1
|
Tang WQ, Gu YW, Qi X, Zhou YQ, Li W, Xu M, Gu ZY. Directional regulation of one-dimensional channel length in metal-organic frameworks for efficient xylene isomer separation in gas chromatography. Anal Chim Acta 2025; 1353:343957. [PMID: 40221204 DOI: 10.1016/j.aca.2025.343957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
The separation of xylene isomers in capillary gas chromatography (GC) is essential and a significant challenge in analytical chemistry. Metal-organic frameworks (MOFs), as emerging porous materials, exhibit great potential for separation applications. However, the effective utilization of MOF-based stationary phases in GC is heavily constrained by their morphology and particle size. Larger particles lead to uneven coating on the inner wall of chromatographic columns, reducing the mass transfer efficiency and diffusion of analytes, which severely compromises chromatographic separation performance. Reducing the channel length of the MOFs are crucial methods for the development of GC stationary phases. In this study, by optimizing the amount of pyridine modulator, we successfully reduced the length of the MOF-74 nanorods, subsequently reduced the one-dimensional channel length in MOF-74. Compared to the longer hexagonal-shaped MOF-74-1, the nano-MOF-74-3 stationary phase showed a more uniform deposition on the inner wall of the capillary column. The MOF-74-3 column provided high separation performance for xylene isomers, achieving a separation factor of 6.11 for pX/oX, which outperformed both MOF-74-1 and commercial columns such as HP-5MS and VF-WAXMS. The MOF-74-3 column demonstrated excellent separation performance after five injections of xylene isomers, indicating good reproducibility in the separation process. The xylene molecules exhibited a smaller mass transfer coefficient and faster diffusion in nano-MOF-74-3 than in MOF-74-1 column, effectively reducing chromatographic peak tailing. Moreover, the MOF-74-3 column also provided baseline separation for various alkane isomers and substituted benzene isomers. This work successfully decreased the aspect ratio of MOF-74-1 and MOF-74-3 from 2.6 to 1.1 through the addition of pyridine. The high-efficiency MOF-74-3 separation column achieved high-resolution separation of xylene isomers, alkane isomers, and substituted benzene isomers. This method offerd a new direction for the design of high-resolution stationary phases, which were essential for advancing GC-based analytical methods.
Collapse
Affiliation(s)
- Wen-Qi Tang
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yue-Wen Gu
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiang Qi
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ye-Qin Zhou
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wang Li
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Xu
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Zhi-Yuan Gu
- Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Ren M, Zhao B, Li C, Fei Y, Wang X, Fan L, Hu T, Zhang X. Defect-engineered indium-organic framework displays the higher CO 2 adsorption and more excellent catalytic performance on the cycloaddition of CO 2 with epoxides under mild conditions. Mol Divers 2025; 29:2017-2031. [PMID: 39141206 DOI: 10.1007/s11030-024-10956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(μ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(μ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.
Collapse
Affiliation(s)
- Meiyu Ren
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chong Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, People's Republic of China.
| |
Collapse
|
3
|
Dong LZ, Liao ZY, Bao LX, Yang MC, Bai B, Yuan B, Li RH, Miao P, Yan Y, Lan YQ. Modulating Adsorption Kinetics in a 3D-Interconnected Nanocavity Framework with Narrow Apertures for Enhanced Propylene Separation. J Am Chem Soc 2025. [PMID: 40388482 DOI: 10.1021/jacs.5c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The energy-intensive distillation currently used for C3H6/C3H8 separation─challenged by their small boiling point difference─could be improved via adsorption. However, most porous materials face a trade-off among C3H6 adsorption capacity, selectivity, and kinetics. Herein, we report the synthesis and characterization of a novel metal-organic framework, denoted NiPz4Bim, constructed from a weak Lewis-base pyrazole-based ligand Pz4Bim and the weak Lewis-acid Ni2+, featuring 3D pore structures with nanocavities (∼1 nm) connected by very narrow apertures (∼5 Å). This framework enables efficient C3H6/C3H8 separation by combining selective adsorption with enhanced diffusion kinetics for C3H6. Specifically, adsorption capacities at 298 K and 1 bar were recorded as 3.24 mmol g-1 for C3H6 and 2.74 mmol g-1 for C3H8, with selectivity ratios of up to 2.42. Kinetic uptake analysis using the effective diffusion coefficient (D') revealed a significant difference in the adsorption rates of the two gases, corresponding to a kinetic selectivity of 51.96. Neutron powder diffraction, coupled with grand canonical Monte Carlo simulations and density functional theory calculations, directly visualizes the binding domains of adsorbed gases and the dynamics and energetics of the host-guest interactions. These studies reveal that the unique nanosized cavities with narrow apertures in NiPz4Bim facilitates van der Waals and π-π interactions with C3H6, enabling selective trapping over C3H8. Crucially, NiPz4Bim exhibits high stability and reusability in multicycle tests, demonstrating its practical viability. This work highlights the importance of pore-geometry engineering in framework materials for the efficient separation of structurally similar molecules, with immediate implications for sustainable olefin production.
Collapse
Affiliation(s)
- Long-Zhang Dong
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Zi-Yi Liao
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ling-Xiang Bao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P.R. China
| | - Ming-Chan Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Bo Bai
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P.R. China
| | - Bao Yuan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P.R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ping Miao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P.R. China
| | - Yong Yan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, P.R. China
| |
Collapse
|
4
|
Wang ZF, Fei Y, Qin A, Zhang S, Zhang X. Robust Fluorine-Decorated {Yb 4}-Organic Framework for C 2H 6 Capture and Efficient Catalytic Performance on CO 2-Epoxide Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40340319 DOI: 10.1021/acsami.5c07205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Fluorine-functionalized MOFs have excellent unusual properties such as gas adsorption and separation and catalysis, but the functionalization of existing ligands and the self-assembly of functionalized MOFs remain a challenge. Herein, we report a robust fluorine-functionalized nanochannel-based ytterbium(III)-organic framework of {(Me2NH2)[Yb4(CFPDA)2(μ2-HCO2)(μ3-OH)2(H2O)2]·4DMF·5H2O}n (NUC-122, H5CFPDA = 4,4'-(4-(4-carboxy-2-fluorophenyl)pyridine-2,6-diyl)diisophthalic acid) with [Yb4(μ3-OH)2(μ2-HCO2)(H2O)2] clusters as secondary building units (SBUs). Compared to reported anionic skeleton of [Yb4(BDCP)2(μ2-HCO2)(μ3-OH)2(H2O)2]n (NUC-38Yb), the void volume of NUC-122 (54.1%) is slightly lower than that of NUC-38Yb (56.7%), which is caused by functionalized fluorine atoms on the ligand of H5BDCP. Because of the introduction of fluorine groups, activated NUC-122a displays a higher adsorption capacity for CO2 along with the value of 117.5 cm3/g (273 K) and 63.1 cm3/g (298 K). Further, activated NUC-122a has a high ethane (C2H6) separation performance over the mixture of C2H6/C2H4 with the selectivity of 1.6, enabling the purity of recycled C2H4 to reach 99.99%. Moreover, the CO2-epoxide cycloaddition could be efficiently catalyzed by NUC-122a under comparatively mild conditions. Under optimal catalytic conditions of 0.13 mol % MOFs, 1.69 mol % n-Bu4NBr, 0.7 MPa CO2, 70 °C, and 3 h, the conversion yield of SO to SC catalyzed by NUC-122a is 26% higher than that catalyzed by NUC-38Yb. The excellent separation and catalytic performance should be attributed to the combined diverse functional groups such as Lewis acidic sites of Yb3+, Lewis basic sites of -F and Npyridine atoms, and electrophilic H-bond donors (HBD) of μ3-OH and μ2-HCO2 moieties. Hence, this work not only reports a fluorine-functionalized multifunctional material but also provides an in-depth insight into the synthetic strategy of functionalized metal-organic host frameworks.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yang Fei
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Aimiao Qin
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Shuhua Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Wang W, Chen Y, Bu X, Feng P. Heterometallic Aluminum Metal-Organic Frameworks. J Am Chem Soc 2025; 147:15146-15156. [PMID: 40285722 DOI: 10.1021/jacs.4c18251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
From spinel gemstone (MgAl2O4) to layered double hydroxides, nature has long relied on combinations between charge-complementary metal ions such as divalent metal ions (M2+) and Al3+ to create diverse valuable materials. However, for metal-organic frameworks (MOFs), heterometallic combinations such as Mg-Al are conspicuously absent. Here, we report a breakthrough in the synthesis of heterometallic Al-MOFs containing M2+/Al3+ trimeric clusters (M = Mg, Mn, Co, Ni). The synergistic effect between M(II) chlorides and aluminum lactate plays a critical role in the cooperative crystallization of M2+ and Al3+ into pore-space-partitioned MOFs (partitioned acs topology) with fast crystallization kinetics (about 3 h). New M2+/Al3+ MOFs exhibit highly tunable porosity and extraordinarily high uptakes for CO2 and small hydrocarbon molecules (112 cm3/g for CO2, 176 cm3/g for C2H2, 156 cm3/g for C2H4, and 163 cm3/g for C2H6) at 298 K and 1 bar. The high uptake capacity coupled with high selectivity (up to 8.5 for C2H2/CO2, 10.8 for C2H2/C2H4) gives rise to efficient separations of either C2H2/CO2 or C2H2/C2H4 gas mixtures, as confirmed by experimental breakthrough experiments.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Liu C, He Y, Wu S, Shi M, Hu J, Zhu W, Gu Z, Zhang Y, Wang L. C 2H 2/CO 2 Separation by a Carborane Hybrid 2D Metal-Organic Framework. Inorg Chem 2025. [PMID: 40326546 DOI: 10.1021/acs.inorgchem.5c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The separation of acetylene (C2H2) from carbon dioxide (CO2) is important in industry but challenging due to their similar physical properties. Herein, a boron-rich 2D metal-organic framework ZNU-14 based on the carborane backbone was readily prepared by the supramolecular assembly of Zn2+, p-C2B10H10-(COOH)2, and di(pyridin-4-yl) amine under mild conditions for C2H2/CO2 separation. ZNU-14 displays a straight 1D channel (7.6 × 12.5 Å2) with an electronegative pore surface. Gas adsorption isotherms show that ZNU-14 has a good C2H2 adsorption capacity of 43.6 cm3 g-1, 181% of the CO2 uptake capacity. The calculated ideal adsorbed solution theory (IAST) selectivity is as high as 6.3-9.7, outperforming many popular materials. The moderate C2H2 adsorption heat of 34.3 kJ mol-1 facilitates the straightforward desorption and regeneration of ZNU-14. Furthermore, the theoretical study confirmed the stronger binding of C2H2 compared to that of CO2. The practical C2H2/CO2 separation performance was fully demonstrated by breakthrough experiments with excellent dynamic selectivity and recyclability under various conditions.
