1
|
Ding R, Liu S, Zhang Y, Li Z, Zuo Y, Pei D, Lan T, Hu J, Zhu H, Lv M, Wang L. One-stop solution for wide polar range compounds: Preparation and application of quaternary ammonium salt molecular cage stationary phase. Talanta 2025; 292:127962. [PMID: 40139012 DOI: 10.1016/j.talanta.2025.127962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
The separation and analysis of complex samples with wide polar range on a singular column is always a difficult problem in separation and analysis science. In this study, the RCC3-R molecular cage modified with the quaternary ammonium salt stationary phase (RCC3-GQ@silica) was successfully prepared and applicated in the separation of wide polar range compounds. In the Reverse Phase Liquid Chromatography (RPLC) mode, due to the hydrophobicity and π-π interactions provided by the cyclohexane and benzene rings in the molecular cage structure, this stationary phase demonstrated effective separation capabilities for alkylbenzenes, polycyclic aromatic hydrocarbons, phenols, and anilines. In the Hydrophilic Interaction Liquid Chromatography (HILIC) mode, the study explored the separation performance of this stationary phase for sugars and inorganic salts. Utilizing a mixed mode of HILIC/RPLC/Ion Exchange Chromatography (IEC), effective separation was achieved for sulfonamides, nucleosides, acids, and amino acids, indicating good separation effects for medium to strongly polar compounds as well as various hydrophilic compounds. Combining various separation modes, the RCC3-GQ@silica stationary phase successfully separated 91 compounds across 15 categories. These results not only demonstrate the potential of the stationary phase in expanding the range of polarities of analyzable compounds and achieving multipurpose use on a single column, but also confirm its effective separation of nucleosides in pure water systems, further emphasizing the significant application potential of RCC3-GQ@silica stationary phase in the field of green chemistry.
Collapse
Affiliation(s)
- Ruifang Ding
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China
| | - Sheng Liu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, PR China
| | - Yangyang Zhang
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China
| | - Zhen Li
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China
| | - Ying Zuo
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China
| | - Dong Pei
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, 266000, PR China
| | - Tao Lan
- China National Institute of Standardization, Beijing, 100191, PR China
| | - Jinxia Hu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, 266000, PR China
| | - He Zhu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, PR China
| | - Mei Lv
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China.
| | - Litao Wang
- School of Pharmacy, Jining Medical University, Jining, 272000, PR China.
| |
Collapse
|
2
|
Zhao J, Fan H, Zhong G, Wang C, Li Z, Bi J, Xie J, Chen T, Deng J, Li J, Tan B. Improving the ion sieving performance of MOF polycrystalline membranes based on interface modification. Dalton Trans 2025; 54:7801-7809. [PMID: 40261047 DOI: 10.1039/d5dt00724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic framework (MOF) membranes exhibit promising potential for high-precision molecule and ion sieving due to their uniform and tunable pore structures. Nevertheless, it remains a challenge to address interfacial compatibility to obtain a high-performance MOF membrane. This is because there is a weak interfacial interaction between the MOF and the substrate, which leads to non-selective areas. This work presents an interface-coating method to facilitate dense nucleation and rapid growth of MOF crystals on the substrate towards reinforcing interaction and eliminating defects. Polydopamine (PDA) and β-cyclodextrin (β-CD) were co-assembled on polyvinylidene fluoride (PVDF) substrates to modify the surface chemistry and enhance interfacial compatibility, thereby facilitating the dense growth of ZIF-8. The ZIF-8/PVDF membranes demonstrated an excellent K+ permeance of 0.33 mol m-2 h-1 and a K+/Mg2+ selectivity of 30.16. The simulation results indicate that the channel of Mg2+ through ZIF-8 must overcome a greater transport energy barrier than that of K+, resulting in a higher selectivity of K+/Mg2+.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Haoran Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Gaofeng Zhong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Chenfeng Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Zhan Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jintong Bi
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jingle Xie
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Tongdan Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Juanli Deng
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jiang Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Bojun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
3
|
Lei D, Zhu Y, Lou LL, Liu Z. Covalent organic framework membranes for lithium extraction: facilitated ion transport strategies to enhance selectivity. MATERIALS HORIZONS 2025. [PMID: 40302559 DOI: 10.1039/d5mh00457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The surging global demand for lithium, driven by the proliferation of electric vehicles and energy storage technologies, has exposed significant limitations in conventional lithium extraction methods, including inefficiency and environmental harm. Covalent organic frameworks (COFs) have emerged as a promising platform to address this challenge and enable more sustainable lithium extraction, owing to their unique advantages such as precisely tunable pore sizes, robust stability, and the ability to incorporate functional binding sites for selective ion transport. This review focuses on structural design and functionalization strategies in COFs to optimize lithium-ion separation, highlighting how pore confinement effects, tailored interlayer stacking arrangements, and strategic functional group modifications can dramatically enhance Li+ selectivity over competing ions present in brine solutions. A particular emphasis is placed on the fundamental energy barriers associated with lithium-ion transport. In particular, we discuss how appropriately designed pore environments and lithium-binding functional groups reduce the dehydration energy required for Li+ to enter and traverse COF nanochannels, thereby facilitating faster and more selective Li+ conduction. We also survey recent advancements in COF-based lithium separation technologies, such as high-performance COF membranes and sorbents for extracting lithium from brines and seawater, evaluating their potential, as well as remaining challenges, for sustainable industrial implementation. This review provides a comprehensive understanding of how advanced COF engineering can enable efficient and selective lithium-ion transport, offering valuable insights for the development of next-generation lithium extraction materials and technologies.
Collapse
Affiliation(s)
- Da Lei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| | - Yongjie Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zhong Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Xining, Qinghai 810008, China.
| |
Collapse
|
4
|
Liu X, Liu P, Wang H, Khashab NM. Advanced Microporous Framework Membranes for Sustainable Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500310. [PMID: 40275732 DOI: 10.1002/adma.202500310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Advancements in membrane-based separation hinge on the design of materials that transcend conventional limitations. Microporous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), macrocycles, and porous organic cages (POCs) offer unprecedented control over pore architecture, chemical functionality, and transport properties, making them promising candidates for next-generation membrane technologies. The well-defined and tunable micropores provide a pathway to directly address the permeability-selectivity trade-off inherent in conventional polymer membranes. Here, this review explores the latest advancements in these four representative microporous membranes, emphasizing their breakthroughs in hydrocarbon separation, liquid-phase molecular sieving, and ion-selective transport, particularly focusing on their structure-performance relationships. While their tailored structures enable exceptional performance, practical adoption requires overcoming hurdles in scalability, durability, and compatibility with industrial processes. By offering insights into membrane structure optimization and innovative design strategies, this review provides a roadmap for advancing microporous membranes from laboratory innovation to real-world implementation, ultimately supporting global sustainability goals through energy-efficient separation processes.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Meng W, Chen S, Wu M, Gao F, Hou Y, Zhan X, Hu W, Liang L, Zhang Q. Dehydration-enhanced Ion Recognition of Triazine Covalent Organic Frameworks for High-resolution Li +/Mg 2+ Separation. Angew Chem Int Ed Engl 2025; 64:e202422423. [PMID: 39834313 DOI: 10.1002/anie.202422423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation. The remarkably high rejection of Mg2+ by the COF membrane is achieved via imposed ion dehydration and the construction of the energy well. The proper hydrophilic environment of the COF channel promotes the dissociation of Li+ from the negatively charged functional groups, allowing Li+ for hopping transport supported by the sulfonate side-chains to shorten the diffusion path of Li+. Under high-salinity electrodialysis conditions, the COF membrane demonstrates robust Li+/Mg2+ separation performance (No Mg2+ were detected in the collected solution), achieving efficient lithium recovery and high product purity (Li2CO3: 99.3 %). This membrane design strategy enables high energy efficiency and powerful lithium extraction in the electrodialysis lithium extraction process, and can be generalized to other energy and separation related membranes.
