1
|
Zhu X, Wang Y, He T, Thomas S, Jiang H, Shekhah O, Wang JX, Ng TK, Alshareef HN, Bakr OM, Ooi BS, Eddaoudi M, Mohammed OF. Efficient Color Conversion in Metal-Organic Frameworks Boosts Optical Wireless Communications beyond 1 GB/s Data Rate. J Am Chem Soc 2025; 147:6805-6812. [PMID: 39932244 PMCID: PMC11869274 DOI: 10.1021/jacs.4c16906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Efficient color converters are essential for achieving high -3-dB bandwidths and net data rates in optical wireless communications (OWCs). Here, we emphasize the significance of lanthanide-based metal-organic frameworks (MOFs) combined with an effective energy transfer strategy for developing high-performance color converters in OWC systems. In this approach, we successfully reduced the photoluminescence (PL) lifetime from 1.3 ms of the MOF to 4.6 ns of the MOF-chromophore composite, achieved through an efficient energy transfer process in the cavity and surface of the MOFs. This significant reduction in PL lifetime led to a dramatic increase in the -3-dB bandwidth, rising from less than 0.1 to 65.7 MHz. Most importantly, a net data rate of 1.076 GB/s was achieved, marking the first successful demonstration of lanthanide-based MOFs as color converters that facilitate data transmission rates exceeding 1 GB/s. Notably, both the -3-dB bandwidth and net data rate surpass those of most reported organic and inorganic materials, underscoring the exceptional potential of lanthanide-based MOFs when combined with an efficient energy transfer strategy. We believe this combination paves the way for further innovations in high-speed OWC technologies.
Collapse
Affiliation(s)
- Xin Zhu
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Tengjiao He
- Functional
Materials Design, Discovery, and Development Research Group (FMD3),
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hao Jiang
- Functional
Materials Design, Discovery, and Development Research Group (FMD3),
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional
Materials Design, Discovery, and Development Research Group (FMD3),
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Functional
Materials Design, Discovery, and Development Research Group (FMD3),
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Husam N. Alshareef
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Boon S. Ooi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery, and Development Research Group (FMD3),
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Center
of Excellence for Renewable Energy and Storage Technologies, Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Chen B, Li X, Gao X, Li Y, Hou X, Fu Y, Fan F, Wang T, Zhou J, Meng F, Fu Y. Fabrication of Self-Standing Inorganic-Organic Composite Films at a Miscible Interface by "Soft Spray" Technique. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6878-6886. [PMID: 39813138 DOI: 10.1021/acsami.4c16448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Membranes have extensive applications in catalysis, separation, antimicrobial activities, and sensing. However, developing a simple and environmentally friendly method for preparing membranes remains challenging. Here, we report a novel strategy for fabricating self-standing inorganic-organic composite films at the miscible liquid/liquid interface using a soft spray technique. Specifically, metal salt solutions are sprayed onto the interface between an alkaline poly(vinyl alcohol) (PVA) solution to form heterogeneous metal hydroxide/PVA composite films with PVA as the supporting substrate. The preparation method is simple, easy to manipulate, environmentally friendly, and resource-efficient. It has been extended to prepare metal phosphate/PVA, metal carbonate/PVA, and metal sulfide/PVA composite films. Notably, the copper hydroxide/PVA (Cu(OH)2/PVA) composite films exhibit exceptional tensile strength (19.0 MPa) and remarkable antimicrobial properties (99.9%). This simple soft spray-assisted technique provides a novel approach for fabricating miscible interface composite films.
Collapse
Affiliation(s)
- Bingbing Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
- Ningxia Institute of Science and Technology, Shizuishan 753000, P. R. China
| | - Xuemin Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xing Gao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yuhang Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xiaojiao Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yuanlin Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jun Zhou
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, P. R. China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
- School of Chemical and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, P. R. China
| |
Collapse
|
3
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Zhu X, He T, Song X, Shekhah O, Thomas S, Jiang H, Wu W, He T, Guillerm V, Shkurenko A, Wang JX, Alshareef HN, Bakr OM, Eddaoudi M, Mohammed OF. Large-Area Metal-Organic Framework Glasses for Efficient X-Ray Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412432. [PMID: 39552007 DOI: 10.1002/adma.202412432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Cutting-edge techniques utilizing continuous films made from pure, novel semiconductive materials offer promising pathways to achieve high performance and cost-effectiveness for X-ray detection. Semiconductive metal-organic framework (MOF) glass films are known for their remarkably smooth surface morphology, straightforward synthesis, and capability for large-area fabrication, presenting a new direction for high-performance X-ray detectors. Here, a novel material centered on MOF glasses for highly uniform glass film fabrication customized for X-ray detection is introduced. MOF glasses, composed of zinc and imidazole derivatives, enable the transition from solid to liquid at low temperatures, facilitating the straightforward preparation of large-area and continuous MOF films with high mobility for X-ray device fabrication. Remarkably, MOF glass detectors demonstrate an exceptional sensitivity of 112.8 µC Gyair -1 cm-2 and a detection limit of 0.41 µGyair s-1, making them one of the most sensitive and with the best detection limits reported to date for MOF X-ray detectors. Clear X-ray images are successfully conducted using these developed MOF glass detectors for the first time. This breakthrough in X-ray sensitivity, and detection limit along with the spatial imaging resolution establishes a new standard for developing large-area and efficient MOF-based X-ray detectors with practical applications in medical and security screening.