Collapse
Affiliation(s)
- Changhong Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Yingzhi He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Shuangshuang Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Mingcheng Shi
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jianbo Hu
- Zhejiang Lab, Hangzhou 311100, PR China
| | - Weidong Zhu
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, PR China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, PR China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| |
Collapse
|
7
|
Xiong XH, Song L, Wang W, Zhu XY, Meng LL, Zheng HT, Wei ZW, Tan LL, Huang XC, Su CY. Synthesis and Modification of Formate Zr-MOF (ZrFA) Toward Scalable and Cost-Cutting Gas Separation. Angew Chem Int Ed Engl 2025:e202505978. [PMID: 40317648 DOI: 10.1002/anie.202505978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
The mass production of metal-organic frameworks (MOFs) with affordable cost is highly demanding yet limited for commercial applications, e.g., purification of polymer-grade ethylene (C2H4) via acetylene (C2H2) and carbon dioxide (CO2) removal faces the challenge of developing low-cost and large-scale physisorbents with efficiency and recyclability. Herein, we developed a viable synthetic protocol to scale-up a series of ultramicroporous Zr-MOFs (ZrFA/ZrFA-D/ZrFA-D-Cu(I)) with the simplest monocarboxylate, formate (FA), through consecutive production by recycling solvent/modulator. Besides a size-exclusion effect disfavoring C2H4 adsorption, introduction of defective and Cu(I) sites was found to enhance gas affinity and uptake capacity. A comprehensive evaluation of C2H4 separation and economic efficiency has been proposed, suggesting the improvement of C2H2 uptake capacity is effective for the binary C2H2/C2H4 separation, while the separation process of the ternary C2H2/CO2/C2H4 mixtures depends on subtle tradeoff of complex factors and limited by challenging CO2/C2H4 separating. Notably, the large-scale separation has been testified to significantly improve separation efficiency, and the low-cost preparation benefits high economic efficiency. The distinct C2H2/C2H4/CO2 adsorption mechanism in ZrFA/ZrFA-D/ZrFA-D-Cu(I) has been elucidated by the theoretical calculations. This work may shed a light on the future C2H4 purification technology by pushing MOF-syntheses toward low-cost, scale-up, and recyclable production.
Collapse
Affiliation(s)
- Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Liang Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Yan Zhu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liu-Li Meng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui-Ting Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhang-Wen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Li-Lin Tan
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangzhou, 510275, China
| | - Xiao-Chun Huang
- Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
8
|
Jiang J, Wan H, Zhang J, Shi S, Wang Y, Dong H, Chen D, Liao K, Xu Q, Lu J. Engineered Polymeric Microspheres with Synergistic Hydrogen-Bonding Nanotraps and Multisite Adsorption for Ultrafast Herbicide Decontamination. Angew Chem Int Ed Engl 2025; 64:e202504349. [PMID: 40045889 DOI: 10.1002/anie.202504349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
The ultrafast removal of trace herbicides like paraquat (PQ) and diquat (DQ) from water is urgent yet challenging due to their highwater stability and strong-binding properties. Here, efficient PQ and DQ removal based on hydrogen-bonding nanotraps dominant multisite adsorption were developed. Two crosslinked polymeric microspheres, βCD-PF and γCD-PF, were synthesized from cyclodextrins (CDs) and hexafluorocyclotriphosphazene (HFP). The γCD-PF microsphere with sufficient hydrogen-bonding nanotraps on the pore surface prompts adsorption kinetics constants of PQ and DQ up to 127.09 and 192.64 g mg-1 min-1, achieving 99% removal efficiency for PQ and DQ within 5 s. γCD-PF exhibits exceptional selectivity for PQ and DQ over larger competing dyes. Importantly, trace PQ (1 ppm) can be effectively treated with γCD-PF to achieve a concentration far below the US Environmental Protection Agency (EPA) standard (0.003 ppm) within 30 s. The ultrafast adsorption is driven by a multisite mechanism: electrostatic and π-π interactions from HFP promote adsorbate accumulation on the CD surface, while the high-density hydrogen-bonding nanotraps in γCD-PF enhance hydrogen bond strength, enabling rapid capture. This work provides a valuable strategy for designing ultrafast adsorbents for effective herbicide removal from water.
Collapse
Affiliation(s)
- Jicai Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jinchang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Shuai Shi
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Yaru Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Huilong Dong
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P.R. China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
9
|
Zhang J, Zheng H, Chen F, Wang Z, Li H, Sun F, Zhao D, Valtchev V, Qiu S, Fang Q. High-Connectivity 3D Covalent Organic Frameworks with pdp Net for Efficient C 2H 2/CO 2 Separation. Angew Chem Int Ed Engl 2025; 64:e202500161. [PMID: 39963876 DOI: 10.1002/anie.202500161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
High-connectivity 3D covalent organic frameworks (COFs) have garnered significant attention due to their structural complexity, stability, and potential for functional applications. However, the synthesis of 3D COFs using mixed high-nodal building units remains a substantial challenge. In this work, we introduce two novel 3D COFs, JUC-661 and JUC-662, which are constructed using a combination of D2h-symmetric 8-nodal and D3h-symmetric 6-nodal building blocks. These COFs feature an unprecedented [8+6]-c pdp net with rare mesoporous polyhedral cages (~3.9 nm). Remarkably, JUC-661 and JUC-662 exhibit outstanding separation capabilities, achieving adsorption selectivities of 4.3 and 5.9, respectively, for C2H2/CO2 (1/1, v/v) mixtures. Dynamic breakthrough experiments confirm their excellent separation capability, maintaining this performance even under conditions of 100 % humidity. Monte Carlo simulations and DFT calculations indicate that the exceptional adsorption performance is attributed to the well-defined pore cavities of the COFs, with fluorination of the building unit further enhancing C2H2 selectivity through improved electrostatic and host-guest interactions. This study expands the structural diversity of COFs and highlights their potential for low-energy separation processes.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haorui Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zitao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Valentin Valtchev
- ZeoMat Group, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
- Université de Caen Normandie, ENSICAEN, CNRS, LCS, Laboratoire Catalyse et Spectrochimie, 14000, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
10
|
Xiao J, Zhu Z, Zhang M, Huang Y, Zhang TC, Yuan S. Efficient One-Step Purification of Methanol-to-Olefin Products Using a Porphyrinyl MOF to Achieve Record C 2H 4 and C 3H 6 Productivity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21630-21642. [PMID: 40156512 DOI: 10.1021/acsami.4c21500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The separation of methanol-to-olefin (MTO) products to obtain high-purity ethylene (C2H4) and propylene (C3H6) is a challenging yet critical task, as these compounds are essential industrial raw materials for polymer synthesis. However, developing adsorbents with high selectivity and productivity for C2H4/C3H6 remains a significant challenge and an urgent necessity. In this study, a porphyrinyl metal-organic framework (MOF), Al-TCPP, was developed for the simultaneous recovery of C3H6 and C2H4 through a one-step adsorption-desorption process. Benefiting from its well-developed microporous structure and abundant N- and O-accessible sites, Al-TCPP demonstrated exceptional adsorption capacities and selectivity for C3H6 and ethane (C2H6) over C2H4 under ambient conditions. The adsorption capacities (in cm3·g-1) reached 162.4 for C3H6 and 118.5 for C2H6 at 298 K and 100 kPa. The ideal adsorbed solution theory (IAST) selectivity values for C3H6/C2H4 and C2H6/C2H4 were 10.1 and 1.8, respectively. Thermodynamic studies and theoretical calculations revealed stronger interactions between C2H6 and C3H6 molecules with the Al-TCPP framework than with C2H4. Systematic breakthrough experiments demonstrated outstanding separation performance for binary C2H6/C2H4 and C3H6/C2H4 mixtures, as well as ternary C3H6/C2H6/C2H4 mixtures, achieving record productivities of 150.2 and 86.5 L·kg-1 for polymer-grade C2H4 (≥99.9%) and C3H6 (≥99.5%), respectively. Notably, the separation performance remained stable under variable flow rates, temperatures, humidities, and multiple adsorption-desorption cycles. Overall, this study highlighted Al-TCPP as a highly competitive adsorbent for addressing the challenges in MTO product separation. Moreover, it offered valuable insights into the design of MOFs with heteroatom-rich accessible sites for efficient separation of low-carbon hydrocarbons.
Collapse
Affiliation(s)
- Jianfei Xiao
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenliang Zhu
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yaoqi Huang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tian Cheng Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Hao YZ, Shao K, Zhang X, Yu YH, Liu D, Wen HM, Cui Y, Li B, Chen B, Qian G. Pore Space Partition Enabled by Lithium(I) Chelation of a Metal-Organic Framework for Benchmark C 2H 2/CO 2 Separation. J Am Chem Soc 2025; 147:11257-11266. [PMID: 40111185 DOI: 10.1021/jacs.4c18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Adsorptive separation of acetylene (C2H2) from carbon dioxide (CO2) offers a promising approach to purify C2H2 with low-energy footprints. However, the development of ideal adsorbents with simultaneous high C2H2 adsorption and selectivity remains a great challenge due to their very small molecular sizes and physical properties. Herein, we report a lithium(I)-chelation strategy for pore space partition (PSP) in a microporous MOF (Li+@NOTT-101-(COOH)2) to achieve simultaneous high C2H2 uptake and selectivity. The chelation model of Li+ ions within the framework was visually identified by single-crystal X-ray diffraction studies. The immobilized Li+ ions were found to have two functions: (1) partitioning large pore cages into smaller ones while maintaining high surface area and (2) providing specific binding sites to selectively take up C2H2 over CO2. The resulting Li+@NOTT-101-(COOH)2 exhibits a rare combination of a simultaneous high C2H2 capture capacity (205 cm3 g-1) and C2H2/CO2 selectivity (13) at ambient conditions, far surpassing that of NOTT-101-(COOH)2 (148 cm3 g-1 and 3.8, respectively) and most top-tier materials reported. Theoretical calculations and gas-loaded SCXRD studies reveal that the chelated Li+ ions combined with the segmented small cages can selectively bind with a large amount of C2H2 through the unique π-complexation, accounting for the improved C2H2 uptake and selectivity. Breakthrough experiments validated its excellent separation capacity for actual C2H2/CO2 mixtures, providing one of the highest C2H2 productivities of 118.9 L kg-1 (>99.5% purity) in a single adsorption-desorption cycle.