Collapse
Affiliation(s)
- Wentong Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ming Wu
- College of Automation, Hangzhou Dianzi University, Hangzhou 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Jinan 250353, China
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Yang D, Yang Y, Wong T, Iguodala S, Wang A, Lovell L, Foglia F, Fouquet P, Breakwell C, Fan Z, Wang Y, Britton MM, Williams DR, Shah N, Xu T, McKeown NB, Titirici MM, Jelfs KE, Song Q. Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction. NATURE WATER 2025; 3:319-333. [PMID: 40144313 PMCID: PMC11932922 DOI: 10.1038/s44221-025-00398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction. Polymers of intrinsic microporosity incorporated with hydrophilic functional groups enable fast transport of monovalent alkali cations (Li+, Na+ and K+) while rejecting relatively larger divalent ions such as Mg2+. The polymer of intrinsic microporosity membranes surpasses the performance of most existing membrane materials. Furthermore, the membranes were scaled up and integrated into an electrodialysis stack, demonstrating excellent selectivity in simulated salt-lake brines. This work will inspire the development of selective membranes for a wide range of sustainable separation processes critical for resource recovery and a global circular economy.
Collapse
Affiliation(s)
- Dingchang Yang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yijie Yang
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sunshine Iguodala
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Louie Lovell
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Fabrizia Foglia
- Department of Chemistry, University College London, London, UK
| | | | - Charlotte Breakwell
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yanlin Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Daryl R. Williams
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Nilay Shah
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Neil B. McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | | | - Kim E. Jelfs
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
7
|
Liu SH, Zhao K, Zhou JH, Dong K, Ai H, Liu P, Cui JW, Zhang YH, Puigmartí-Luis J, Sun JK. Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays. Angew Chem Int Ed Engl 2025; 64:e202421523. [PMID: 39688886 DOI: 10.1002/anie.202421523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double-solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single-crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single-crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro- and macropores, respectively, showing a 3.8- to 4-fold enhancement in one-pot tandem reaction activity compared to physical mixtures of individual analogues.
Collapse
Affiliation(s)
- Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ke Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Kang Dong
- Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Ai
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pai Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Hong Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
8
|
Yu S, Yang S, Yang M, Yang J, Song Z, Hu D, Ji H, Jia Z, Liu M. Regularly Arranged Heterogeneous Pores in Gas Separation Membranes Constructed by Cocrystallization of Porous Organic Molecules. Angew Chem Int Ed Engl 2025; 64:e202420086. [PMID: 39800998 DOI: 10.1002/anie.202420086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Indexed: 01/22/2025]
Abstract
Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state. A unique feature of POCs is their modularity, enabling a "mix and match" approach to create co-crystal structures driven by the intermolecular interactions. Herein, we adopted the cocrystallization strategy for fabricating gas separation membranes. We prepared membranes from a series of [4+6] imine cage pairs, which vary in cavity sizes and include cages with fluorescence properties. By optimizing the cocrystalization conditions, we successfully fabricated continuous, defect-free gas membranes, benefiting from chiral recognition interactions. By introducing regularly alternating small and large pores, we addressed challenges such as the trade-off between permeability and selectivity in gas separation membrane. Moreover, the cocrystallization strategy has been proven effective for other molecular systems besides POCs, such as macrocycles, for the preparation of co-crystal membranes. This method broadens the scope for fabricating high-performance gas separation membranes with ordered heterogeneous pores.
Collapse
Affiliation(s)
- Saisai Yu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Siyuan Yang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, 733 Jianshesan Road, Hangzhou, 311215, P. R. China
| | - Miao Yang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Ju Yang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Ziye Song
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Dingyue Hu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, 733 Jianshesan Road, Hangzhou, 311215, P. R. China
| | - Heng Ji
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Zhe Jia
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Ming Liu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, 733 Jianshesan Road, Hangzhou, 311215, P. R. China
| |
Collapse
|
9
|
Wu T, Qian Y, Zhu Z, Yu W, Zhang L, Liu J, Shen X, Zhou X, Qian T, Yan C. Imine-Linked 3D Covalent Organic Framework Membrane Featuring Highly Charged Sub-1 nm Channels for Exceptional Lithium-Ion Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415509. [PMID: 39780685 DOI: 10.1002/adma.202415509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Coupling ion exclusion and interaction screening within sub-nanoconfinement channels in novel porous material membranes hold great potential to realize highly efficient ion sieving, particularly for high-performance lithium-ion extraction. Diverse kinds of advanced membranes have been previously reported to realize this goal but with moderate performance and complex operations gained. Herein, these issues are circumvented by preparing the consecutive and intact imine-linked three-dimensional covalent organic framework (i.e., COF-300) membranes via a simple solvothermal approach and employing the intrinsically interconnected sub-1 nm one-dimensional channels for exceptional lithium-ion sieving. The synthesized membranes with highly charged angstrom scale channels of ≈0.78 nm achieve an excellent Li+ permeance (0.123 mol m-2 h-1) with an ultrahigh Li+/Mg2+ of 36 in the binary system. The experimental measurement and theoretical calculation reveal that a channel size right exactly between Li+ and Mg2+ enables restricted Mg2+ penetration. Meanwhile, the ion affinity interaction screening with imine groups further strengthens the fast Li+ permeability but severely suppresses the Mg2+ passage. In particular, the synthesized three-dimensional covalent organic framwork membranes also have a remarkable separation performance during a long-term operation test without sacrificing trade-off, demonstrating chemistry stability and mechanical integrity under the high-salinity aqueous environment.
Collapse
Affiliation(s)
- Tong Wu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
| | - Yijun Qian
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
| | - Zebin Zhu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
| | - Weihao Yu
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xiaowei Shen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Chenglin Yan
- College of Energy, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
10
|
Xu J, Qu K, Li X, Cui Y, Li J, Liu H, Lian C. Highly Reversible Anode-Free Lithium Metal Batteries Enabled by Porous Organic Cages with Subnano Lithiophilic Triangular Windows. ACS NANO 2025; 19:2936-2943. [PMID: 39779299 DOI: 10.1021/acsnano.4c16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li+ sieve to accelerate Li+ desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and Li3N-rich solid-electrolyte interphases. Moreover, the lithiophilic backbone of CC3 homogenizes Li+ distribution and deposition with mitigated dendrite growth. Thus, CC3 promotes Li plating/stripping kinetics and reversibility, achieving an ultralong stability over 8000 h of the Cu@CC3 electrode. Furthermore, practical Cu@CC3/LiFePO4 AFLMBs deliver a capacity retention (66%) over 600 cycles. This work emphasizes the effectiveness of CC3 to regulate the Li plating/stripping behavior, demonstrating the application potential of porous organic cages for enhancing the cycle life of AFLMBs.
