1
|
Hastings C, Huffman LSX, Brennessel WW, Barnett BR. Generation and Reactivity of a High-Spin Iron(IV)-Oxo Complex That Is Stable at Ambient Temperatures. J Am Chem Soc 2025; 147:14031-14035. [PMID: 40238756 PMCID: PMC12046554 DOI: 10.1021/jacs.5c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Nature operates a variety of challenging oxidation reactions through intermediates bearing tetravalent iron centers bound to a terminal oxo ligand. The high-spin (S = 2) electronic configuration is believed to be particularly important in C-H activation reactions mediated by iron(IV)-oxo species. Coordination environments that promote high-spin ground states obviate the need for spin-state crossing to access this state and can promote rapid oxidation reactivity. As a result, however, synthetic iron(IV)-oxo species with S = 2 ground states tend to exhibit poor thermal stabilities, which has hampered a broader elucidation of their reactivity profiles. In this work, we report the synthesis of a remarkably stable high-spin iron(IV)-oxo complex that localizes the Fe═O unit within a rigid organic macrocycle. This design results in essentially unlimited stability at ambient temperatures and a half-life of 21 h at 70 °C in CH3CN, endowing this compound with the highest thermal stability for a high-spin FeIV═O complex reported to date. The ligand's steric profile shuts down intermolecular reactivity with potential O atom acceptors and hydrocarbons bearing weak C-H bonds, but proton-coupled electron transfer reactivity with 2,4,6-tri-tert-butylphenol (TTBP) occurs readily at room temperature despite its steric bulk.
Collapse
Affiliation(s)
| | - Lucy S. X. Huffman
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| | - Brandon R. Barnett
- Department of Chemistry, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Sen A, Sharma S, Rajaraman G. Bridging the Oxo Wall: A New Perspective on High-valent Metal-Oxo Species and Their Reactivity in Mn, Fe, and Co Complexes. Angew Chem Int Ed Engl 2025; 64:e202419953. [PMID: 39980408 DOI: 10.1002/anie.202419953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
The "oxo-wall" is a well-established concept in the area of bioinorganic chemistry, which refers to the instability of the terminal metal-oxo complexes in the +4 oxidation state, with tetragonal C4v symmetry beyond group 8 elements. This leads to a diverse and highly reactive chemistry of Co-oxo complexes, as evidenced in the literature, ranging from challenging C-H bond activation to efficient water oxidation. Despite extensive research on first-row terminal metal-oxo complexes and the "oxo-wall" concept, studies correlating the reactivity of these species across the periodic table remain scarce. In this work, using a combination of DFT and ab initio CASSCF calculations, we have explored the structure, bonding, and reactivity of [MIV/V(15-TMC)(O)(CH3CN)]m+ (M= Mn, Fe and Co) species. Our study reveals several intriguing outcomes: (i) while existing literature typically indicates the presence of either CoIV=O or CoIII-O• species beyond the wall, we propose a quantum mechanical mixture of these two species (termed as CoIV=O CoIII-O•), with the per cent of mixing dictated by ligand architecture and symmetry considerations; (ii) we observe that the oxyl radical character increases beyond the wall, correlating with larger Ntrans-M-O tilt angles; and (iii) we identify an inverse relationship between the percentage of M-O• character and the kinetic barriers for C-H bond activation. These findings offer a new perspective on the roles of oxidation states, spin states, and the nature of the metal ion in reactivity.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| | - Sunita Sharma
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay IIT Bombay, Powai -, 400076, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Jiang X, Guo Z, Xu J, Pan Z, Miao C, Chen Y, Li H, Oji H, Cui Y, Henkelman G, Xu X, Zhu L, Lin D. Sulfur Bridge Geometry Boosts Selective Fe IV═O Generation for Efficient Fenton-Like Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500313. [PMID: 40042037 PMCID: PMC12021096 DOI: 10.1002/advs.202500313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Indexed: 04/26/2025]
Abstract
High-valent iron-oxo species (FeIV═O) is a fascinating enzymatic agent with excellent anti-interference abilities in various oxidation processes. However, selective and high-yield production of FeIV═O remains challenging. Herein, Fe diatomic pairs are rationally fabricated with an assisted S bridge to tune their neighbor distances and increase their loading to 11.8 wt.%. This geometry regulated the d-band center of Fe atoms, favoring their bonding with the terminal and hydroxyl O sites of peroxymonosulfate (PMS) via heterolytic cleavage of O─O, improving the PMS utilization (70%), and selective generation of FeIV═O (>90%) at a high yield (63% of PMS) offers competitive performance against state-of-the-art catalysts. These continuous reactions in a fabricated device and technol-economic assessment further verified the catalyst with impressive long-term activity and scale-up potential for sustainable water treatment. Altogether, this heteroatom-bridge strategy of diatomic pairs constitutes a promising platform for selective and efficient synthesis of high-valent metal-oxo species.