Collapse
Affiliation(s)
- Yi-Zhan Hao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Shao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Yi-Hong Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bin Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Yin X, Chen J, Li X, He Q, Zhang J, Shu Y, Wang J, Chen B, Qiu H. 1D Metal Mediated Hydrogen Bonded Rods with Rich Phenyl Groups for Highly Efficient Oil Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500066. [PMID: 40095341 DOI: 10.1002/smll.202500066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
In this work, a novel 1D metal-mediated hydrogen-bonded framework with rich phenyl groups is first synthesized employing Co2+ and dibenzoylmethane (DBM) as precursors, which are named HOF-Co-DBM and exhibit exceptional thermal stability, excellent chemical durability, and super hydrophobicity. These distinctive properties can be attributed to the high density, robust Co─O coordination bonds, and the presence of strong hydrogen bonds (O─H─O─C) characterized by short bond distances, which contribute to its close-packed structure. Additionally, the benzene rings flanking the framework further enhance its hydrophobicity. The HOF-Co-DBM is subsequently integrated into a polyurethane (PU) sponge, resulting in exceptional oil removal performance. This study demonstrates the potential for preparing ultra-stable and superhydrophobic hydrogen-bonded organic framework materials with a wide range of applications.
Collapse
Affiliation(s)
- Xue Yin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qifang He
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Junping Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| |
Collapse
|
13
|
Liu Q, Ren J, Zhang Z, Li H, Zhu N, Zhao D. Mobile Constituent-Boosted Dynamic Separation of C 2H 2/C 2H 4/CO 2 Ternary Mixtures in Metal-Organic Frameworks. J Am Chem Soc 2025; 147:9273-9282. [PMID: 40043078 DOI: 10.1021/jacs.4c15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The separation of acetylene (C2H2), ethylene (C2H4), and carbon dioxide (CO2) is critical in the chemical industry, driven by the increasing demand for high-purity C2H2 and C2H4. While metal-organic frameworks (MOFs) offer an energy-efficient approach for adsorptive gas separation, achieving sub-angstrom precision in pore size adjustment remains challenging. In this work, we leverage two synergistic mechanisms in a double-interpenetrated framework: (1) global structural flexibility, arising from dynamic displacement of subnetworks to tailor pore dimensions, and (2) local flexibility, enabled by counterion and ligand rotation, to modulate the aperture binding affinity for precise molecular discrimination. A series of isostructural MOFs, NUS-33-CF3SO3 and NUS-34-BF4, were designed to enable one-step purification of C2H4 and concurrent recovery of C2H2 from ternary gas mixtures. Within pores of optimal dimensions, the synergistic interplay between counterion-mediated host-guest interactions and local framework adaptability enables precise and simultaneous regulation of static and kinetic gas adsorption properties. Notably, NUS-34-BF4 achieves a dynamic C2H4 productivity of 2.62 mmol/g and a C2H2 uptake of 1.26 mmol/g. This study highlights the pivotal yet underexplored role of counterions as dynamic gatekeepers, offering a tunable strategy to engineer pore environments in flexible MOFs for advanced gas separations.
Collapse
Affiliation(s)
- Qixing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Nengxiu Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
14
|
Wang X, Hu T, Fan L, Qin QP, Zhang X. A Precise Preparation Strategy for 2D Nanoporous Thulium-Organic Framework: High Catalytic Performance in CO 2-Epoxide Cycloaddition and Knoevenagel Condensation. Inorg Chem 2025; 64:4461-4471. [PMID: 39985460 DOI: 10.1021/acs.inorgchem.4c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Efficient conversion of carbon dioxide (CO2) into high-value chemicals is viewed as one of the most promising approaches for solving the problem of an energy shortage and serious environment pollution. However, design and synthesis of confined multifunctional catalysts with in situ engineered task-specific sites and nanoporous environments remain a complex and challenging task due to a lack of in-depth understanding of their structure and reaction mechanism. Herein, we report a highly robust 2D nanoporous framework of {[Tm(HFPDC)(DMF)2]·DMF·H2O}n (NUC-120) (H4FPDC = 4,4'-(4-(4-fluorophenyl)pyridine-2,6-diyl)diisophthalic acid). The thermally activated host framework of [Tm(HFPDC)]n (NUC-120a) has the following two merits: (i) nanoporous structure, (ii) massive quantity of functional sites. Moreover, NUC-120 and activated NUC-120a display high thermal and chemical stability, which have been proved by TGA and the soaking experiments in acid-base water and most organic solvents. Catalytic experiments proved that NUC-120a, in the presence of the n-Bu4NBr cocatalyst could efficiently catalyze the coupling reaction of CO2 and epoxides under comparatively mild conditions. Furthermore, NUC-120a also displays high catalytic performance in the Knoevenagel condensation reactions of aldehydes and malononitrile, which should be because the coexisting Lewis acidic and basic sites can separately activate aldehyde and malononitrile molecules. Thereby, this work further provides insight that desired functional materials can be generated by using the existing suitable secondary building units (SBUs) and meticulously regulating the growth environments.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Tuoping Hu
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Liming Fan
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Xiutang Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
15
|
Hou T, Wang H, Zhang YY, Di Z, Li CP. A High-Stability Co-MOF with Open Metal Sites for C 2H 2/CO 2/CH 4 Separation. Inorg Chem 2025; 64:4202-4208. [PMID: 39964100 DOI: 10.1021/acs.inorgchem.5c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
One-step purification of C2H2 from ternary mixtures (C2H2, CO2, and CH4) can significantly reduce the energy consumption of the separation process, but it is extremely challenging. A new Co-MOF (TNU-BTTB-1) with a three-dimensional (3D) framework was synthesized, which displays high thermal stability, retaining its structural integrity at temperatures up to 400 °C. The structure possesses rich accessible open metal sites in the porous walls and shows high uptake for C2H2 (37.4 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (20.1) and CO2 (4.9) at 298 K and 100 kPa. Dynamic breakthrough studies show that it exhibits excellent C2H2 separation from C2H2/CO2/CH4 three-component mixtures.
Collapse
Affiliation(s)
- Tianyi Hou
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - He Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuan-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhengyi Di
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Cheng-Peng Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
16
|
Lu M, Zhao Z, Tang Y, Wang Y, Zhang F, Li J, Yang J. A Lewis basic site rich metal-organic framework featuring a hydrogen-bonded acetylene nano-trap for the efficient separation of C 2H 2/CO 2. Dalton Trans 2025; 54:2812-2818. [PMID: 39807081 DOI: 10.1039/d4dt03411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The physical separation of C2H2 from CO2 on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for C2H2/CO2 separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique C2H2 nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward C2H2 molecules. This material exhibits a good acetylene capacity of 55.31 cm3 g-1 and high C2H2/CO2 selectivity of 7.0 under ambient conditions. We have combined in situ IR spectroscopy and in-depth theoretical calculations to unravel the synergistic interactions driven by the high density of accessible oxygen and nitrogen sites. Furthermore, dynamic breakthrough experiments confirmed the capability of TUTJ-201Ni for the separation of binary C2H2/CO2 mixtures. This study on Ni-based MOFs will enrich Lewis basic site rich MOFs for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Mengyue Lu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Zhiwei Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yuhao Tang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Yating Wang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jiangfeng Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
17
|
Guo ZH, Wu XQ, Wu YP, Li DS, Yang GP, Wang YY. A Scalable Pore-space-partitioned Metal-organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification. Angew Chem Int Ed Engl 2025; 64:e202421992. [PMID: 39668752 DOI: 10.1002/anie.202421992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (>99.9 %) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C-H⋅⋅⋅O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.
Collapse
Affiliation(s)
- Zhen-Hua Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang, 443002, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
18
|
Guo L, Han X, Li J, Li W, Chen Y, Manuel P, Schröder M, Yang S. Boosting Adsorption and Selectivity of Acetylene by Nitro Functionalisation in Copper(II)-Based Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417183. [PMID: 39627161 PMCID: PMC11795735 DOI: 10.1002/anie.202417183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Purification and storage of acetylene (C2H2) are important to many industrial processes. The exploitation of metal-organic framework (MOF) materials to address the balance between selectivity for C2H2 vs carbon dioxide (CO2) against maximising uptake of C2H2 has attracted much interest. Herein, we report that the synergy between unsaturated Cu(II) sites and functional groups, fluoro (-F), methyl (-CH3), nitro (-NO2) in a series of isostructural MOF materials MFM-190(R) that show exceptional adsorption and selectivity of C2H2. At 298 K, MFM-190(NO2) exhibits an C2H2 uptake of 216 cm3 g-1 (320 cm3 g-1 at 273 K) at 1.0 bar and a high selectivity for C2H2/CO2 (up to ~150 for v/v = 2/1) relevant to that in the industrial cracking stream. Dynamic breakthrough studies validate and confirm the excellent separation of C2H2/CO2 by MFM-190(NO2) under ambient conditions. In situ neutron powder diffraction reveals the cooperative binding, packing and selectivity of C2H2 by unsaturated Cu(II) sites and free -NO2 groups.
Collapse
Affiliation(s)
- Lixia Guo
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Jiangnan Li
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| | - Weiyao Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Pascal Manuel
- ISIS FacilityRutherford Appleton LaboratoryChiltonOX11 0QXUK
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
19
|
Du GT, Wang Y, Liu TL, Yue ZQ, Ma YN, Xue DX. Isoreticular Contraction in Dicopper Paddle-Wheel-Based Metal-Organic Frameworks to Enhance C 2H 2/CO 2 Separation. Chemistry 2025; 31:e202403478. [PMID: 39532668 DOI: 10.1002/chem.202403478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Achieving a balance between high selectivity and uptake is a formidable challenge for the purification of acetylene from mixtures with carbon dioxide, particularly when seeking to maximize both C2H2 adsorption capacity and C2H2/CO2 separation selectivity in crystalline porous materials. In this study, leveraging the principles of reticular chemistry, we selected two tetracarboxylate-based linkers and combined them with Cu2+ ions to synthesize two isoreticular dicopper paddle-wheel-based metal-organic frameworks (MOFs): Cu-TPTC (terphenyl-3,3',5,5'-tetracarboxylic acid, H4TPTC) and Cu-ABTC (3,3,5,5-azobenzenetetracarboxylic acid, H4ABTC). The structural and sorption analyses revealed that Cu-ABTC, despite having slightly smaller pores due to the strategic replacement of a phenyl ring with an azo group between two tetratopic ligands, maintains high porosity compared to Cu-TPTC. Furthermore, Cu-ABTC outperforms Cu-TPTC in terms of C2H2 adsorption capacity (196 cm3 g-1 at 298 K and 1 bar) and C2H2/CO2 separation selectivity (16.5~5.6). These findings were corroborated by dynamic breakthrough experiments and computational modeling. This research highlights the potential of the isoreticular contraction strategy in enhancing MOFs for sophisticated gas adsorption and separation processes.