Collapse
Affiliation(s)
| | | | - Xinrui Li
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
11
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Lin W, Cao L, Liu X, Alimi LO, Wang J, Moosa BA, Lai Z, Khashab NM. A Smart Polycage Membrane with Responsive Osmotic Energy Conversion Based on Synchronously Switchable Microporosity and Chargeability. J Am Chem Soc 2024; 146:34528-34535. [PMID: 39533477 DOI: 10.1021/jacs.4c11709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Membranes with specific pore sizes are widely used in molecular separation, ion transport, and energy conversion. However, the molecular understanding of structure-property performance in membrane science has been an urgent and long-standing problem. A promising but challenging solution lies in the fine-tuning of the membrane microstructure and properties to control membrane performance. Here, we designed an exofunctionalized triskelion cage to construct smart polycage membranes with concurrently responsive pore apertures and charge property. The synthetic polyaza cage is decorated with exoextended aldehyde groups for membrane fabrication and multiple amine sites for postmodification. The engineered polycage membranes thereby are endowed with pH-responsive porosity and chargeability, which serve as excellent candidates to explore the influence of the pore size and charge properties on membrane performance. In this regard, we successfully demonstrated the responsive osmotic energy conversion of the polycage membrane with a power density increase of over fourfold. This result indicates that the chargeability here outcompetes microporosity in energy conversion performance, which is further supported by molecular simulations. Therefore, this smart polycage membrane not only offers a feasible strategy to regulate the membrane microstructure and charge property reversibly but also balances pore size and chargeability to control the membrane performance at the molecular level.
Collapse
Affiliation(s)
- Weibin Lin
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Li Cao
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jinrong Wang
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Cheng X, Bae J. Recent Advancements in Fabrication, Separation, and Purification of Hierarchically Porous Polymer Membranes and Their Applications in Next-Generation Electrochemical Energy Storage Devices. Polymers (Basel) 2024; 16:3269. [PMID: 39684015 DOI: 10.3390/polym16233269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, hierarchically porous polymer membranes (HPPMs) have emerged as promising materials for a wide range of applications, including filtration, separation, and energy storage. These membranes are distinguished by their multiscale porous structures, comprising macro-, meso-, and micropores. The multiscale structure enables optimizing the fluid dynamics and maximizing the surface areas, thereby improving the membrane performance. Advances in fabrication techniques such as electrospinning, phase separation, and templating have contributed to achieving precise control over pore size and distribution, enabling the creation of membranes with properties tailored to specific uses. In filtration systems, these membranes offer high selectivity and permeability, making them highly effective for the removal of contaminants in environmental and industrial processes. In electrochemical energy storage systems, the porous membrane architecture enhances ion transport and charge storage capabilities, leading to improved performance in batteries and supercapacitors. This review highlights the recent advances in the preparation methods for hierarchically porous structures and their progress in electrochemical energy storage applications. It offers valuable insights and references for future research in this field.
Collapse
Affiliation(s)
- Xiong Cheng
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Wang A, Breakwell C, Foglia F, Tan R, Lovell L, Wei X, Wong T, Meng N, Li H, Seel A, Sarter M, Smith K, Alvarez-Fernandez A, Furedi M, Guldin S, Britton MM, McKeown NB, Jelfs KE, Song Q. Selective ion transport through hydrated micropores in polymer membranes. Nature 2024; 635:353-358. [PMID: 39506120 PMCID: PMC11560840 DOI: 10.1038/s41586-024-08140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Ion-conducting polymer membranes are essential in many separation processes and electrochemical devices, including electrodialysis1, redox flow batteries2, fuel cells3 and electrolysers4,5. Controlling ion transport and selectivity in these membranes largely hinges on the manipulation of pore size. Although membrane pore structures can be designed in the dry state6, they are redefined upon hydration owing to swelling in electrolyte solutions. Strategies to control pore hydration and a deeper understanding of pore structure evolution are vital for accurate pore size tuning. Here we report polymer membranes containing pendant groups of varying hydrophobicity, strategically positioned near charged groups to regulate their hydration capacity and pore swelling. Modulation of the hydrated micropore size (less than two nanometres) enables direct control over water and ion transport across broad length scales, as quantified by spectroscopic and computational methods. Ion selectivity improves in hydration-restrained pores created by more hydrophobic pendant groups. These highly interconnected ion transport channels, with tuned pore gate sizes, show higher ionic conductivity and orders-of-magnitude lower permeation rates of redox-active species compared with conventional membranes, enabling stable cycling of energy-dense aqueous organic redox flow batteries. This pore size tailoring approach provides a promising avenue to membranes with precisely controlled ionic and molecular transport functions.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, UK.
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Charlotte Breakwell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Fabrizia Foglia
- Department of Chemistry, University College London, London, UK
| | - Rui Tan
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Louie Lovell
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Xiaochu Wei
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Naiqi Meng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Haodong Li
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrew Seel
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
- Department of Physics, Royal Holloway University of London, Egham, UK
| | - Mona Sarter
- ISIS Neutron and Muon Source, Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, UK
| | - Keenan Smith
- Department of Chemistry, University College London, London, UK
| | | | - Mate Furedi
- Department of Chemical Engineering, University College London, London, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, UK
| | | | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
15
|
Wu B, Yan Y, Chu X, Miao J, Ge Q, Lin X, Ge L, Qian J. Reverse-Selective Anion Separation Relies on Charged "Hourglass" Gate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404061. [PMID: 39072922 DOI: 10.1002/smll.202404061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Indexed: 07/30/2024]
Abstract
According to the hydration size and charge property of separated ions, the transport channel can be constructed to achieve precision ion separation, but the ion geometry as a separation parameter to design the channel structure is rarely reported. Herein, a reverse-selective anion separation membrane composed of a metal-organic frameworks (MOFs) layer with a charged "hourglass" channel as an ion-selective switch to manipulate oxoanion transport is developed. The gate in "hourglass" with tetrahedral geometry similar to the oxoanion (such as SO2- 4, Cr 2O2- 7, and MnO- 4) boosts the transmission effect oxoanion much larger than Cl- through geometric matching and Coulomb interaction. Specific channel structure exhibits an abnormal selectivity for SO2- 4/Cl- of 20, Cr 2O2- 7/Cl- of 6.6, and MnO- 4/Cl- of 4.0 in a binary-ion system. The transfer behavior of SO2- 4 in the channel revealed by molecular dynamics simulation and density functional theory calculation further indicates the mechanism of the abnormal separation performance. The universality of the membrane structure is validated by the formation of different nitrogen-containing modified layers, which also achieves in situ growth of the MOFs layer, and exhibits similar reversal separation performance. The geometric configuration control of ion transport channels presents a novel effective strategy to realize the precise separation of target ions.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yunfei Yan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaorui Chu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Qianqian Ge
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaocheng Lin
- College of Chemical Engineering, School of Future Membrane Technology, Fuzhou University, Fuzhou, 350116, China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
16
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
17
|
Liu Q, Liu M, Zhang Z, Yin C, Long J, Wei M, Wang Y. Covalent organic framework membranes with vertically aligned nanorods for efficient separation of rare metal ions. Nat Commun 2024; 15:9221. [PMID: 39455582 PMCID: PMC11511856 DOI: 10.1038/s41467-024-53625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Covalent organic frameworks (COFs) have emerged as promising platforms for membrane separations, while remaining challenging for separating ions in a fast and selective way. Here, we propose a concept of COF membranes with vertically aligned nanorods for efficient separation of rare metal ions. A quaternary ammonium-functionalized monomer is rationally designed to synthesize COF layers on porous substrates via interfacial synthesis. The COF layers possess an asymmetric structure, in which the upper part displays vertically aligned nanorods, while the lower part exhibits an ultrathin dense layer. The vertically aligned nanorods enlarge contact areas to harvest water and monovalent ions, and the ultrathin dense layer enables both high permeability and selectivity. The resulting membranes exhibit exceptional separation performances, for instance, a Cs+ permeation rate of 0.33 mol m-2 h-1, close to the value in porous substrates, and selectivities with Cs+/La3+ up to 75.9 and 69.8 in single and binary systems, highlighting the great potentials in the separation of rare metal ions.