Collapse
Affiliation(s)
- Xunheng Jiang
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Zhongyuan Guo
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Jiang Xu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Zhiyu Pan
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Chen Miao
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Yue Chen
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8576Japan
| | - Hiroshi Oji
- Synchrotron Radiation Research CenterNagoya UniversityNagoya464‐8601Japan
| | - Yitao Cui
- Institute of Advanced Science FacilitiesShenzhen518052China
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinTX 78712USA
| | - Xinhua Xu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Lizhong Zhu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Daohui Lin
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| |
Collapse
|
4
|
Pal N, Xiong J, Jahja M, Mahri S, Young VG, Guo Y, Swart M, Que L. A 5,000-fold increase in the HAT reactivity of a nonheme Fe IV=O complex simply by replacing two pyridines of the pentadentate N4Py ligand with pyrazoles. Proc Natl Acad Sci U S A 2025; 122:e2414962122. [PMID: 39899716 PMCID: PMC11831173 DOI: 10.1073/pnas.2414962122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025] Open
Abstract
A pentadentate [N5] ligand (N2Py2Pz) based on the classic N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework has been synthesized by replacing the two pyridylmethyl arms with corresponding (N-methyl)pyrazolylmethyl units to form [N-bis(1-methyl-2-pyrazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L1). The oxidation of the iron(II) precursor (N2Py2Pz)FeII(OTf)2 (1) with (tBuSO2)C6H4IO at 298 K leads to the formation of the [FeIV(O)(N2Py2Pz)]2+ intermediate (2) with a near-IR band at 750 nm (εM = 250 M-1cm-1) and a t1/2 ~ 2 min at 298 K. The introduction of the less basic pyrazolylmethyl ligands in place of two pyridylmethyl units generates FeIV=O intermediate 2 that exhibits a cyclohexane oxidation rate of 0.29 s-1 at 298 K, which is 5,000-fold faster than that observed for the classic FeIV(O)N4Py parent complex and 40,000-fold more reactive than the least reactive FeIV(O)N2Py2Q' complex in this series (Py = pyridine, Q' = isoquinoline) recently reported by Nordlander.