Collapse
Affiliation(s)
- Guo-Tong Du
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yi Wang
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Teng-Long Liu
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Zheng-Qi Yue
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ya-Nan Ma
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Dong-Xu Xue
- Institute of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
20
|
Chen Y, Wang W, Alston S, Xiao Y, Ajayan P, Bu X, Feng P. Multi-Stage Optimization of Pore Size and Shape in Pore-Space-Partitioned Metal-Organic Frameworks for Highly Selective and Sensitive Benzene Capture. Angew Chem Int Ed Engl 2025; 64:e202415576. [PMID: 39298644 DOI: 10.1002/anie.202415576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Compared to exploratory development of new structure types, pushing the limits of isoreticular synthesis on a high-performance MOF platform may have higher probability of achieving targeted properties. Multi-modular MOF platforms could offer even more opportunities by expanding the scope of isoreticular chemistry. However, navigating isoreticular chemistry towards best properties on a multi-modular platform is challenging due to multiple interconnected pathways. Here on the multi-modular pacs (partitioned acs) platform, we demonstrate accessibility to a new regime of pore geometry using two independently adjustable modules (framework-forming module 1 and pore-partitioning module 2). A series of new pacs materials have been made. Benzene/cyclohexane selectivity is tuned, progressively, from 4.5 to 15.6 to 195.4 and to 482.5 by pushing the boundary of the pacs platform towards the smallest modules known so far. The exceptional stability of these materials in retaining both porosity and single crystallinity enables single-crystal diffraction studies of different crystal forms (as-synthesized, activated, guest-loaded) that help reveal the mechanistic aspects of adsorption in pacs materials.
Collapse
Affiliation(s)
- Yichong Chen
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Samuel Alston
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Yuchen Xiao
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Pooja Ajayan
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach 1250 Bellflower Blvd, Long Beach, CA-90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 900 University Ave, Riverside, CA-92521, United States
| |
Collapse
|
21
|
Yang Q, Wang W, Yang Y, Li P, Yang X, Bai F, Zou B. Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination. Nat Commun 2025; 16:696. [PMID: 39814792 PMCID: PMC11736072 DOI: 10.1038/s41467-025-55978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.3% via boosting triplet excitons distribution through pressure treatment in single-component Zn-IPA metal-organic frameworks. A novel metal-ligand asymmetrical chelate coordination is successfully integrated into the Zn-IPA after a high-pressure treatment over ~20.0 GPa. This modification unexpectedly endows the targeted sample with a new emergent electronic state to narrow the singlet-triplet energy gap, which effectively accelerates the spin-flipping process for boosted triplet excitons population. Time delay phosphor-converted light-emitting diodes are fabricated with long emission time up to ~7 s after switching off, providing significant advancements for white-light and time-delay lighting applications.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Weibin Wang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Yunfeng Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China
| | - Pengyuan Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China
| | - Xinyi Yang
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| | - Fuquan Bai
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry and College of Chemistry, Jilin University, Changchun, China.
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| |
Collapse
|
22
|
Liang Y, Xie G, Liu KK, Jin M, Chen Y, Yang X, Guan ZJ, Xing H, Fang Y. Mechanochemical "Cage-on-MOF" Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching. Angew Chem Int Ed Engl 2025; 64:e202416884. [PMID: 39275956 DOI: 10.1002/anie.202416884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Post-modification of porous materials with molecular modulators has emerged as a well-established strategy for improving gas adsorption and separation. However, a notable challenge lies in maintaining porosity and the limited applicability of the current method. In this study, we employed the mechanochemical "Cage-on-MOF" strategy, utilizing porous coordination cages (PCCs) with intrinsic pores and apertures as surface modulators to improve the gas adsorption and separation properties of the parent MOFs. We demonstrated the fast and facile preparation of 28 distinct MOF@PCC composites by combining 7 MOFs with 4 PCCs with varying aperture sizes and exposed functional groups through a mechanochemical reaction in 5 mins. Only the combinations of PCCs and MOFs with closely matched aperture sizes exhibited enhanced gas adsorption and separation performance. Specifically, MOF-808@PCC-4 exhibited a significantly increased C2H2 uptake (+64 %) and a longer CO2/C2H2 separation retention time (+40 %). MIL-101@PCC-4 achieved a substantial C2H2 adsorption capacity of 6.11 mmol/g. This work not only highlights the broad applicability of the mechanochemical "Cage-on-MOF" strategy for the functionalization of a wide range of MOFs but also establishes potential design principles for the development of hybrid porous materials with enhanced gas adsorption and separation capabilities, along with promising applications in catalysis and intracellular delivery.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Gongfu Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Kang-Kai Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Meng Jin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Yuanyuan Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xiaoxin Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zong-Jie Guan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| | - Hang Xing
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yu Fang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
23
|
Li CN, Liu L, Liu S, Yuan D, Zhang Q, Han ZB. Guest Cation Functionalized Metal Organic Framework for Highly Efficient C 2H 2/CO 2 Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405561. [PMID: 39286896 DOI: 10.1002/smll.202405561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Indexed: 09/19/2024]
Abstract
The removal of carbon dioxide (CO2) from acetylene (C2H2) production is critical yet difficult due to their similar physicochemical properties. Despite extensive research has been conducted on metal-organic frameworks (MOFs) for C2H2/CO2 separation, approaches to designing functionalized MOFs remain limited. Enhancing gas adsorption through simple pore modification holds great promise in molecular recognition and industrial separation processes. This study proposes a guest cation functionalization strategy using the anionic framework SU-102 as the prototype material. Specifically, the guest cation Li+ is introduced into the skeleton by ion exchange to obtain SU-102-Li+. This strategy generates strong interactions between Li+ and gas molecules, thereby elevating C2H2 uptake to 49.18 cm3 g-1 and CO2 uptake to 29.88 cm3 g-1, marking 20.3% and 36.9% improvements over the parent material, respectively. In addition, ideal adsorbed solution theory selectivity calculations and dynamic breakthrough experiments confirmed the superior and stable separation performance of SU-102-Li+ for C2H2/CO2 (25 min g-1) and C2H2 productivity (1.55 mmol g-1). Theoretical calculations further reveals the unique molecular recognition mechanism between gas molecules and guest cations.
Collapse
Affiliation(s)
- Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang, Liaoning, 110036, China
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang, Liaoning, 110036, China
| | - Shuo Liu
- College of Chemistry, Liaoning University, Shenyang, Liaoning, 110036, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang, Liaoning, 110036, China
| |
Collapse
|
24
|
Tian YJ, Deng C, Zhao L, Zou JS, Wu XC, Jia Y, Zhang ZY, Zhang J, Peng YL, Chen G, Zaworotko MJ. Pore configuration control in hybrid azolate ultra-microporous frameworks for sieving propylene from propane. Nat Chem 2024:10.1038/s41557-024-01672-0. [PMID: 39548209 DOI: 10.1038/s41557-024-01672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Developing porous adsorbents for the complete sieving of propylene/propane mixtures represents an alternative method to energy-intensive cryogenic distillation processes. However, the similar physical properties of these molecules and the inherent trade-off among adsorption capacity, selectivity, diffusion kinetic and host-guest binding interactions in molecular sieving adsorbents makes their separation challenging. Here we report the separation of propylene/propane mixtures through a crystalline porous material (HAF-1) that features channels and shrinkage throats-the latter defined as narrower channels that connect the main channels and a molecular pocket-where the throat aperture is between the kinetic diameters of propylene and propane. Single-crystal X-ray diffraction and computational simulation reveal that the shrinkage channels and hanging molecular pockets are key to ensure high sieving efficiency and high propylene adsorption capacity. Dynamic breakthrough experiments show that HAF-1 enables the achievement of high-purity (≥99.7%) propylene with a productivity of 33.9 l kg-1 by just one adsorption-desorption circle from propylene/propane mixtures.
Collapse
Affiliation(s)
- Yong-Jun Tian
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Chenghua Deng
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Republic of Ireland
| | - Li Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Jin-Sheng Zou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Xue-Cui Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Yanan Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Ze-Yang Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China
| | - Jie Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yun-Lei Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China.
- Department of Applied Chemistry, College of Science, China University of Petroleum-Beijing, Beijing, China.
- Basic Research Center for Energy Interdisciplinary, China University of Petroleum-Beijing, Beijing, China.
| | - Guangjin Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China.
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Republic of Ireland.
| |
Collapse
|
25
|
Zhang Z, Zhang S, Liu X, Li L, Wang S, Yang R, Zhang L, You Z, Shui F, Yang S, Yang Z, Zhao Q, Li B, Bu XH. Efficient Fluorocarbons Capture Using Radical-Containing Covalent Triazine Frameworks. J Am Chem Soc 2024; 146:31213-31220. [PMID: 39480434 DOI: 10.1021/jacs.4c11470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Efficiently capturing fluorocarbons, potent greenhouse gases with high global warming potentials (GWP), remains a daunting challenge due to limited effective approaches for constructing high-performance adsorbents. To tackle this issue, we have pioneered a novel strategy of developing radical porous materials as effective adsorbents for fluorocarbon capture. The resulting radical covalent triazine framework (CTF), CTF-azo-R, shows exceptional fluorocarbon (perfluorohexane, a representative model pollutant among fluorocarbons) uptake capacity of 270 wt %, a record-high value among all porous materials reported to date. Spectral characteristics, experimental studies, and theoretical calculations indicate that the presence of stable radicals in CTF-azo-R contributes to its superior fluorocarbon capture performance. Furthermore, CTF-azo-R demonstrates exceptionally high chemical and thermal stabilities that fully meet the requirements for practical applications in diverse environments. Our work not only establishes radical CTF-azo-R as a promising candidate for fluorocarbon capture but also introduces a novel approach for constructing advanced fluorocarbon adsorbents by incorporating radical sites into porous materials. This strategy paves the way for the development of radical adsorbents, fostering advancements in both fluorocarbon capture and the broader field of adsorption and separation.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shuo Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Lin Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shan Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Rufeng Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Laiyu Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Feng Shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Shiqi Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Zhendong Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Qiao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
26
|
Yue S, Tuo M, Sheng Y, Guo X, Lu J, Wang D. Two Co(II) Isostructural Bifunctional MOFs via Mixed-Ligand Strategy: Syntheses, Crystal Structure, Photocatalytic Degradation of Dyes, and Electrocatalytic Water Oxidation. Molecules 2024; 29:4989. [PMID: 39519630 DOI: 10.3390/molecules29214989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
The solvothermal reactions involving cobalt ions with 5-methylisophthalic acid (H2MIP) and 1,3-bis(2-methylimidazol)propane (BMIP) yielded two cobalt(II) organic frameworks: {[Co4(MIP)4(BMIP)3]·1/2DMA}n (SNUT-31) and {[Co4(MIP)4(BMIP)3]·(EtOH)2·H2O]}n (SNUT-32) where DMA represents N,N-dimethylacetamide and EtOH signifies ethyl alcohol. Single-crystal X-ray diffraction analyses reveal that SNUT-31 and SNUT-32 possess an isomorphic structure, featuring a unique 2-fold interpenetration of 3D frameworks in a parallel manner. Notably, both SNUT-31 and SNUT-32 demonstrate remarkable performance in electrocatalytic oxygen evolution reactions and exhibit exceptional photocatalytic degradation capabilities against a model comprising three distinct dyes: rhodamine B, methyl orange, and methyl blue.