Collapse
Affiliation(s)
- Qinghua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Zhe Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Congcong Yin
- School of Energy and Environment, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Jianghai Long
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
- School of Energy and Environment, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
18
|
Liu X, Zhang G, Al Mohawes KB, Khashab NM. Smart membranes for separation and sensing. Chem Sci 2024:d4sc04793a. [PMID: 39483248 PMCID: PMC11523821 DOI: 10.1039/d4sc04793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Self-assembled membranes are extensively applied across various fields due to their non-thermal and low-carbon footprint characteristics. Recently, smart membranes with stimuli responsiveness have garnered significant attention for their ability to alter physical and chemical properties in response to different stimuli, leading to enhanced performance and a wider range of applications compared to traditional membranes. This review highlights the recent advancements in self-assembled smart membranes, beginning with widely used membrane preparation strategies such as interfacial polymerization and blending. Then it delves into the primary types of stimuli-responses, including light, pH, and temperature, illustrated in detail with relevant examples. Additionally, the review explores the latest progress in the use of smart membranes for separation and sensing, addressing the challenges and opportunities in both fields. This review offers new insights into the design of novel smart membrane platforms for sustainable development and provides a broader perspective on their commercial potential.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Gengwu Zhang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Khozama Bader Al Mohawes
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University (PNU) Riyadh 11671 Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Qin WM, Li Z, Su WX, Hu JM, Zou H, Wu Z, Ruan Z, Cai YP, Li K, Zheng Q. Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries. NANO-MICRO LETTERS 2024; 17:38. [PMID: 39404929 PMCID: PMC11480285 DOI: 10.1007/s40820-024-01499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/06/2024] [Indexed: 10/19/2024]
Abstract
Porous organic cages (POCs) with permanent porosity and excellent host-guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li+ transference number of 0.67 and a high ionic conductivity of 1.25 × 10-4 S cm-1 with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.
Collapse
Affiliation(s)
- Wei-Min Qin
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhongliang Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, People's Republic of China
| | - Wen-Xia Su
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia-Min Hu
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Hanqin Zou
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhixuan Wu
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zhiqin Ruan
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yue-Peng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
- Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, 510006, People's Republic of China.
| | - Kang Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
- Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, 510006, People's Republic of China.
| | - Qifeng Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, People's Republic of China.
- Guangzhou Key Laboratory of Energy Conversion and Energy Storage Materials, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
20
|
Sun Q, Song Z, Du J, Yao A, Liu L, He W, Hassan SU, Guan J, Liu J. Covalent Organic Framework Membranes with Regulated Orientation for Monovalent Cation Sieving. ACS NANO 2024; 18:27065-27076. [PMID: 39308162 DOI: 10.1021/acsnano.4c10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation. Within these confined channels, the membrane with vertically aligned pores and micron-scale stacking thickness demonstrates rapid and selective transportation of Li+ ions over Na+ and K+ ions, achieving Li+/K+ and Li+/Na+ selectivity ratios of 38.7 and 7.2, respectively. This research not only reveals regulated orientation and layer stacking in COF membranes via strategic solvent selection but also offers a potent approach for developing membranes specialized in Li+ ion separation.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Shabi Ul Hassan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
21
|
Song Z, Liu L, Sun Q, Du J, Guan J, Dou P, Zhang R, Jiang Z, Liu J. Crystalline Porous Organic Cage Membranes Constructed Using Fortified Intermolecular Interactions for Molecular Sieving. Angew Chem Int Ed Engl 2024; 63:e202409296. [PMID: 38923710 DOI: 10.1002/anie.202409296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Among the various types of materials with intrinsic porosity, porous organic cages (POCs) are distinctive as discrete molecules that possess intrinsic cavities and extrinsic channels capable of facilitating molecular sieving. However, the fabrication of POC membranes remains highly challenging due to the weak noncovalent intermolecular interactions and most reported POCs are powders. In this study, we constructed crystalline free-standing porous organic cage membranes by fortifying intermolecular interactions through the induction of intramolecular hydrogen bonds, which was confirmed by single-crystal X-ray analysis. To elucidate the driving forces behind, a series of terephthaldehyde building blocks containing different substitutions were reacted with flexible triamine under different conditions via interfacial polymerization (IP). Furthermore, density functional theory (DFT) calculations suggest that intramolecular hydrogen bonding can significantly boost the intermolecular interactions. The resulting membranes exhibited fast solvent permeance and high rejection of dyes not only in water, but also in organic solvents. In addition, the membrane demonstrated excellent performance in precise molecular sieving in organic solvents. This work opens an avenue to designing and fabricating free-standing membranes composed of porous organic materials for efficient molecular sieving.
Collapse
Affiliation(s)
- Ziye Song
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Qian Sun
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Jian Guan
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Pengjia Dou
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Wang W, Zhang Y, Wang C, Sun H, Guo J, Shao L. Simultaneous Manipulation of Membrane Enthalpy and Entropy Barriers towards Superior Ion Separations. Angew Chem Int Ed Engl 2024; 63:e202408963. [PMID: 39031735 DOI: 10.1002/anie.202408963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Sub-nanoporous membranes with ion selective transport functions are important for energy utilization, environmental remediation, and fundamental bioinspired engineering. Although mono/multivalent ions can be separated by monovalent ion selective membranes (MISMs), the current theory fails to inspire rapid advances in MISMs. Here, we apply transition state theory (TST) by regulating the enthalpy barrier (ΔH) and entropy barrier (ΔS) for designing next-generation monovalent cation exchange membranes (MCEMs) with great improvement in ion selective separation. Using a molecule-absorbed porous material as an interlayer to construct a denser selective layer can achieve a greater absolute value of ΔS for Li+ and Mg2+ transport, greater ΔH for Mg2+ transport and lower ΔH for Li+ transport. This recorded performance with a Li+/Mg2+ perm-selectivity of 25.50 and a Li+ flux of 1.86 mol ⋅ m-2 ⋅ h-1 surpasses the contemporary "upper bound" plot for Li+/Mg2+ separations. Most importantly, our synthesized MCEM also demonstrates excellent operational stability during the selective electrodialysis (S-ED) processes for realizing scalability in practical applications.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Yanqiu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Chao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Haixiang Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Jing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
23
|
Fan F, Ren Y, Zhang S, Tang Z, Wang J, Han X, Yang Y, Lu G, Zhang Y, Chen L, Wang Z, Zhang K, Gao J, Zhao J, Cui G, Tang B. A Bioinspired Membrane with Ultrahigh Li +/Na + and Li +/K + Separations Enables Direct Lithium Extraction from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402898. [PMID: 39030996 PMCID: PMC11425256 DOI: 10.1002/advs.202402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
Collapse
Affiliation(s)
- Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yongwen Ren
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhilei Tang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaolei Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guoli Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | | | - Jun Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Tang
- Tang Bo's institution, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
24
|
Xiong J, Ye W, Mu L, Lu X, Zhu J. Separation of Mono-/Divalent Ions via Controlled Dynamic Adsorption/Desorption at Polythiophene Coated Carbon Surface with Flow-Electrode Capacitive Deionization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400288. [PMID: 38593337 DOI: 10.1002/smll.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Capacitive deionization for selective separation of ions is rarely reported since it relies on the electrostatic attraction of oppositely charged ions with no capability to distinguish ions of different valent states. Using molecular dynamic simulation, a screening process identified a hybrid material known as AC/PTh, which consists of activated carbon with a thin layer of polythiophene (PTh) coating. By utilizing AC/PTh as electrode material implementing the short-circuit cycle (SCC) mode in flow-electrode capacitive deionization (FCDI), selective separation of mono-/divalent ions can be realized via precise control of dynamic adsorption and desorption of mono-/divalent ions at a particular surface. Specifically, AC/PTh shows strong interaction with divalent ions but weak interaction with monovalent ions, the distribution of divalent ions can be enriched in the electric double layer after a couple of adsorption-desorption cycles. At Cu2+/Na+ molar ratio of 1:40, selectivity toward divalent ions can reach up to 110.3 in FCDI SCC mode at 1.0 V. This work presents a promising strategy for separating ions of different valence states in a continuously operated FCDI device.