Collapse
Affiliation(s)
- Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Mehmet Jahja
- Institut de Química Computacional i Catàlisi, University of Girona, Girona17003, Spain
- Department of Chemistry, University of Girona, Girona17003, Spain
| | - Sami Mahri
- Institut de Química Computacional i Catàlisi, University of Girona, Girona17003, Spain
- Department of Chemistry, University of Girona, Girona17003, Spain
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi, University of Girona, Girona17003, Spain
- Department of Chemistry, University of Girona, Girona17003, Spain
- ICREA, Barcelona08010, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
5
|
Das A, Pal N, Xiong J, Young VG, Guo Y, Swart M, Que L. 10-Fold Increase in Hydrogen Atom Transfer Reactivity for a Series of S = 1 Fe IV═O Complexes Over the S = 2 [(TQA)Fe IV═O] 2+ Complex via Entropic Lowering of Reaction Barriers by Secondary Sphere Cycloalkyl Substitution. J Am Chem Soc 2025; 147:292-304. [PMID: 39699233 DOI: 10.1021/jacs.4c10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nonheme iron enzymes utilize S = 2 iron(IV)-oxo intermediates as oxidants in biological oxygenations. In contrast, corresponding synthetic nonheme FeIV═O complexes characterized to date favor the S = 1 ground state that generally shows much poorer oxidative reactivity than their S = 2 counterparts. However, one intriguing exception found by Nam a decade ago is the S = 1 [FeIV(O)(Me3NTB)]2+ complex (Me3NTB = [tris((N-methyl-benzimidazol-2-yl)methyl)amine], 1O) with a hydrogen atom transfer (HAT) reactivity that is 70% that of the S = 2 [FeIV(O)(TQA)]2+ complex (TQA = tris(2-quinolylmethyl)amine, 3O). In our efforts to further explore this direction, we have unexpectedly uncovered a family of new S = 1 complexes with HAT reaction rates beyond the currently reported limits in the tripodal ligand family, surpassing oxidation rates found for the S = 2 [FeIV(O)(TQA)]2+ complex by as much as an order of magnitude. This is achieved simply by replacing the secondary sphere methyl groups of the Me3NTB ligand with larger cycloalkyl-CH2 (R groups in 2OR) moieties ranging from c-propylmethyl to c-hexylmethyl. These 2OR complexes show Mössbauer data at 4 K and 1H NMR spectra at 193 and 233 K that reveal S = 1 ground states, in line with DFT calculations. Nevertheless, they give rise to the most reactive synthetic nonheme oxoiron(IV) complexes found to date within the tripodal ligand family. Our DFT study indicates transition state stabilization through entropy effects, similar to enzymatic catalysis.
Collapse
Affiliation(s)
- Abhishek Das
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Marcel Swart
- IQCC and Department of Chemistry, University of Girona, Girona 17003, Spain
- ICREA, Barcelona 08010, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Xue HZ, Wu JH, Wang BW, Gao S, Zhang JL. Coordination Induced Spin State Transition Switches the Reactivity of Nickel (II) Porphyrin in Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202413042. [PMID: 39560396 DOI: 10.1002/anie.202413042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Electron spin plays a critical role in chemical processes, particularly in reactions involving metal complexes with unpaired electrons. However, more definitive state-to-state experiments are needed to better elucidate the role of electronic spin. Herein, we chose nickel (II) 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin 1 as a catalyst, which allows switching from a low spin to a high spin state of Ni (II) center through an axial pyridine coordination, for electrocatalytic hydrogen evolution reaction (HER). When pyridine is present, we observed β-hydrogenation of porphyrin through electron transfer followed by proton transfer. In contrast, hydrogen evolution mainly occurs via the concerted proton-coupling electron transfer without pyridine coordination. Similar distinct spin-dependent selectivity was also observed in chemical reduction of 1 by CoCp2 with subsequent addition of pyridinium p-toluenesulfonate. Computational calculations using density functional theory demonstrated that the transition from low spin to high spin state enriches the ligand's electron density after one-electron reduction, leading to preferential protonation of β-periphery rather than meso-position or metal center.