Collapse
Affiliation(s)
- Siyu Yue
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Mengqi Tuo
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yemeng Sheng
- School of Medicine, Xizang Minzu University, Xianyang 712000, China
| | - Xinyu Guo
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jiufu Lu
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Dong Wang
- School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
27
|
Li SY, Xue YY, Wang JW, Li HP, Lei J, Lv HJ, Bu X, Zhang P, Wang Y, Yuan WY, Zhai QG. Metal-organic frameworks with two different-sized aromatic ring-confined nanotraps for benchmark natural gas upgrade. Chem Sci 2024; 15:d4sc04387a. [PMID: 39381130 PMCID: PMC11457257 DOI: 10.1039/d4sc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Recovery of light alkanes from natural gas is of great significance in petrochemical production. Herein, a promising strategy utilizing two types of size-complementary aromatic ring-confined nanotraps (called bi-nanotraps here) is proposed to efficiently trap ethane (C2H6) and propane (C3H8) selectively at their respective sites. Two isostructural metal-organic frameworks (MOFs, SNNU-185/186), each containing bi-nanotraps decorated with six aromatic rings, are selected to demonstrate the feasibility of this method. The smaller nanotrap acts as adsorption sites tailored for C2H6 while the larger one is optimized in size for C3H8. The separation is further facilitated by the large channels, which serve as mass transfer pathways. These advanced features give rise to multiple C-H⋯π interactions and size/shape-selective interaction sites, enabling SNNU-185/186 to achieve high C2H6 adsorption enthalpy (43.5/48.8 kJ mol-1) and a very large thermodynamic interaction difference between C2H6 and CH4. Benefiting from the bi-nanotrap effect, SNNU-185/186 exhibits benchmark experimental natural gas upgrade performance with top-level CH4 productivity (6.85/6.10 mmol g-1), ultra-high purity and first-class capture capacity for C2H6 (1.23/0.90 mmol g-1) and C3H8 (2.33/2.15 mmol g-1).
Collapse
Affiliation(s)
- Shu-Yi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying-Ying Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jia-Wen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hai-Peng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Jiao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Hong-Juan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach California 90840 USA
| | - Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Wen-Yu Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Quan-Guo Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an Shaanxi 710062 China
| |
Collapse
|
28
|
Wang X, Liu H, Sun M, Gao F, Feng X, Xu M, Chen H, Yao K, Fan W, Sun D. Asymmetrical Modification of Cyclopentadienyl Cobalt in Eu-MOF for C 2H 2/CO 2 Separation. Inorg Chem 2024; 63:16605-16609. [PMID: 39193927 DOI: 10.1021/acs.inorgchem.4c03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The development of novel adsorption materials is of significance for the efficient and low-energy purification of acetylene (C2H2). Emerging metal-organic framework (MOF) adsorbents demonstrate great application prospects in the field of gas adsorption and separation. Herein, we synthesized a Eu-MOF asymmetrically modified with cyclopentadienyl cobalt exhibiting two different types of cages, denoted as UPC-119. Adsorption isotherms and dynamic breakthrough curves confirm its potential in C2H2/CO2 separation, which is further evidenced by theoretical simulations. The high adsorption capacity and low adsorption enthalpy render UPC-119 as a promising adsorbent for C2H2/CO2 separation with ease of regeneration.
Collapse
Affiliation(s)
- Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Gao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Mingming Xu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hui Chen
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Kun Yao
- Guangdong Advanced Carbon Materials Co., Ltd, Zhuhai, Guangdong 519000, China
| | - Weidong Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
29
|
Liu Q, Hilliard JS, Cai Z, Wade CR. Comparative study of metal-organic frameworks synthesized via imide condensation and coordination assembly. RSC Adv 2024; 14:27634-27643. [PMID: 39221129 PMCID: PMC11363248 DOI: 10.1039/d4ra05563b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A series of metal-organic frameworks (1-XDI) have been synthesized by imide condensation reactions between an amine-functionalized pentanuclear zinc cluster, Zn4Cl5(bt-NH2)6, (bt-NH2 = 5-aminobenzotriazolate), and organic dianhydrides (pyromellitic dianhydride (PMDA), naphthalenetetracarboxylic dianhydride (NDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (HFIPA)). The properties of the 1-XDI MOFs have been compared with analogues (2-XDI) prepared using traditional coordination assembly. The resulting materials have been characterized by ATR-IR spectroscopy, acid-digested 1H NMR spectroscopy, elemental analysis, and gas adsorption measurements. N2 adsorption isotherm data reveal modest porosities and BET surface areas (30-552 m2 g-1). All of the new 1-XDI and 2-XDI MOFs show selective adsorption of C2H2 over CO2 while 2-PMDI and 2-BPDI exhibit high selectivity toward C3H6/C3H8 separation. This study establishes imide condensation of preformed metal-organic clusters with organic linkers as a viable route for MOF design.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Jordon S Hilliard
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| |
Collapse
|
30
|
Zhou Y, Xie Y, Liu X, Hao M, Chen Z, Yang H, Waterhouse GIN, Ma S, Wang X. Single-Molecule Traps in Covalent Organic Frameworks for Selective Capture of C 2H 2 from C 2H 4-Rich Gas Mixtures. RESEARCH (WASHINGTON, D.C.) 2024; 7:0458. [PMID: 39188360 PMCID: PMC11345538 DOI: 10.34133/research.0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
Removing trace amounts of acetylene (C2H2) from ethylene (C2H4)-rich gas mixtures is vital for the supply of high-purity C2H4 to the chemical industry and plastics sector. However, selective removal of C2H2 is challenging due to the similar physical and chemical properties of C2H2 and C2H4. Here, we report a "single-molecule trap" strategy that utilizes electrostatic interactions between the one-dimensional (1D) channel of a covalent organic framework (denoted as COF-1) and C2H2 molecules to massively enhance the adsorption selectivity toward C2H2 over C2H4. C2H2 molecules are immobilized via interactions with the O atom of C=O groups, the N atom of C≡N groups, and the H atom of phenyl groups in 1D channels of COF-1. Due to its exceptionally high affinity for C2H2, COF-1 delivered a remarkable C2H2 uptake of 7.97 cm3/g at 298 K and 0.01 bar, surpassing all reported COFs and many other state-of-the-art adsorbents under similar conditions. Further, COF-1 demonstrated outstanding performance for the separation of C2H2 and C2H4 in breakthrough experiments under dynamic conditions. COF-1 adsorbed C2H2 at a capacity of 0.17 cm3/g at 2,000 s/g when exposed to 0.5 ml/min C2H4-rich gas mixture (99% C2H4) at 298 K, directly producing high-purity C2H4 gas at a rate of 3.95 cm3/g. Computational simulations showed that the strong affinity between C2H2 and the single-molecule traps of COF-1 were responsible for the excellent separation performance. COF-1 is also robust, providing a promising new strategy for the efficient removal of trace amounts of C2H2 in practical C2H4 purification.
Collapse
Affiliation(s)
- Yilun Zhou
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Yinghui Xie
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Xiaolu Liu
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Mengjie Hao
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Hui Yang
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| | - Geoffrey I. N. Waterhouse
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical Sciences,
The University of Auckland, Auckland 1142, New Zealand
| | - Shengqian Ma
- Department of Chemistry,
University of North Texas, Denton, TX 76201, USA
| | - Xiangke Wang
- College of Environmental Science and Engineering,
North China Electric Power University, Beijing 102206, P.R. China
| |
Collapse
|
31
|
Fan Y, Wang M, Liu Z, Gao G, Qi H, Huang W, Ma L, Qu Z, Yan N, Xu H. Lattice-Strain Engineering in Ni-Ru Heterostructures for Efficient Acetylene Hydrochlorination toward Vinyl Chloride. ACS NANO 2024. [PMID: 39056445 DOI: 10.1021/acsnano.4c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ru-based catalysts have emerged as promising alternatives to HgCl2 in vinyl chloride monomer (VCM) production by acetylene hydrochlorination. However, poor C2H2 activation and the generation of key intermediates (*CH2═CH) have posed grand challenges for enhanced catalytic performances. Herein, we synthesized a Ni-intercalated Ru heterostructure using a lattice-strain engineering strategy, resulting in the desired electronic and chemical environments. The collaboration of Ni splits the adsorption centers of C2H2 and HCl by weakening the strong steric hindrance, and it also promotes the activation of the linear C≡C configurations. The well-controlled lattice strain enables strong d-d hybridization interactions between Ni and Ru, resulting in an upshift of the d-band center from -3.72 eV (for Ru/C) to -3.49 eV and electronic delocalization. This optimized local Ni-Ru/C structure thus enhances *H adsorption while weakening the energy barrier for generating *CH2═CH intermediates. Furthermore, the energy barrier for VCM formation was simultaneously reduced. Accordingly, the Ni-Ru/C heterostructures achieve improved performance in pilot-scale trials, with a conversion of >99.2% and stability for over 500 h. These performances significantly surpass most reported Ru-based moieties and the traditional Hg catalysts, offering a promising avenue for C2H2 activation in industrial applications.
Collapse
Affiliation(s)
- Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyuan Qi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Li JH, Gan YW, Chen JX, Lin RB, Yang Y, Wu H, Zhou W, Chen B, Chen XM. Reverse Separation of Carbon Dioxide and Acetylene in Two Isostructural Copper Pyridine-Carboxylate Frameworks. Angew Chem Int Ed Engl 2024; 63:e202400823. [PMID: 38735839 DOI: 10.1002/anie.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.
Collapse
Affiliation(s)
- Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - You-Wei Gan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
33
|
Ji Z, Zhou Y, Chen C, Yuan D, Wu M, Hong M. Ideal Cage-like Pores for Molecular Sieving of Butane Isomers with High Purity and Record Productivity. Angew Chem Int Ed Engl 2024; 63:e202319674. [PMID: 38634325 DOI: 10.1002/anie.202319674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
n-C4H10 and iso-C4H10 are both important petrochemical raw materials. Considering the coexistence of the isomers in the production process, it is necessary to achieve their efficient separation through an economical way. However, to obtain high-purity n-C4H10 and iso-C4H10 in one-step separation process, developing iso-C4H10-exclusion adsorbents with high n-C4H10 adsorption capacity is crucial. Herein, we report a cage-like MOF (SIFSIX-Cu-TPA) with small windows and large cavities which can selectively allow smaller n-C4H10 enter the pore and accommodate a large amount of n-C4H10 simultaneously. Adsorption isotherms reveal that SIFSIX-Cu-TPA not only completely excludes iso-C4H10 in a wide temperature range, but also exhibits a very high n-C4H10 adsorption capacity of 94.2 cm3 g-1 at 100 kPa and 298 K, which is the highest value among iso-C4H10-exclusion-type adsorbents. Breakthrough experiments show that SIFSIX-Cu-TPA has excellent n/iso-C4H10 separation performance and can achieve a record-high productivity of iso-C4H10 (3.2 mol kg-1) with high purity (>99.95 %) as well as 3.0 mol kg-1 of n-C4H10 (>99 %) in one separation circle. More importantly, SIFSIX-Cu-TPA can realize the efficient separation of butanes at different flow rates, temperatures, as well as under high humid condition, which indicates that SIFSIX-Cu-TPA can be deemed as an ideal platform for industrial butane isomers separation.