Collapse
Affiliation(s)
- Jingjing Xiong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenkai Ye
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liwen Mu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiahua Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
25
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
26
|
Ren Y, Fan F, Zhang Y, Chen L, Wang Z, Li J, Zhao J, Tang B, Cui G. A Dual-Cation Exchange Membrane Electrolyzer for Continuous H 2 Production from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401702. [PMID: 38569463 PMCID: PMC11220719 DOI: 10.1002/advs.202401702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Indexed: 04/05/2024]
Abstract
Direct seawater splitting (DSS) offers an aspirational route toward green hydrogen (H2) production but remains challenging when operating in a practically continuous manner, mainly due to the difficulty in establishing the water supply-consumption balance under the interference from impurity ions. A DSS system is reported for continuous ampere-level H2 production by coupling a dual-cation exchange membrane (CEM) three-compartment architecture with a circulatory electrolyte design. Monovalent-selective CEMs decouple the transmembrane water migration from interferences of Mg2+, Ca2+, and Cl- ions while maintaining ionic neutrality during electrolysis; the self-loop concentrated alkaline electrolyte ensures the constant gradient of water chemical potential, allowing a specific water supply-consumption balance relationship in a seawater-electrolyte-H2 sequence to be built among an expanded current range. Even paired with commercialized Ni foams, this electrolyzer (model size: 2 × 2 cm2) continuously produces H2 from flowing seawater with a rate of 7.5 mL min-1 at an industrially relevant current of 1.0 A over 100 h. More importantly, the energy consumption can be further reduced by coupling more efficient NiMo/NiFe foams (≈6.2 kWh Nm-3 H2 at 1.0 A), demonstrating the potential to further optimize the continuous DSS electrolyzer for practical applications.
Collapse
Affiliation(s)
- Yongwen Ren
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Faying Fan
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Jiedong Li
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
| | - Bo Tang
- Laoshan LaboratoryQingdao266237China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research InstituteQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdao266101China
- Shandong Energy InstituteQingdao266101China
- Qingdao New Energy Shandong LaboratoryQingdao266101China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
27
|
Zhang Y, Zhou K, Su S, Gao J, Liu J, Jiang L. Congener-welded crystalline carbon nitride membrane for robust and highly selective Li/Mg separation. SCIENCE ADVANCES 2024; 10:eadm9620. [PMID: 38875338 PMCID: PMC11177944 DOI: 10.1126/sciadv.adm9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Extracting lithium from salt-lake brines critically relies on the separation of Li+ and Mg2+, which could combat the lithium shortage. However, designing robust sieving membrane with high Li+/Mg2+ selectivity in the long-time operation has remained highly challenging. Here, we demonstrate a bioinspired congener-welded crystalline carbon nitride membrane that can accomplish efficient and stable monovalent ion sieving over divalent Mg ion. The crystalline carbon nitrides have uniform and narrow pore size to reject the large hydrated Mg2+ and rich ligating sites to facilitate an almost barrierless Li+ transport as suggested by ab initio simulations. These crystals were then welded by vapor-deposited congeners, i.e., amorphous polymer carbon nitride, which have similar composition and chemistry with the crystals, forming intimate and compatible crystal/polymer interface. As a result, our membrane can sieve out highly dilute Li+ (0.002 M) from concentrated Mg2+ (1.0 M) with a high selectivity of 1708, and can be continuously operated for 10 days.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Shigang Su
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100090, China
| |
Collapse
|
28
|
Zhao C, Feng F, Hou J, Hu J, Su Y, Liu JZ, Hill M, Freeman BD, Wang H, Zhang H. Unlocking Direct Lithium Extraction in Harsh Conditions through Thiol-Functionalized Metal-Organic Framework Subnanofluidic Membranes. J Am Chem Soc 2024; 146:14058-14066. [PMID: 38733559 DOI: 10.1021/jacs.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.
Collapse
Affiliation(s)
- Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Hu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuyu Su
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Benny D Freeman
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
29
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
30
|
Xu T, Wu B, Li W, Li Y, Zhu Y, Sheng F, Li Q, Ge L, Li X, Wang H, Xu T. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions. SCIENCE ADVANCES 2024; 10:eadn0944. [PMID: 38718127 PMCID: PMC11078184 DOI: 10.1126/sciadv.adn0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast transport of monovalent ions is imperative in selective monovalent ion separation based on membranes. Here, we report the in situ growth of crown ether@UiO-66 membranes at a mild condition, where dibenzo-18-crown-6 (DB18C6) or dibenzo-15-crown-5 is perfectly confined in the UiO-66 cavity. Crown ether@UiO-66 membranes exhibit enhanced monovalent ion transport rates and mono-/divalent ion selectivity, due to the combination of size sieving and interaction screening effects toward the complete monovalent ion dehydration. Specifically, the DB18C6@UiO-66 membrane shows a permeation rate (e.g., K+) of 1.2 mol per square meter per hour and a mono-/divalent ion selectivity (e.g., K+/Mg2+) of 57. Theoretical calculations and simulations illustrate that, presumably, ions are completely dehydrated while transporting through the DB18C6@UiO-66 cavity with a lower energy barrier than that of the UiO-66 cavity. This work provides a strategy to develop efficient ion separation membranes via integrating size sieving and interaction screening and to illuminate the effect of ion dehydration on fast ion transport.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bin Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Wenmin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanran Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fangmeng Sheng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiuhua Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
31
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
32
|
Qiu F, Xu N, Wang W, Su K, Yuan D. Adsorptive Separation of Methylfuran and Dimethylfuran by a Robust Porous Organic Cage. CHEM & BIO ENGINEERING 2024; 1:171-178. [PMID: 39975643 PMCID: PMC11835186 DOI: 10.1021/cbe.3c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/21/2025]
Abstract
As vital raw materials in the chemical industry, 2-methylfuran (MeF) and 2,5-dimethylfuran (DMeF) are commonly produced as mixtures. The selective separation of MeF and DMeF is crucial yet challenging, with significant industrial and economic implications. This study presents an energy-efficient separation technique using a robust calix[4]resorcinarene-based supramolecular porous organic cage (POC), CPOC-301, to effectively capture DMeF from an equimolar MeF/DMeF mixture within 2 h, yielding 95.3% purity. The exceptional separation efficiency stems from the superior structural stability of CPOC-301, maintaining its initial porous crystalline structure during separation. Calculations show that CPOC-301 forms more C-H···π hydrogen bonds with DMeF versus MeF, accounting for its DMeF selectivity. CPOC-301 can be easily regenerated via heat under a vacuum and reused for over five adsorption-desorption cycles without significant performance loss. This work introduces an approach to separate similar organic molecules effectively using POC materials.