Collapse
Affiliation(s)
- Hao-Zong Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jia-Hui Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Sun Yat-sen University, School of Chemistry and Chemical Engineering, Guangzhou, 510275, China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Paris JC, Cheung YH, Zhang T, Chang WC, Liu P, Guo Y. New Frontiers in Nonheme Enzymatic Oxyferryl Species. Chembiochem 2024; 25:e202400307. [PMID: 38900645 PMCID: PMC11983317 DOI: 10.1002/cbic.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Non-heme mononuclear iron dependent (NHM-Fe) enzymes exhibit exceedingly diverse catalytic reactivities. Despite their catalytic versatilities, the mononuclear iron centers in these enzymes show a relatively simple architecture, in which an iron atom is ligated with 2-4 amino acid residues, including histidine, aspartic or glutamic acid. In the past two decades, a common high-valent reactive iron intermediate, the S=2 oxyferryl (Fe(IV)-oxo or Fe(IV)=O) species, has been repeatedly discovered in NHM-Fe enzymes containing a 2-His-Fe or 2-His-1-carboxylate-Fe center. However, for 3-His/4-His-Fe enzymes, no common reactive intermediate has been identified. Recently, we have spectroscopically characterized the first S=1 Fe(IV) intermediate in a 3-His-Fe containing enzyme, OvoA, which catalyzes a novel oxidative carbon-sulfur bond formation. In this review, we summarize the broad reactivities demonstrated by S=2 Fe(IV)-oxo intermediates, the discovery of the first S=1 Fe(IV) intermediate in OvoA and the mechanistic implication of such a discovery, and the intrinsic reactivity differences of the S=2 and the S=1 Fe(IV)-oxo species. Finally, we postulate the possible reasons to utilize an S=1 Fe(IV) species in OvoA and their implications to other 3-His/4-His-Fe enzymes.
Collapse
Affiliation(s)
- Jared C. Paris
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - Tao Zhang
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Ave., Boston, MA 02215
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213
| |
Collapse
|
8
|
Mahto JK, Kayastha A, Kumar P. Expression, purification, kinetics, and crystallization of non-heme mononuclear iron enzymes: Biphenyl, Phthalate, and Terephthalate dioxygenases. Methods Enzymol 2024; 704:39-58. [PMID: 39300656 DOI: 10.1016/bs.mie.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Arpan Kayastha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
9
|
Rasheed W, Pal N, Aboelenen AM, Banerjee S, Oloo WN, Klein JEMN, Fan R, Xiong J, Guo Y, Que L. NMR and Mössbauer Studies Reveal a Temperature-Dependent Switch from S = 1 to 2 in a Nonheme Oxoiron(IV) Complex with Faster C-H Bond Cleavage Rates. J Am Chem Soc 2024; 146:3796-3804. [PMID: 38299607 PMCID: PMC11238627 DOI: 10.1021/jacs.3c10694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
S = 2 FeIV═O centers generated in the active sites of nonheme iron oxygenases cleave substrate C-H bonds at rates significantly faster than most known synthetic FeIV═O complexes. Unlike the majority of the latter, which are S = 1 complexes, [FeIV(O)(tris(2-quinolylmethyl)amine)(MeCN)]2+ (3) is a rare example of a synthetic S = 2 FeIV═O complex that cleaves C-H bonds 1000-fold faster than the related [FeIV(O)(tris(pyridyl-2-methyl)amine)(MeCN)]2+ complex (0). To rationalize this significant difference, a systematic comparison of properties has been carried out on 0 and 3 as well as related complexes 1 and 2 with mixed pyridine (Py)/quinoline (Q) ligation. Interestingly, 2 with a 2-Q-1-Py donor combination cleaves C-H bonds at 233 K with rates approaching those of 3, even though Mössbauer analysis reveals 2 to be S = 1 at 4 K. At 233 K however, 2 becomes S = 2, as shown by its 1H NMR spectrum. These results demonstrate a unique temperature-dependent spin-state transition from triplet to quintet in oxoiron(IV) chemistry that gives rise to the high C-H bond cleaving reactivity observed for 2.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nabhendu Pal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ahmed M Aboelenen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Saikat Banerjee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Williamson N Oloo