Collapse
Affiliation(s)
- Zhenyu Ji
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yunzhe Zhou
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Cheng Chen
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Mingyan Wu
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maochun Hong
- State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
34
|
Zhang Z, Zhao D. Deciphering Mechanisms of CO 2-Selective Recognition over Acetylene within Porous Materials. CHEM & BIO ENGINEERING 2024; 1:366-380. [PMID: 39975798 PMCID: PMC11835146 DOI: 10.1021/cbe.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 02/21/2025]
Abstract
Reverse adsorption of carbon dioxide (CO2) from acetylene (C2H2) presents both significant importance and formidable challenges, particularly in the context of carbon capture, energy efficiency, and environmental sustainability. In this Review, we delve into the burgeoning field of reverse CO2/C2H2 adsorption and separation, underscoring the absence of a cohesive materials design strategy and a comprehensive understanding of the CO2-selective capture mechanisms from C2H2, in contrast to the quite mature methodologies available for C2H2-selective adsorption. Focusing on porous materials, the latest advancements in CO2-selective recognition mechanisms are highlighted. The review establishes that the efficacy of CO2 recognition from C2H2 relies intricately on a myriad of factors, including pore architecture, framework flexibility, functional group interactions, and dynamic responsive behaviors under operating conditions. It is noted that achieving selectivity extends beyond physical sieving, necessitating meticulous adjustments in pore chemistry to exploit the subtle differences between CO2 and C2H2. This comprehensive overview seeks to enhance the understanding of CO2-selective recognition mechanisms, integrating essential insights crucial for the advancement of future materials. It also lays the groundwork for innovative porous materials in CO2/C2H2 separation, addressing the pressing demand for more efficient molecular recognition within gas separation technologies.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dan Zhao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
35
|
Zhang Y, Han Y, Luan B, Wang L, Yang W, Jiang Y, Ben T, He Y, Chen B. Metal-Organic Framework with Space-Partition Pores by Fluorinated Anions for Benchmark C 2H 2/CO 2 Separation. J Am Chem Soc 2024; 146:17220-17229. [PMID: 38861589 DOI: 10.1021/jacs.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The efficient separation of C2H2 from C2H2/CO2 or C2H2/CO2/CH4 mixtures is crucial for achieving high-purity C2H2 (>99%), essential in producing contemporary commodity chemicals. In this report, we present ZNU-12, a metal-organic framework with space-partitioned pores formed by inorganic fluorinated anions, for highly efficient C2H2/CO2 and C2H2/CO2/CH4 separation. The framework, partitioned by fluorinated SiF62- anions into three distinct cages, enables both a high C2H2 capacity (176.5 cm3/g at 298 K and 1.0 bar) and outstanding C2H2 selectivity over CO2 (13.4) and CH4 (233.5) simultaneously. Notably, we achieve a record-high C2H2 productivity (132.7, 105.9, 98.8, and 80.0 L/kg with 99.5% purity) from C2H2/CO2 (v/v = 50/50) and C2H2/CO2/CH4 (v/v = 1/1/1, 1/1/2, or 1/1/8) mixtures through a cycle of adsorption-desorption breakthrough experiments with high recovery rates. Theoretical calculations suggest the presence of potent "2 + 2" collaborative hydrogen bonds between C2H2 and two hexafluorosilicate (SiF62-) anions in the confined cavities.
Collapse
Affiliation(s)
- Yuanbin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yan Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Binquan Luan
- IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Wenlei Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yunjia Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Teng Ben
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, P.R. China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou 350007, P.R. China
| |
Collapse
|
36
|
Aneja R, Chauhan A, Chauhan T, Vyas R, Saini VK. Understanding adsorption selectivity in zirconium-pillared clays for biogas upgradation: the role of metal/clay ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34018-x. [PMID: 38922470 DOI: 10.1007/s11356-024-34018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Biogas, as a sustainable energy source, encounters challenges in practical applications due to impurities, notably carbon dioxide (CO2), and nitrogen (N2). This study investigates the effect of metal/clay ratio on the adsorption selectivity of porous zirconium-pillared clay adsorbents for biogas upgradation. Comprehensive analyses including nitrogen adsorption/desorption, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were conducted to evaluate the physicochemical properties. Adsorption properties for Zr-pillared clays for biogas components such as CO2, CH4, and N2, at 25 °C under different pressures were investigated. The ideal adsorbed solution theory (IAST) was employed to assess selectivity for three binary gas mixtures (CO2/CH4, CO2/N2, and CH4/N2). Results revealed the substantial impact of Zr/Clay ratio on both adsorption capacity and selectivity of the prepared materials. For instance, the maximum adsorption capacity of gases varies as ZrPILC-4 > ZrPILC-2 > ZrPILC-8 > ZrPILC-1, whereas the adsorption selectivity for CO2/CH4 separation (at 1000 kPa) varies as ZrPILC-1 > ZrPILC-2 > ZrPILC-8 > ZrPILC-4. Interestingly, the ZrPILC-8 with maximum surface area (147 m2∙g-1) did not show maximum adsorption capacity for all the three gases, which was attributed to its lower pore volume, and basal spacing, as compared to ZrPILC-4. Amongst all the pillared samples, the ZrPILC-1 exhibited highest selectivity for all binary mixtures (at 1000 kPa), signifies increased nonspecific interactions due to its lower surface area. Its separation performance, particularly for CO2/CH4 mixture exceeded that of the parent clay by 1.5 times. A significant increase in the working capacity of the prepared samples underscores the efficacy of these pillared materials in separating biogas components. This study provides valuable insights into effects of Zr/clay ratio for developing robust pillared adsorbents, contributing to the advancement of sustainable biomethane production.
Collapse
Affiliation(s)
- Riya Aneja
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Anuj Chauhan
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Tanya Chauhan
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Renuka Vyas
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Vipin Kumar Saini
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India.
| |
Collapse
|
37
|
Liang F, Ma D, Qin L, Yu Q, Chen J, Liang R, Zhong C, Liao H, Peng Z. In situ generated 2,5-pyrazinedicarboxylate and oxalate ligands leading to a Eu-MOF for selective capture of C 2H 2 from C 2H 2/CO 2. Dalton Trans 2024; 53:10070-10074. [PMID: 38855827 DOI: 10.1039/d4dt01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The separation of C2H2/CO2 mixtures is a very important but highly challenging task due to their comparable physical natures and relative sizes. Herein, we report a europium-based 3D microporous MOF with a 4-connected two-nodal net with {4·53·62}2{42·62·82} topology, {[Eu2(pzdc)(ox)2(H2O)4]·5H2O}n (1) (H2pzdc = 2,5-pyrazinedicarboxylic acid, H2ox = oxalic acid), prepared by a hydrothermal method involving in situ generation of 2,5-pyrazinedicarboxylate and oxalate ligands. Two different temperatures were utilized to create two porous materials (1a and 1b) with channels of 4.8 × 5.4 Å and 4.1 × 6.3 Å, and 4.8 × 5.4 and 4.6 × 8.7 Å2, respectively. 1b shows a superior ability to selectively capture C2H2 from C2H2/CO2 as compared with 1a. At 1 bar and 298 K, 1b takes up 4.10 mmol g-1 C2H2 and 1.84 mmol g-1 CO2, respectively. In addition, at 298 K and 1 bar, 1b has a high selectivity for C2H2 over CO2, with an IAST selectivity of 12.7 while the value for 1a is 3.2. The separation of C2H2/CO2 with 1b also exhibits good reusability.
Collapse
Affiliation(s)
- Fenglan Liang
- College of Life Science, Zhaoqing University, Zhaoqing, 526061, PR China
| | - Deyun Ma
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Liang Qin
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Qiuqun Yu
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Jing Chen
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Rongxi Liang
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Changheng Zhong
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Huanzong Liao
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Zhiyi Peng
- School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| |
Collapse
|
38
|
Otaif KD, Badjah-Hadj-Ahmed AY, ALOthman ZA. Preparation of UiO-66 MOF-Bonded Porous-Layer Open-Tubular Columns Using an In Situ Growth Approach for Gas Chromatography. Molecules 2024; 29:2505. [PMID: 38893383 PMCID: PMC11173385 DOI: 10.3390/molecules29112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
The thermally stable zirconium-based MOF, UiO-66, was employed for the preparation of bonded porous-layer open-tubular (PLOT) GC columns. The synthesis included the in situ growth of the UiO-66 film on the inner wall of the capillary through a one-step solvothermal procedure. SEM-EDX analysis revealed the formation of a thin, continuous, uniform, and compact layer of UiO-66 polycrystals on the functionalized inner wall of the column. The average polarity (ΔIav = 700) and the McReynolds constants reflected the polar nature of the UiO-66 stationary phase. Several mixtures of small organic compounds and real samples were used to evaluate the separation performance of the fabricated columns. Linear alkanes from n-pentane to n-decane were baseline separated within 1.35 min. Also, a series of six n-alkylbenzenes (C3-C8) were separated within 3 min with a minimum resolution of 3.09, whereas monohalobenzene mixtures were separated at 220 °C within 14s. UiO-66 PLOT columns are ideally suited for the isothermal separation of chlorobenzene structural isomers at 210 °C within 45 s with Rs ≥ 1.37. The prepared column featured outstanding thermal stability (up to 450 °C) without any observed bleeding or significant impact on its performance. This feature enabled the analysis of various petroleum-based samples.
Collapse
Affiliation(s)
- Khadejah D. Otaif
- Department of Chemistry, College of Science, Jazan University, Jazan 82843, Saudi Arabia
| | - Ahmed-Yacine Badjah-Hadj-Ahmed
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Zeid Abdullah ALOthman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
39
|
Zhou K, Zhang J, Geng Y, Gao P, Xie Y, Dong J, Shang Y, Cui Y, Gong W. Water-Resistant, Scalable, and Inexpensive Chiral Metal-Organic Framework Featuring Global Negative Electrostatic Potentials for Efficient Acetylene Separation. CHEM & BIO ENGINEERING 2024; 1:349-356. [PMID: 39974468 PMCID: PMC11835167 DOI: 10.1021/cbe.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/21/2025]
Abstract
Physical separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) on metal-organic frameworks (MOFs) is crucial for achieving high-purity feed gases with minimal energy penalty. However, such processes are exceptionally challenging due to their close physical properties and are also critically restricted by the high cost of large-scale MOF synthesis. Here, we demonstrate the readily scalable synthesis of a highly water-resistant chiral Cu-MOF (TAMOF-1) based on an inexpensive proteogenic amino acid derivative bearing rich N/O sites. Notably, the unique coordination in this ultramicroporous MOF has resulted in the generation of rare global negative electrostatic potentials, which greatly facilitate the electrostatic interactions with C2H2 molecules, thus leading to their efficient separation from C2H2/CO2 and C2H2/C2H4 mixtures under ambient conditions. The separation efficiency and mechanism are unequivocally validated by breakthrough experiments and computational simulations. This work not only highlights the pivotal role of creating a negative electro-environment in confined spaces for boosting C2H2 capture and separation but also opens up new ways of employing cheap amino acid derivatives bearing rich electro-negative N and O sites as organic linkers to constructing high-performing MOF materials for gas separation purposes.