Collapse
Affiliation(s)
- Fenglei Qiu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- College
of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ning Xu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- School
of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Wenjing Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
| | - Kongzhao Su
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Liu SH, Zhou JH, Wu C, Zhang P, Cao X, Sun JK. Sub-8 nm networked cage nanofilm with tunable nanofluidic channels for adaptive sieving. Nat Commun 2024; 15:2478. [PMID: 38509092 PMCID: PMC10954766 DOI: 10.1038/s41467-024-46809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Biological cell membrane featuring smart mass-transport channels and sub-10 nm thickness was viewed as the benchmark inspiring the design of separation membranes; however, constructing highly connective and adaptive pore channels over large-area membranes less than 10 nm in thickness is still a huge challenge. Here, we report the design and fabrication of sub-8 nm networked cage nanofilms that comprise of tunable, responsive organic cage-based water channels via a free-interface-confined self-assembly and crosslinking strategy. These cage-bearing composite membranes display outstanding water permeability at the 10-5 cm2 s-1 scale, which is 1-2 orders of magnitude higher than that of traditional polymeric membranes. Furthermore, the channel microenvironments including hydrophilicity and steric hindrance can be manipulated by a simple anion exchange strategy. In particular, through ionically associating light-responsive anions to cage windows, such 'smart' membrane can even perform graded molecular sieving. The emergence of these networked cage-nanofilms provides an avenue for developing bio-inspired ultrathin membranes toward smart separation.
Collapse
Affiliation(s)
- Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Peng Zhang
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xingzhong Cao
- Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China.
| |
Collapse
|
34
|
Peng Q, Wang R, Zhao Z, Lin S, Liu Y, Dong D, Wang Z, He Y, Zhu Y, Jin J, Jiang L. Extreme Li-Mg selectivity via precise ion size differentiation of polyamide membrane. Nat Commun 2024; 15:2505. [PMID: 38509082 PMCID: PMC10954764 DOI: 10.1038/s41467-024-46887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Achieving high selectivity of Li+ and Mg2+ is of paramount importance for effective lithium extraction from brines, and nanofiltration (NF) membrane plays a critical role in this process. The key to achieving high selectivity lies in the on-demand design of NF membrane pores in accordance with the size difference between Li+ and Mg2+ ions, but this poses a huge challenge for traditional NF membranes and difficult to be realized. In this work, we report the fabrication of polyamide (PA) NF membranes with ultra-high Li+/Mg2+ selectivity by modifying the interfacial polymerization (IP) process between piperazine (PIP) and trimesoyl chloride (TMC) with an oil-soluble surfactant that forms a monolayer at oil/water interface, referred to as OSARIP. The OSARIP benefits to regulate the membrane pores so that all of them are smaller than Mg2+ ions. Under the solely size sieving effect, an exceptional Mg2+ rejection rate of over 99.9% is achieved. This results in an exceptionally high Li+/Mg2+ selectivity, which is one to two orders of magnitude higher than all the currently reported pressure-driven membranes, and even higher than the microporous framework materials, including COFs, MOFs, and POPs. The large enhancement of ion separation performance of NF membranes may innovate the current lithium extraction process and greatly improve the lithium extraction efficiency.
Collapse
Affiliation(s)
- Quan Peng
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zilin Zhao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Dianyu Dong
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Zheng Wang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yiman He
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China
| | - Yuzhang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Innovation Center for Chemical Science & Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, 215123, PR China.
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, PR China.
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, PR China
| |
Collapse
|
35
|
Mo RJ, Chen S, Huang LQ, Ding XL, Rafique S, Xia XH, Li ZQ. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat Commun 2024; 15:2145. [PMID: 38459053 PMCID: PMC10924084 DOI: 10.1038/s41467-024-46378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Membrane consisting of ordered sub-nanochannels has been pursued in ion separation technology to achieve applications including desalination, environment management, and energy conversion. However, high-precision ion separation has not yet been achieved owing to the lack of deep understanding of ion transport mechanism in confined environments. Biological ion channels can conduct ions with ultrahigh permeability and selectivity, which is inseparable from the important role of channel size and "ion-channel" interaction. Here, inspired by the biological systems, we report the high-precision separation of monovalent and divalent cations in functionalized metal-organic framework (MOF) membranes (UiO-66-(X)2, X = NH2, SH, OH and OCH3). We find that the functional group (X) and size of the MOF sub-nanochannel synergistically regulate the ion binding affinity and dehydration process, which is the key in enlarging the transport activation energy difference between target and interference ions to improve the separation performance. The K+/Mg2+ selectivity of the UiO-66-(OCH3)2 membrane reaches as high as 1567.8. This work provides a gateway to the understanding of ion transport mechanism and development of high-precision ion separation membranes.
Collapse
Affiliation(s)
- Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Saima Rafique
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
36
|
Patyk-Kaźmierczak E, Izquierdo-Ruiz F, Lobato A, Kaźmierczak M, Moszczyńska I, Olejniczak A, Recio JM. The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal. IUCRJ 2024; 11:168-181. [PMID: 38275161 PMCID: PMC10916288 DOI: 10.1107/s2052252524000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA-) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2-. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.
Collapse
Affiliation(s)
- Ewa Patyk-Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Fernando Izquierdo-Ruiz
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Alvaro Lobato
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Michał Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Ida Moszczyńska
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Anna Olejniczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - J. Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y Analítica, University of Oviedo, Julián Clavería n° 8, Oviedo 33006, Spain
| |
Collapse
|
37
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
38
|
Xu Z, Ye Y, Liu Y, Liu H, Jiang S. Design and assembly of porous organic cages. Chem Commun (Camb) 2024; 60:2261-2282. [PMID: 38318641 DOI: 10.1039/d3cc05091b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Porous organic cages (POCs) represent a notable category of porous materials, showing remarkable material properties due to their inherent porosity. Unlike extended frameworks which are constructed by strong covalent or coordination bonds, POCs are composed of discrete molecular units held together by weak intermolecular forces. Their structure and chemical traits can be systematically tailored, making them suitable for a range of applications including gas storage and separation, molecular separation and recognition, catalysis, and proton and ion conduction. This review provides a comprehensive overview of POCs, covering their synthesis methods, structure and properties, computational approaches, and applications, serving as a primer for those who are new to the domain. A special emphasis is placed on the growing role of computational methods, highlighting how advanced data-driven techniques and automation are increasingly aiding the rapid exploration and understanding of POCs. We conclude by addressing the prevailing challenges and future prospects in the field.