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Johannes E M N Klein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Gao Y, Wang G, Wang X, Dong X, Zhang X. Synchronously improved permeability, selectivity and fouling resistance of Fe-N-C functionalized ceramic catalytic membrane for effective water treatment: The critical role of Fe. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132888. [PMID: 37922578 DOI: 10.1016/j.jhazmat.2023.132888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Constructing catalytic membrane simultaneously displaying high permeability, selectivity and antifouling performance in water treatment remains challenging. Herein, the surface and pore channels of the ceramic membrane were co-functionalized with nitrogen doped carbon supported Fe catalyst (CN-F), and the Fe content was varied to investigate its effect on performance of CN-F coupled with peroxymonosulfate (PMS) activation (CN-F/PMS) for water treatment. Results confirmed the introduced Fe (in Fe-N coordination form) greatly enhanced the permeability, selectivity and fouling resistance of CN-F. Optimal CN-F3/PMS achieved 96.5% removal and 52.1% mineralization of sulfamethoxazole in short retention duration (2.7 min), whose performance was 5.4 and 6.7 times higher than that of nitrogen doped carbon functionalized ceramic catalytic membrane (CN/PMS) and CN-F3 filtration alone, respectively. CN-F3/PMS also efficiently inhibited fouling on both surface and pores with 2.8 and 2.4 times lower flux loss than that of CN/PMS and CN-F3 filtration alone, respectively. Moreover, CN-F3/PMS displayed superior performance in long-term treatment of real coking wastewater. The outstanding performance of CN-F was mainly attributed to the dual role of supported Fe, which served as hydrophilic site for enhanced water permeation and major active site for PMS adsorption and reduction into reactive species (mainly high-valent Fe(IV)=O species) towards pollutant elimination.
Collapse
Affiliation(s)
- Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Kajita Y, Kubo M, Arii H, Ishikawa S, Saito Y, Wasada-Tsutsui Y, Funahashi Y, Ozawa T, Masuda H. Preparations of trans- and cis- μ-1,2-Peroxodiiron(III) Complexes. Molecules 2023; 29:205. [PMID: 38202788 PMCID: PMC10780643 DOI: 10.3390/molecules29010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The iron(II) complex with cis,cis-1,3,5-tris(benzylamino)cyclohexane (Bn3CY) (1) has been synthesized and characterized, which reacted with dioxygen to form the peroxo complex 2 in acetone at -60 °C. On the basis of spectroscopic measurements for 2, it was confirmed that the peroxo complex 2 has a trans-μ-1,2 fashion. Additionally, the peroxo complex 2 was reacted with benzoate anion as a bridging agent to give a peroxo complex 3. The results of resonance Raman and 1H-NMR studies supported that the peroxo complex 3 is a cis-μ-1,2-peroxodiiron(III) complex. These spectral features were interpreted by using DFT calculations.
Collapse
Affiliation(s)
- Yuji Kajita
- Department of Applied Chemistry, Graduate School of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan;
| | - Masaki Kubo
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| | - Hidekazu Arii
- Department of Education, Graduate School of Education, University of Miyazaki, Gakuenkibanadai-Nishi, Miyazaki 889-2192, Japan;
| | - Shinya Ishikawa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| | - Yamato Saito
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| | - Yuko Wasada-Tsutsui
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
| | - Tomohiro Ozawa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| | - Hideki Masuda
- Department of Applied Chemistry, Graduate School of Engineering, Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392, Japan;
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan; (M.K.); (Y.W.-T.); (T.O.)
| |
Collapse
|
12
|
Hou K, Börgel J, Jiang HZH, SantaLucia DJ, Kwon H, Zhuang H, Chakarawet K, Rohde RC, Taylor JW, Dun C, Paley MV, Turkiewicz AB, Park JG, Mao H, Zhu Z, Alp EE, Zhao J, Hu MY, Lavina B, Peredkov S, Lv X, Oktawiec J, Meihaus KR, Pantazis DA, Vandone M, Colombo V, Bill E, Urban JJ, Britt RD, Grandjean F, Long GJ, DeBeer S, Neese F, Reimer JA, Long JR. Reactive high-spin iron(IV)-oxo sites through dioxygen activation in a metal-organic framework. Science 2023; 382:547-553. [PMID: 37917685 DOI: 10.1126/science.add7417] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/24/2023] [Indexed: 11/04/2023]
Abstract
In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O2 to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases. The framework reacts with O2 at low temperatures to form high-spin iron(IV) = O species that are characterized using in situ diffuse reflectance infrared Fourier transform, in situ and variable-field Mössbauer, Fe Kβ x-ray emission, and nuclear resonance vibrational spectroscopies. In the presence of O2, the framework is competent for catalytic oxygenation of cyclohexane and the stoichiometric conversion of ethane to ethanol.