Collapse
Affiliation(s)
- Kaiyuan Zhou
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Jingjing Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Geng
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfu Gao
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department
of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjia Shang
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials (State Key Laboratory
Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yong Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and State Key Laboratory of Metal Matrix
Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
40
|
Zhang L, Lang F, Xi XJ, Yin S, Pang J, Zheng W, Bu XH. A Highly Stable Microporous Calcium-Based MOF for C 2H 2/CO 2 Separation with Low Regenerative Energy. Inorg Chem 2024; 63:8329-8335. [PMID: 38648287 DOI: 10.1021/acs.inorgchem.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Most of the porous materials used for acetylene/carbon dioxide separation have the problems of poor stability and high energy requirements for regeneration, which significantly hinder their practical application in industries. Here, we report a novel calcium-based metal-organic framework (NKM-123) with excellent chemical stability against water, acids, and bases. Additionally, it has exceptional thermal stability, retaining its structural integrity at temperatures up to 300 °C. This material exhibits promising potential for separating C2H2 and CO2 gases. Furthermore, it demonstrates an adsorption heat of 29.3 kJ mol-1 for C2H2, which is lower than that observed in the majority of MOFs used for C2H2/CO2 separations. The preferential adsorption of C2H2 over that of CO2 is confirmed by dispersion-corrected density functional theory (DFT-D) calculations. In addition, the potential of industrial feasibility of NKM-123 for C2H2/CO2 separation is confirmed by transient breakthrough tests. The robust cycle performance and structural stability of NKM-123 during multiple breakthrough tests show great potential in the industrial separation of light hydrocarbons.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Xiao-Juan Xi
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shunxian Yin
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| | - Wenjun Zheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xian-He Bu
- College of Chemistry, Nankai University, Tianjin 300071, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, Nankai University, Tianjin 300350, China
| |
Collapse
|
41
|
Yang SQ, Xing B, Wang LL, Zhou L, Zhang FY, Li YL, Hu TL. Boosting Acetylene Packing Density within an Isoreticular Metal-Organic Framework for Efficient C 2H 2/CO 2 Separation. CHEM & BIO ENGINEERING 2024; 1:245-251. [PMID: 39974205 PMCID: PMC11835139 DOI: 10.1021/cbe.3c00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
Porous solid adsorbents for C2H2/CO2 separation are generally confronted with poor stability, high cost, or high regeneration energy, which largely inhibit their industrial implementation. A desired adsorbent material for practical implementation should exhibit a good balance between low cost, high stability, scale-up production feasibility, and good separation performance. An effective strategy is herein explored based on reticular chemistry through embedding methyl groups in a prototype microporous metal-organic framework (MOF) featuring low cost and high stability to effectively separate an C2H2/CO2 mixture. The anchored methyl groups on the pore surfaces could strongly boost the C2H2 packing density and specifically enhance the C2H2/CO2 separation performance, as distinctly established by single-component gas sorption isotherms. The CAU-10-CH3 material exhibits an excellent C2H2 packing density of 486 g L-1 and high adsorption differences between C2H2 and CO2 uptake (147%), outperforming the prototype benchmark material CAU-10-H (392 g L-1 and 53%). The highly selective adsorption of C2H2 over CO2 was achieved by a lower C2H2 adsorption enthalpy (25.18 kJ mol-1) compared to that with unfunctionalized CAU-10-H. In addition, dynamic column breakthrough experiments further confirm CAU-10-CH3's efficient separation performance for the C2H2/CO2 mixture. CAU-10-CH3 accomplishes the benchmark balance between cost, stability, scale-up, and separation performance for C2H2/CO2 separation, establishing its promise for industrial implementation. This approach could further facilitate the development of advanced MOF adsorbents to address challenging separation processes. Thus, this study paves the route for the practical implementations of MOF materials in the gas adsorption and separation field.
Collapse
Affiliation(s)
- Shan-Qing Yang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Bo Xing
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lu-Lu Wang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Fei-Yang Zhang
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yi-Long Li
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering,
National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
42
|
Xing B, Yang SQ, Zhang Q, Hu TL. A microporous bismuth-based MOF for efficient separation of acetylene from carbon dioxide. Dalton Trans 2024; 53:6993-6999. [PMID: 38563111 DOI: 10.1039/d4dt00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The separation of acetylene from carbon dioxide is challenging due to their almost identical molecular sizes and volatilities. Metal-organic frameworks (MOFs) in general are strong candidates for the separation of gas mixtures owing to the presence of functional pore surfaces that can selectively capture specific target molecules. Herein, we report a stable and easily synthesized bismuth-based MOF, Bi-BTC, which can achieve the separation of acetylene and carbon dioxide. We performed a detailed analysis of the sorption properties of the Bi-MOF. Bi-BTC shows good adsorption capacities for C2H2 with a capacity of 53.8 cm3 g-1 at 298 K and 1.0 bar, and C2H2/CO2 selectivity of 5.14/7.69 at 298 K and 1.0/0.1 bar. IAST selectivity calculations indicate that Bi-BTC possesses good separation capacity, and dynamic breakthrough experiments were performed to prove the separation of C2H2 and CO2. Bi-MOFs as a group of relatively less studied types of MOFs have interesting adsorption characteristics, and this study on Bi-based MOF will enrich three-dimensional Bi-MOF adsorbents for gas adsorption and separation applications.
Collapse
Affiliation(s)
- Bo Xing
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Shan-Qing Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
| |
Collapse
|
43
|
Zhang L, Xiao T, Zeng X, You J, He Z, Chen CX, Wang Q, Nafady A, Al-Enizi AM, Ma S. Isoreticular Contraction of Cage-like Metal-Organic Frameworks with Optimized Pore Space for Enhanced C 2H 2/CO 2 and C 2H 2/C 2H 4 Separations. J Am Chem Soc 2024; 146:7341-7351. [PMID: 38442250 DOI: 10.1021/jacs.3c12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The C2H2 separation from CO2 and C2H4 is of great importance yet highly challenging in the petrochemical industry, owing to their similar physical and chemical properties. Herein, the pore nanospace engineering of cage-like mixed-ligand MFOF-1 has been accomplished via contracting the size of the pyridine- and carboxylic acid-functionalized linkers and introducing a fluoride- and sulfate-bridging cobalt cluster, based on a reticular chemistry strategy. Compared with the prototypical MFOF-1, the constructed FJUT-1 with the same topology presents significantly improved C2H2 adsorption capacity, and selective C2H2 separation performance due to the reduced cage cavity size, functionalized pore surface, and appropriate pore volume. The introduction of fluoride- and sulfate-bridging cubane-type tetranuclear cobalt clusters bestows FJUT-1 with exceptional chemical stability under harsh conditions while providing multiple potential C2H2 binding sites, thus rendering the adequate ability for practical C2H2 separation application as confirmed by the dynamic breakthrough experiments under dry and humid conditions. Additionally, the distinct binding mechanism is suggested by theoretical calculations in which the multiple supramolecular interactions involving C-H···O, C-H···F, and other van der Waals forces play a critical role in the selective C2H2 separation.
Collapse
Affiliation(s)
- Lei Zhang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Taotao Xiao
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiayun Zeng
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Jianjun You
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ziyu He
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Cheng-Xia Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qianting Wang
- Collaborative Innovation Center for Intelligent and Green Mold and Die of Fujian Province, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
44
|
Wang X, Liu H, Sun M, Wang H, Feng X, Chen W, Feng X, Fan W, Sun D. Thiadiazole-Functionalized Th/Zr-UiO-66 for Efficient C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7819-7825. [PMID: 38300743 DOI: 10.1021/acsami.3c17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adsorptive separation technology provides an effective approach for separating gases with similar physicochemical properties, such as the purification of acetylene (C2H2) from carbon dioxide (CO2). The high designability and tunability of metal-organic framework (MOF) adsorbents make them ideal design platforms for this challenging separation. Herein, we employ an isoreticular functionalization strategy to fine-tune the pore environment of Zr- and Th-based UiO-66 by the immobilization of the benzothiadiazole group via bottom-up synthesis. The functionalized UPC-120 exhibits an enhanced C2H2/CO2 separation performance, which is confirmed by adsorption isotherms, dynamic breakthrough curves, and theoretical simulations. The synergy of ligand functionalization and metal ion fine-tuning guided by isoreticular chemistry provides a new perspective for the design and development of adsorbents for challenging gas separation processes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hongyan Liu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Meng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Haoyang Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xueying Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
45
|
Harvey-Reid NC, Sensharma D, Mukherjee S, Patil KM, Kumar N, Nikkhah SJ, Vandichel M, Zaworotko MJ, Kruger PE. Crystal Engineering of a New Hexafluorogermanate Pillared Hybrid Ultramicroporous Material Delivers Enhanced Acetylene Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4803-4810. [PMID: 38258417 DOI: 10.1021/acsami.3c16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hybrid ultramicroporous materials (HUMs), metal-organic platforms that incorporate inorganic pillars, are a promising class of porous solids. A key area of interest for such materials is gas separation, where HUMs have already established benchmark performances. Thanks to their ready compositional modularity, we report the design and synthesis of a new HUM, GEFSIX-21-Cu, incorporating the ligand pypz (4-(3,5-dimethyl-1H-pyrazol-4-yl)pyridine, 21) and GeF62- pillaring anions. GEFSIX-21-Cu delivers on two fronts: first, it displays an exceptionally high C2H2 adsorption capacity (≥5 mmol g-1) which is paired with low uptake of CO2 (<2 mmol g-1), and, second, a low enthalpy of adsorption for C2H2 (ca. 32 kJ mol-1). This combination is rarely seen in the C2H2 selective physisorbents reported thus far, and not observed in related isostructural HUMs featuring pypz and other pillaring anions. Dynamic column breakthrough experiments for 1:1 and 2:1 C2H2/CO2 mixtures revealed GEFSIX-21-Cu to selectively separate C2H2 from CO2, yielding ≥99.99% CO2 effluent purities. Temperature-programmed desorption experiments revealed full sorbent regeneration in <35 min at 60 °C, reinforcing HUMs as potentially technologically relevant materials for strategic gas separations.