Collapse
Affiliation(s)
- Zezhao Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yangzhi Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Yilan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Huiyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
39
|
Meng QW, Zhu X, Xian W, Wang S, Zhang Z, Zheng L, Dai Z, Yin H, Ma S, Sun Q. Enhancing ion selectivity by tuning solvation abilities of covalent-organic-framework membranes. Proc Natl Acad Sci U S A 2024; 121:e2316716121. [PMID: 38349874 PMCID: PMC10895279 DOI: 10.1073/pnas.2316716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
Understanding the molecular-level mechanisms involved in transmembrane ion selectivity is essential for optimizing membrane separation performance. In this study, we reveal our observations regarding the transmembrane behavior of Li+ and Mg2+ ions as a response to the changing pore solvation abilities of the covalent-organic-framework (COF) membranes. These abilities were manipulated by adjusting the lengths of the oligoether segments attached to the pore channels. Through comparative experiments, we were able to unravel the relationships between pore solvation ability and various ion transport properties, such as partitioning, conduction, and selectivity. We also emphasize the significance of the competition between Li+ and Mg2+ with the solvating segments in modulating selectivity. We found that increasing the length of the oligoether chain facilitated ion transport; however, it was the COF membrane with oligoether chains containing two ethylene oxide units that exhibited the most pronounced discrepancy in transmembrane energy barrier between Li+ and Mg2+, resulting in the highest separation factor among all the evaluated membranes. Remarkably, under electro-driven binary-salt conditions, this specific COF membrane achieved an exceptional Li+/Mg2+ selectivity of up to 1352, making it one of the most effective membranes available for Li+/Mg2+ separation. The insights gained from this study significantly contribute to advancing our understanding of selective ion transport within confined nanospaces and provide valuable design principles for developing highly selective COF membranes.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin300387, China
| | - Liping Zheng
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Hong Yin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX76201
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
40
|
Wu X, Zhang H, Zhang X, Guan Q, Tang X, Wu H, Feng M, Wang H, Ou R. Sustainable lithium extraction enabled by responsive metal-organic frameworks with ion-sieving adsorption effects. Proc Natl Acad Sci U S A 2024; 121:e2309852121. [PMID: 38306476 PMCID: PMC10861930 DOI: 10.1073/pnas.2309852121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024] Open
Abstract
Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.
Collapse
Affiliation(s)
- Xu Wu
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC3000, Australia
| | - Xinyu Zhang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Qian Guan
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Xiaocong Tang
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Hao Wu
- Department of Chemistry, Tsinghua University, Beijing100084, People’s Republic of China
| | - Mingbao Feng
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC3800, Australia
| | - Ranwen Ou
- Ecological Engineering for Environmental Sustainability, College of the Environment & Ecology, Xiamen University, Xiamen361104, People’s Republic of China
| |
Collapse
|
41
|
Huang L, Wu H, Ding L, Caro J, Wang H. Shearing Liquid-Crystalline MXene into Lamellar Membranes with Super-Aligned Nanochannels for Ion Sieving. Angew Chem Int Ed Engl 2024; 63:e202314638. [PMID: 38009764 DOI: 10.1002/anie.202314638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Ion-selective membranes are crucial in various chemical and physiological processes. Numerous studies have demonstrated progress in separating monovalent/multivalent ions, but efficient monovalent/monovalent ion sieving remains a great challenge due to their same valence and similar radii. Here, this work reports a two-dimensional (2D) MXene membrane with super-aligned slit-shaped nanochannels with ultrahigh monovalent ion selectivity. The MXene membrane is prepared by applying shear forces to a liquid-crystalline (LC) MXene dispersion, which is conducive to the highly-ordered stacking of the MXene nanosheets. The obtained LC MXene membrane (LCMM) exhibits ultrahigh selectivities toward Li+ /Na+ , Li+ /K+ , and Li+ /Rb+ separation (≈45, ≈49, and ≈59), combined with a fast Li+ transport with a permeation rate of ≈0.35 mol m-2 h-1 , outperforming the state-of-the-art membranes. Theoretical calculations indicate that in MXene nanochannels, the hydrated Li+ with a tetrahedral shape has the smallest diameter among the monovalent ions, contributing to the highest mobility. Besides, the weakest interaction is found between hydrated Li+ and MXene channels which also contributes to the ultrafast permeation of Li+ through the super-aligned MXene channels. This work demonstrates the capability of MXene membranes in monovalent ion separation, which also provides a facile and general strategy to fabricate lamellar membranes in a large scale.
Collapse
Affiliation(s)
- Lingzhi Huang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haoyu Wu
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstrasse 3 A, 30167, Hannover, Deutschland
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
43
|
Wang Z, Zhang QP, Guo F, Ma H, Liang ZH, Yi CH, Zhang C, Chen CF. Self-similar chiral organic molecular cages. Nat Commun 2024; 15:670. [PMID: 38253630 PMCID: PMC10803742 DOI: 10.1038/s41467-024-44922-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The endeavor to enhance utility of organic molecular cages involves the evolution of them into higher-level chiral superstructures with self-similar, presenting a meaningful yet challenging. In this work, 2D tri-bladed propeller-shaped triphenylbenzene serves as building blocks to synthesize a racemic 3D tri-bladed propeller-shaped helical molecular cage. This cage, in turn, acts as a building block for a pair of higher-level 3D tri-bladed chiral helical molecular cages, featuring multilayer sandwich structures and displaying elegant characteristics with self-similarity in discrete superstructures at different levels. The evolutionary procession of higher-level cages reveals intramolecular self-shielding effects and exclusive chiral narcissistic self-sorting behaviors. Enantiomers higher-level cages can be interconverted by introducing an excess of corresponding chiral cyclohexanediamine. In the solid state, higher-level cages self-assemble into supramolecular architectures of L-helical or D-helical nanofibers, achieving the scale transformation of chiral characteristics from chiral atoms to microscopic and then to mesoscopic levels.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China.
| | - Qing-Pu Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Hui Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zi-Hui Liang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chang-Hai Yi
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei, 430200, China
| | - Chun Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
44
|
Ferrando-Soria J, Fernandez A. Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials. NANO-MICRO LETTERS 2024; 16:88. [PMID: 38214764 PMCID: PMC10786801 DOI: 10.1007/s40820-023-01237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/24/2023] [Indexed: 01/13/2024]
Abstract
Porous organic molecular materials (POMMs) are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks, mainly held by non-covalent interactions. POMMs represent a variety of chemical families, such as hydrogen-bonded organic frameworks, porous organic salts, porous organic cages, C - H⋅⋅⋅π microporous crystals, supramolecular organic frameworks, π-organic frameworks, halogen-bonded organic framework, and intrinsically porous molecular materials. In some porous materials such as zeolites and metal organic frameworks, the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties. Therefore, considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials, we consider it appropriate to dedicate for the first time a critical review covering both topics. Herein, we will provide a summary of literature examples showcasing hierarchical POMMs, with a focus on their main synthetic approaches, applications, and the advantages brought forth by introducing hierarchy.
Collapse
Affiliation(s)
- Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Valencia, Spain.
| | - Antonio Fernandez
- School of Science, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
45
|
Xu Y, Zhang S, Wang M, Meng Y, Xie Z, Sun L, Huang C, Chen W. Enrichment of Chlorine in Porous Organic Nanocages for High-Performance Rechargeable Lithium-Chlorine Batteries. J Am Chem Soc 2023; 145:27877-27885. [PMID: 38053318 DOI: 10.1021/jacs.3c11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Rechargeable Li-Cl2 batteries are recognized as promising candidates for energy storage due to their ultrahigh energy densities and superior safety features. However, Li-Cl2 batteries suffer from a short cycle life and low Coulombic efficiency (CE) at a high specific cycling capacity due to a sluggish and insufficient Cl2 supply during the redox reaction. To achieve Li-Cl2 batteries with high discharge capacity and CE, herein, we propose and design an imine-functionalized porous organic nanocage (POC) to enrich Cl2 molecules. Based on density functional theory (DFT) calculations, the imine group sites in host cages strongly interact with Cl2 molecules, facilitating the rapid capture of Cl2. As a result, the output capacity of the Li-Cl2 battery using POC (Li-Cl2@POC) is significantly boosted, achieving an ultrahigh discharge capacity of 4000 mAh/g at ∼100% CE. Benefiting from the designed POC, the highest utilization ratio of deposited LiCl at the first cycle in the Li-Cl2@POC battery reaches as high as 85%, superior to all reported values. The Li-Cl2@POC battery exhibits excellent electrochemical performance even at low temperatures, delivering stable cycling over 200 cycles under a capacity of 2000 mAh/g at -20 °C with a voltage plateau of 3.5 V and an average CE of 99.7%. We also demonstrate that the Li-Cl2@POC cells can be assembled and well-operated in a dry room, showing advantages for mass production. Our designed POC promotes the practical deployment of rechargeable Li-Cl2 batteries.
