Deng Pan
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | | | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | | | - Xiao-Song Xue
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
42
|
Liu XH, Yu HY, Huang JY, Su JH, Xue C, Zhou XT, He YR, He Q, Xu DJ, Xiong C, Ji HB. Biomimetic catalytic aerobic oxidation of C-sp(3)-H bonds under mild conditions using galactose oxidase model compound Cu IIL. Chem Sci 2022; 13:9560-9568. [PMID: 36091900 PMCID: PMC9400635 DOI: 10.1039/d2sc02606f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Jia-Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Ji-Hu Su
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China Hefei 230026 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Yao-Rong He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Qian He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - De-Jing Xu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University Zhuhai 519082 China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
43
|
1,2-Amino oxygenation of alkenes with hydrogen evolution reaction. Nat Commun 2022; 13:4430. [PMID: 35908027 PMCID: PMC9338937 DOI: 10.1038/s41467-022-32084-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
1,2-Amino oxygenation of alkenes has emerged as one of the most straightforward synthetic methods to produce β-amino alcohols, which are important organic building blocks. Thus, a practical synthetic strategy for 1,2-amino oxygenation is highly desirable. Here, we reported an electro-oxidative intermolecular 1,2-amino oxygenation of alkenes with hydrogen evolution, removing the requirement of extra-oxidant. Using commercial oxygen and nitrogen sources as starting materials, this method provides a cheap, scalable, and efficient route to a set of valuable β-amino alcohol derivatives. Moreover, the merit of this protocol has been exhibited by its broad substrate scope and good application in continuous-flow reactors. Furthermore, this method can be extended to other amino-functionalization of alkenes, thereby showing the potential to inspire advances in applications of electro-induced N-centered radicals (NCRs). 1,2-Aminoxygenation of alkenes without extra oxidant is a practical yet challenging way to prepare β-amino alcohols. Here, the authors report an electro-oxidative route achieving such a goal with H2 evolution, exhibiting broad scope and application potential.
Collapse
|
44
|
Wang Y, Tang S, Yang G, Wang S, Ma D, Qiu Y. Electrocarboxylation of Aryl Epoxides with CO2 for the Facile and Selective Synthesis of β‐Hydroxy Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yanwei Wang
- Nankai University College of Chemistry CHINA
| | | | | | - Siyi Wang
- Nankai University College of Chemistry CHINA
| | - Dengke Ma
- Nankai University College of Chemistry CHINA
| | - Youai Qiu
- Nankai University College of Chemistry 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
45
|
Lawrence JMIA, Floreancig PE. Kinetics-Based Approach to Developing Electrocatalytic Variants of Slow Oxidations: Application to Hydride Abstraction-Initiated Cyclization Reactions. Chemistry 2022; 28:e202200335. [PMID: 35254690 DOI: 10.1002/chem.202200335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/28/2023]
Abstract
Electrochemical oxidant regeneration is challenging in reactions that have a slow redox step because the steady-state concentration of the reduced oxidant is low, causing difficulties in maintaining sufficient current or preventing potential spikes. This work shows that applying an understanding of the relationship between intermediate cation stability, oxidant strength, overpotential, and concentration on reaction kinetics delivers a method for electrochemical oxoammonium ion regeneration in hydride abstraction-initiated cyclization reactions, resulting in the development of an electrocatalytic variant of a process that has a high oxidation transition state free energy. This approach should be applicable to expanding the scope of electrocatalysis to include additional slow redox processes.
Collapse
Affiliation(s)
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
46
|
Mao W, Zhao H, Zhang M. Hydride transfer-initiated synthesis of 3-functionalized quinolines by deconstruction of isoquinoline derivatives. Chem Commun (Camb) 2022; 58:4380-4383. [PMID: 35297459 DOI: 10.1039/d2cc00127f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Under transition metal catalyst-free conditions, we herein present a hydride transfer-initiated construction of novel 3-(2-aminomethyl)aryl quinolines from N-isoquinolinium salts and 2-aminobenzaldehydes, proceeding with the merits of operational simplicity, high step and atom efficiency, good substrate and functional group compatibility, and mild conditions. The products are formed by reacting with the isoquinolyl motif as a two-carbon synthon along with the cleavage of its C3-N bond. Given the interesting applications of 3-aryl quinolines, the developed chemistry is anticipated to be further applied to develop new functional products.
Collapse
Affiliation(s)
- Wenhui Mao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
47
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
48
|
Triandafillidi I, Nikitas NF, Gkizis PL, Spiliopoulou N, Kokotos CG. Hexafluoroisopropanol-Promoted or Brønsted Acid-Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. CHEMSUSCHEM 2022; 15:e202102441. [PMID: 34978379 DOI: 10.1002/cssc.202102441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although the use of light stimulating organic transformations has been known for more than a century, there is an increasing research interest on expanding the established knowledge. While [2+2] cycloadditions are promoted photochemically, literature precedent on the reaction between alkynes and maleimides is limited and only a handful of examples exist, focusing mainly on N-aliphatic maleimides. Herein, the differences in reactivity between N-alkyl and N-aryl maleimides were identified, and the use of hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA) as viable solutions was proposed in order to achieve high yields. In the case of N-alkyl maleimides, both HFIP-mediated or TFA-promoted reactions were established using LED 370 nm irradiation, without the use of an external photocatalyst. In the case of N-aryl maleimides, thioxanthone (THX) was employed as the energy transfer photocatalyst along with LED 427 nm irradiation and HFIP. Mechanistic studies were performed, supporting the pivotal role of HFIP or TFA, in acquiring good to high yields in both classes of maleimides.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
49
|
Shi SH, Wei J, Liang CM, Bai H, Zhu HT, Zhang Y, Fu F. Electro-oxidation induced O–S cross-coupling of quinoxalinones with sodium sulfinates for synthesizing 2-sulfonyloxylated quinoxalines. Chem Commun (Camb) 2022; 58:12357-12360. [DOI: 10.1039/d2cc04524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel C2–O sulfonylation of quinoxalinones via electro-oxidation induced O–S coupling strategy under mild conditions was reported.
Collapse
Affiliation(s)
- Shi-Hui Shi
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Jian Wei
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chun-Miao Liang
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Huan Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Hai-Tao Zhu
- Shannxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yantu Zhang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| | - Feng Fu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, Shaanxi, China
| |
Collapse
|
50
|
Yu X, Bai W, Zhu J, Zhang Y, Zhang M, Wu J. Synthesis of Quinazolin-4(3 H)-ones via Ammonium Iodide-Catalyzed Dual Amination of sp 3 C—H Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|