Collapse
Affiliation(s)
- Kaipeng Hou
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jonas Börgel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Daniel J SantaLucia
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Hyunchul Kwon
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Hao Zhuang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | | | - Rachel C Rohde
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jordan W Taylor
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maria V Paley
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jesse G Park
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Ziting Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Xudong Lv
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Katie R Meihaus
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Marco Vandone
- Department of Chemistry, University of Milan, 20133 Milan, Italy
| | - Valentina Colombo
- Department of Chemistry, University of Milan, 20133 Milan, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), UdR Milano, Via Golgi 19, 20133 Milano, Italy
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - R David Britt
- Department of Chemistry, University of California, Davis, CA 95616, USA
- Miller Institute for Basic Research in Science, University of California, Berkeley CA 94720, USA
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri, Rolla, MO 65409, USA
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Li M, Li H, Ling C, Shang H, Wang H, Zhao S, Liang C, Mao C, Guo F, Zhou B, Ai Z, Zhang L. Highly selective synthesis of surface Fe IV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc Natl Acad Sci U S A 2023; 120:e2304562120. [PMID: 37695890 PMCID: PMC10515137 DOI: 10.1073/pnas.2304562120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/05/2023] [Indexed: 09/13/2023] Open
Abstract
High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
14
|
Song W, Xiao X, Wang G, Dong X, Zhang X. Highly efficient peroxymonosulfate activation on Fe-N-C catalyst via the collaboration of low-coordinated Fe-N structure and Fe nanoparticles for enhanced organic pollutant degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131596. [PMID: 37167867 DOI: 10.1016/j.jhazmat.2023.131596] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Supporting Fe catalysts on N doped carbon (Fe-N-C) renders a promising way towards peroxymonosulfate (PMS) activation for water decontamination, but constructing high-efficiency Fe-N-C remains challenging due to the insufficient understanding of the structure-performance relationship. Herein, the N doped carbon nanotube supported Fe catalysts (Fe-NCNT) were prepared towards PMS activation for organic pollutants removal, in which the Fe-N coordination number and Fe species were tuned through changing the pyrolysis temperature to study their roles in PMS activation. Results showed increasing the pyrolysis temperature converted the Fe-N4 structure in Fe-NCNT to low-coordinated Fe-N3 structure and produced Fe nanoparticles (FeNP, encapsulated in carbon). The Fe-NCNT with Fe-N3 and FeNP exhibited a remarkably high specific activity (0.119 L min-1 m-2), which was 1.8 times higher than that of Fe-NCNT with only Fe-N4 and obviously outperformed those of the state-of-the-art PMS activators. The low-coordinated structure and FeNP promoted the PMS reduction on Fe2+ of Fe-Nx for •OH and SO4•- production, which served as major oxidants for pollutants degradation. The experimental results and theoretical calculation corroborated the low-coordinated structure and FeNP jointly enhanced the PMS adsorption and electron density on Fe center, which accelerated electron transfer from Fe center to PMS for radical production.
Collapse
Affiliation(s)
- Wen Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinyu Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Gordon JB, Albert T, Yadav S, Thomas J, Siegler MA, Moënne-Loccoz P, Goldberg DP. Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O 2 Binding, and H-Atom Abstraction Reactivity. Inorg Chem 2023; 62:392-400. [PMID: 36538786 PMCID: PMC10194424 DOI: 10.1021/acs.inorgchem.2c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.
Collapse
Affiliation(s)
- Jesse B Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|