Collapse
Affiliation(s)
- Yan Xu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Mingming Wang
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yahan Meng
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zehui Xie
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lidong Sun
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Cheng Huang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, Jiangsu, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Chen
- Department of Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
46
|
Ghosh A, Karmakar S, Dey A, Maji TK. Modular Gating of Ion Transport by Postsynthetic Charge Transfer Complexation in a Metal-Organic Framework. J Am Chem Soc 2023. [PMID: 38051543 DOI: 10.1021/jacs.3c11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Nature's design of biological ion channels that demonstrates efficient gating and selectivity brings to light a very promising model to mimic and design for achieving selective and tunable ion transport. Functionalized nanopores that permit modulation of the pore wall charges are a compelling approach to gain control over the ion transport mechanism through the pores. This makes way for employing a noncovalent supramolecular approach for attaining charge reversal of the MOF pore walls using donor-acceptor pairs that can demonstrate strong charge transfer interactions. Herein, robust Zr4+-based mesoporous MOF-808 was postsynthetically modified into an anion-selective nanochannel (MOF-808-MV) by modification with dicationic viologen-based motifs. Charge modulation and even reversal of the MOF-808-MV pore walls were then explored taking advantage of strong charge transfer interactions between the grafted dicationic viologen acceptor moieties and anionic, π-electron-rich donor guest molecules such as pyranine (PYR) and tetrathiafulvalene tetrabenzoic acid (TTF-TA). Tunability of the MOF pore charge from positive to neutral to negative was achieved via simple methodologies such as diffusion control in case of guest molecule like PYR and by pH modulation for pH-responsive guest like TTF-TA. This results in a concomitant modulation in the selectivity of the nanochannel, rendering it from anion-selective to ambipolar to cation-selective. Furthermore, as a real-time application of this ion channel, Na+ ion conductivity (σ = 3.5 × 10-5 S cm-1) was studied at ambient temperature.
Collapse
|
47
|
Ghaffar A, Hassan M, Penkov OV, Yavuz CT, Celebi K. Tunable Molecular Sieving by Hierarchically Assembled Porous Organic Cage Membranes with Solvent-Responsive Switchable Pores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20380-20391. [PMID: 37965815 DOI: 10.1021/acs.est.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Molecular separations involving solvents and organic impurities represent great challenges for environmental and water-intensive industries. Novel materials with intrinsic nanoscale pores offer a great choice for improvement in terms of energy efficiency and capital costs. Particularly, in applications where gradient and ordered separation of organic contaminants remain elusive, smart materials with switchable pores can offer efficient solutions. Here, we report a hierarchically networked porous organic cage membrane with dynamic control over pores, elucidating stable solvent permeance and tunable dye rejection over different molecular weights. The engineered cage membrane can spontaneously modulate its geometry and pore size from water to methanol and DMF in a reversible manner. The cage membrane exhibits ≥585.59 g mol-1 molecular weight cutoff preferentially in water and is impeded by methanol (799.8 g mol-1) and DMF (≈1017 g mol-1), reflecting 36 and 73% change in rejection due to self-regulation and the flexible network, respectively. Grazing incidence X-ray diffraction illustrates a clear peak downshift, suggesting an intrinsic structural change when the cage membranes were immersed in methanol or DMF. We have observed reversible structural changes that can also be tuned by preparing a methanol/DMF mixture and adjusting their ratio, thereby enabling gradient molecular filtration. We anticipate that such cage membranes with dynamic selectivity could be promising particularly for industrial separations and wastewater treatment.
Collapse
Affiliation(s)
- Abdul Ghaffar
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Muhammad Hassan
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Oleksiy V Penkov
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Cafer T Yavuz
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kemal Celebi
- Zhejiang University-University of Illinois Urbana-Champaign Institute (ZJU-UIUC), 718 East Haizhou Road, Haining, Zhejiang 314400, China
- Department of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
48
|
Yao A, Du J, Sun Q, Liu L, Song Z, He W, Liu J. Flexible Covalent Organic Network with Ordered Honeycomb Nanoarchitecture for Molecular Separations. ACS NANO 2023; 17:22916-22927. [PMID: 37962059 DOI: 10.1021/acsnano.3c08028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membranes with precisely defined nanostructure are desirable for energy-efficient molecular separations. The emergence of membranes with honeycomb lattice or topological nanopores is of fundamental importance. The tailor-made nanostructure and morphology may have huge potential to resolve the longstanding bottlenecks in membrane science and technology. Herein, inspired by honeycomb architecture, we demonstrate an effective and scalable route based on interfacial polymerization (IP) to generate flexible and ordered covalent organic network (CON) membranes for liquid-phase molecular separations. The aperture size of a CON membrane can be reasonably designed through the strong covalent bond between molecular building blocks. The fabricated CON membrane formed by IP showed an obviously size-dependent sieving of molecules, yielding a stepwise conversion from low rejection to the expected high rejection. Moreover, the CON membrane was also found to have the sieving capability for tetracycline and ciprofloxacin, ascribed to the effect of size exclusion by an ordered single-nanoscale channel (<1 nm). This approach provides a viable strategy for creating target-sized channels from molecular-level design and demonstrates their potential for accurate molecular separations.
Collapse
Affiliation(s)
- Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| |
Collapse
|
49
|
Peng H, Liu X, Su Y, Li J, Zhao Q. Advanced Lithium Extraction Membranes Derived from Tagged-Modification of Polyamide Networks. Angew Chem Int Ed Engl 2023; 62:e202312795. [PMID: 37796136 DOI: 10.1002/anie.202312795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Efficient Mg2+ /Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a "tagged-modification" approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1 ) and 3-aminopropyltrimethylazanium (E2 ) was designed to modify polyethylenimine - trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m-2 h-1 bar-1 ) and Mg2+ /Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2 CO3 ) from simulated brine.
Collapse
Affiliation(s)
- Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Yafei Su
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| |
Collapse
|
50
|
Holsten M, Elbert SM, Rominger F, Zhang WS, Schröder RR, Mastalerz M. Single Crystals of Insoluble Porous Salicylimine Cages. Chemistry 2023; 29:e202302116. [PMID: 37577877 DOI: 10.1002/chem.202302116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Porous organic cages (POCs) are meanwhile an established class of porous materials. Most of them are soluble to a certain extend and thus processable in or from solution. However, a few of larger salicylimine cages were reported to be insoluble in any organic solvents and thus characterized as amorphous materials. These cages were now synthesized as single-crystalline materials to get insight into packing motifs and preferred intermolecular interactions. Furthermore, the pairs of crystalline and amorphous materials for each cage allowed to compare their gas-sorption properties in both morphological states.
Collapse
Affiliation(s)
- Mattes Holsten
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Wen-Shan Zhang
- Bioquant, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Rasmus R Schröder
- Bioquant, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|