Collapse
Affiliation(s)
- Nathan C Harvey-Reid
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Debobroto Sensharma
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Soumya Mukherjee
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Komal M Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Naveen Kumar
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sousa Javan Nikkhah
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Matthias Vandichel
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Michael J Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
46
|
Alhowity S, Balogun K, Ganesan A, Lund CJ, Omolere O, Adesope Q, Chukwunenye P, Amagbor SC, Anwar F, Altafi MK, D'Souza F, Cundari TR, Kelber JA. Niobium Carbide and Tantalum Carbide as Nitrogen Reduction Electrocatalysts: Catalytic Activity, Carbophilicity, and the Importance of Intermediate Oxidation States. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2180-2192. [PMID: 38174907 DOI: 10.1021/acsami.3c11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Significant interest in the electrocatalytic reduction of molecular nitrogen to ammonia (the nitrogen reduction reaction: NRR) has focused attention on transition metal carbides as possible electrocatalysts. However, a fundamental understanding of carbide surface structure/NRR reactivity relationships is sparse. Herein, electrochemistry, DFT-based calculations, and in situ photoemission studies demonstrate that NbC, deposited by magnetron sputter deposition, is active for NRR at pH 3.2 but only after immersion of an ambient-induced Nb2O5 surface layer in 0.3 M NaOH, which leaves Nb suboxides with niobium in intermediate formal oxidation states. Photoemission data, however, show that polarization to -1.3 V vs Ag/AgCl restores the Nb2O5 overlayer, correlating with electrochemical measurements showing inhibition of NRR activity under these conditions. In contrast, a similar treatment of a sputter-deposited TaC sample in 0.3 M NaOH fails to reduce the ambient-induced Ta2O5 surface layer, and TaC is inactive for NRR at potentials more positive than -1.0 V even though a significant cathodic current is observed. A TaC sample with surface oxide partially reduced by Ar ion sputtering in UHV prior to in situ transfer to UHV exhibits a restored Ta2O5 surface layer after electrochemical polarization to -1.0 V vs Ag/AgCl. The electrochemical and photoemission results are in accord with DFT-based calculations indicating greater N≡N bond activation for N2 bound end-on to Nb(IV) and Nb(III) sites than for N2 bound end-on to Nb(V) sites. Thus, theory and experiment demonstrate that with respect to NbC, the formation and stabilization of intermediate (non-d0) oxidation states for surface transition metal ions is critical for N≡N bond activation and NRR activity. Additionally, the Nb suboxide surface, formed by immersion in 0.3 M NaOH of ambient-exposed NbC, is shown to undergo reoxidation to catalytically inactive Nb2O5 at -1.3 V vs Ag/AgCl, possibly due to hydrolysis or other, as yet not understood, phenomena.
Collapse
Affiliation(s)
- Samar Alhowity
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Kabirat Balogun
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Ashwin Ganesan
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Colton J Lund
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Olatomide Omolere
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Qasim Adesope
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Precious Chukwunenye
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Stella C Amagbor
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Fatima Anwar
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - M K Altafi
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Thomas R Cundari
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| | - Jeffry A Kelber
- Department of Chemistry, University of North Texas, 1155 Union Circle, No. 305070, Denton, Texas 76203-5017, United States
| |
Collapse
|
47
|
Zhen G, Liu Y, Zhou Y, Ji Z, Li H, Zou S, Zhang W, Li Y, Liu Y, Chen C, Wu M. Water-Stable Microporous Bipyrazole-Based Framework for Efficient Separation of MTO Products. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1179-1186. [PMID: 38157244 DOI: 10.1021/acsami.3c16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recently, methanol-to-olefins (MTO) technology has been widely used. The development of new adsorbents to separate MTO products and obtain high-purity ethylene (C2H4) and propylene (C3H6) has become an urgent task. Herein, an exceptionally highly water-stable metal-organic framework (MOF), [Cu3(OH)2(Me2BPZ)2]·(solvent)x (1) (H2Me2BPZ = 3,3'-dimethyl-1H,1'H-4,4'-bipyrazole) with hexagonal pores, has been elaborately designed and constructed. After being soaked in water for 7 days, it still maintains its structure, and the uptake of N2 at 77 K is unchanged. The adsorption capacity of C3H6 can reach 138 cm3 g-1, while the uptake of C2H4 is only 52 cm3 g-1 at 298 K and 1 bar. The dynamic breakthrough experiments show that the mixture of C3H6/C2H4 (50/50, v/v) can be efficiently separated in one step. High-purity C2H4 and C3H6 can be obtained through an adsorption and desorption cycle and the yields of C2H4 (purity ≥ 99.95%) and C3H6 (purity ≥ 99%) are 84 and 48 L kg-1, respectively. Surprisingly, when the flow rate is increased, the separation performance has no obvious change. Additionally, humidity has no effect on the separation performance. Finally, theoretical simulations indicate that there are stronger interactions between the C3H6 molecule and the framework, which are beneficial to capturing C3H6 over C2H4.
Collapse
Affiliation(s)
- Guoli Zhen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yongyao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Hengbo Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wenjing Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yashuang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Yuanzheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
48
|
Jeong SM, Kim D, Park JY, Yoon JW, Lee SK, Lee JS, Jo D, Cho KH, Lee UH. Separation of High-Purity C 2H 2 from Binary C 2H 2/CO 2 Using Robust Al-Based MOFs Comprising Nitrogen-Containing Heterocyclic Dicarboxylate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1342-1350. [PMID: 38116929 DOI: 10.1021/acsami.3c16849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, three nitrogen-containing aluminum-based metal-organic frameworks (Al-MOFs), namely, CAU-10pydc, MOF-303, and KMF-1, were investigated for the efficient separation of a C2H2/CO2 gas mixture. Among these three Al-MOFs, KMF-1 demonstrated the highest selectivity for C2H2/CO2 separation (6.31), primarily owing to its superior C2H2 uptake (7.90 mmol g-1) and lower CO2 uptake (2.82 mmol g-1) compared to that of the other two Al-MOFs. Dynamic breakthrough experiments, using an equimolar binary C2H2/CO2 gas mixture, demonstrated that KMF-1 achieved the highest separation performance. It yielded 3.42 mmol g-1 of high-purity C2H2 (>99.95%) through a straightforward desorption process under He purging at 298 K and 1 bar. To gain insights into the distinctive characteristics of the pore surfaces of structurally similar CAU-10pydc and KMF-1, we conducted computational simulations using canonical Monte Carlo and dispersion-corrected density functional theory methods. These simulations revealed that the secondary amine (C2N-H) groups in KMF-1 played a more significant role in differentiating between C2H2 and CO2 compared to that of the N atoms in CAU-10pydc and MOF-303. Consequently, KMF-1 emerged as a promising adsorbent for the separation of high-purity C2H2 from binary C2H2/CO2 gas mixtures.
Collapse
Affiliation(s)
- Se-Min Jeong
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghyun Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-Ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Yeon Park
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ji Woong Yoon
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Su-Kyung Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-Ro 35, Mapo-gu, Seoul 04107, Republic of Korea
| | - Donghui Jo
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Kyung Ho Cho
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - U-Hwang Lee
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-Ro 141, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Gajeong-Ro 217, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
49
|
Wu J, Wang Y, Xue JP, Wu D, Li J. Stepwise Synthesis of Cl-Decorated Trinuclear-Cu Cluster-Based Frameworks for C 2H 2/C 2H 4 and C 2H 2/CO 2 Separation. Inorg Chem 2023. [PMID: 37994526 DOI: 10.1021/acs.inorgchem.3c02670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A novel Cl-decorated trinuclear-Cu cluster-based MOF (NbU-7-Cl, NbU denotes Ningbo University) was synthesized by a stepwise synthesis strategy. Compared to one-step reactions, the strategy of combining cationic templates with single-crystal-to-single-crystal transformation provides more possibilities for the design and postsynthetic modification of multifunctional materials. Note that the chloride ions are attached to the copper ions of the planar trinuclear cluster nodes in a fully symmetric or partially asymmetric manner. The insertion of the chloride ion can alter the overall symmetry and adsorption energy in addition to occupying the appropriate asymmetric orbit and reducing the effective active sites of metal. The activated NbU-7-Cl displays improved C2H2 uptake capacity and C2H2/C2H4 and C2H2/CO2 separation performance, which is proved by breakthrough experiments.
Collapse
Affiliation(s)
- Jing Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yunli Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jin-Peng Xue
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Dapeng Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
50
|
Zhang X, Wang X, Li C, Hu T, Fan L. Nanoporous {Co 3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO 2 and Knoevenagel condensation. J Colloid Interface Sci 2023; 656:127-136. [PMID: 37988780 DOI: 10.1016/j.jcis.2023.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enhancing the catalysis of metal-organic frameworks (MOFs) by regulating inherent Lewis acid-base sites to realize the efficient seperation and chemical fixation of inert carbon dioxide (CO2) is crucial but challenging. Herein, the solvothermal self-assembly of Co2+, 5'-(4-carboxy-2-nitrophenyl)-2,2',2'',4',6'-pentanitro-[1,1':3',1''-terphenyl]-4,4''-dicarboxylic acid (H3TNBTB) and 4'-phenyl-4,2':6',4''-terpyridine (PTP) generated a highly robust cobalt-organic framework of {[Co3(TNBTB)2(PTP)]·7DMF·6H2O}n (NUC-82). In NUC-82, the tri-core clusters of {Co3} with linear shape are bridged by TNBTB3- to form two-dimensional structure in ac plane, which is further linked by PTP to generate a three-dimensional framework with two kinds of solvent-accessible channels: rhombic-like (ca. 11.57 × 10.76 Å) along a axis and rectangular-like (ca. 7.32 × 11.56 Å) along b axis. Furthermore, it is worth emphasizing that the confined pore environments are characterized by plentiful Lewis acid-base sites of tricobalt clusters, grafted nitro groups and free pyridinyl, high specific surface area and solvent-free nano-caged windows. Activated NUC-82a owns the ultra-high ethylene (C2H2) separation performance over the mixture of C2H2/CH4 and CO2/CH4 with the selectivity of 223.1 and 44.7. Thanks to the great Lewis-acid sites as well as the large pore volume, activated NUC-82a displays the high catalytic performace on the cycloaddition of CO2 with epoxides under wield condtions such as amibient pressure. Furthermore, because of the rich Lewis base sites, NUC-82a can efficiently catalyze Knoevenagel condensation of aldehydes and malononitrile. In the above organic reactions, NUC-82a not only shows the high catalytic activity, but also exhibits the high selectivity, satifactory recyclability and easy-to-separate heterogeneity, confirming that NUC-82a is a promising catalyst. Hence, this work provides in-depth insight into the construction of multifunctional MOFs by modifying the traditional ligands with as many Lewis acid-base active sites as possible.
Collapse
Affiliation(s)
- Xiutang Zhang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| | - Xiaotong Wang
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Chong Li
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Tuoping Hu
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China
| | - Liming Fan
- Shanxi Key Laboratory of Advanced Carbon Based Electrode Materials, School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|