Collapse
Affiliation(s)
- Xin Zhu
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tengjiao He
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xin Song
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Simil Thomas
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Hao Jiang
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wentao Wu
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tengyue He
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Center of Excellence for Renewable Energy and Storage Technologies, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Jindal S, Wang JX, Wang Y, Thomas S, Mallick A, Bonneau M, Bhatt PM, Alkhazragi O, Nadinov I, Ng TK, Shekhah O, Alshareef HN, Ooi BS, Mohammed OF, Eddaoudi M. Aggregation Induced Emission-Based Covalent Organic Frameworks for High-Performance Optical Wireless Communication. J Am Chem Soc 2024; 146:25536-25543. [PMID: 39225332 PMCID: PMC11421012 DOI: 10.1021/jacs.4c05812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
Here, we report the first utilization of covalent organic frameworks (COFs) in optical wireless communication (OWC) applications. In the solid form, aggregation-induced emission (AIE) luminogen often shows promising emissive characteristics that augment radiative decays and improve fluorescence. We have synthesized an AIE-COF through the Knoevenagel condensation reaction by taking advantage of the ability to carefully design and alter the COF structure by integrating an AIE luminogen with linear building blocks. The synthesized AIE-COF exhibited a high solid-state photoluminescence quantum yield (∼39%) and a short photoluminescence lifetime (∼1 ns), crucial for achieving modulation bandwidth for high-speed OWC applications. For comparison, we constructed an aggregation-caused quenching based COF, showing a similar lifetime but almost insignificant quantum yield. The orthogonal frequency-division multiplexing modulation strategy employed by the AIE-COF demonstrates remarkable high-rate data transmission, with a wide -3 dB modulation bandwidth of nearly 200 MHz and achieving high net data rates of 825 Mb/s, outperforming traditional materials. These results open new avenues for the ability to design and finetune new COF materials for their utilization as color converters in developing cutting-edge OWC components, enabling faster and more efficient data transfer.
Collapse
Affiliation(s)
- Swati Jindal
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Yue Wang
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Simil Thomas
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arijit Mallick
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mickaele Bonneau
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Prashant M. Bhatt
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Omar Alkhazragi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tien Khee Ng
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Osama Shekhah
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boon S. Ooi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Zhai Y, Xu C, Zhang Z, Li P, Murai S, Rivas JG, Li X, Wang S. Efficient Redirection of Trapped Broad-Band Fluorescence from Substrates into Free Space Using c-Si Metasurfaces. NANO LETTERS 2024; 24:11311-11318. [PMID: 39207029 DOI: 10.1021/acs.nanolett.4c03294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fluorescent dye films on transparent substrates are essential for OLEDs, flexible displays, X-ray detection, and wireless optical communications. However, their efficiency is often hampered by fluorescence trapping due to total internal reflection (TIR) and waveguiding. This study tackles this longstanding challenge by reconceptualizing the integration of dye films with nanoantenna metasurfaces. Traditional methods involve directly spin-coating films onto c-Si metasurfaces on quartz substrates, resulting in edge luminescence and weak inner signals. We present a straightforward, adjustable approach by integrating dye films on the opposite side of quartz substrates, reaching a 2.5-fold photoluminescence enhancement and improving the uniformity of the emission compared to the conventional methods. These gains stem from redirecting a significant portion of leaked fluorescence light trapped inside the substrate into free space, surpassing TIR conditions through in-plane diffraction orders of the metasurfaces across the full RGB spectrum. Our findings facilitate the design of more efficient luminescent devices.
Collapse
Affiliation(s)
- Yiheng Zhai
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhenghe Zhang
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Peng Li
- Key Laboratory of Light Field and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shunsuke Murai
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jaime Gómez Rivas
- Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Xiaofeng Li
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Shaojun Wang
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Gao Y, Liu QS, Long MC, Zhu GR, Wu G, Wang XL, Wang YZ. Nano-Interfacial Supramolecular Adhesion of Metal-Organic Framework-Based Separator Enables High-Safety and Wide-Temperature-Range Lithium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400980. [PMID: 38545991 DOI: 10.1002/smll.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Indexed: 08/17/2024]
Abstract
Polyolefin separators are the most commonly used separators for lithium batteries; however, they tend to shrink when heated, and their Li+ transference number (t Li +) is low. Metal-organic frameworks (MOFs) are expected to solve the above problems due to their high thermal stability, abundant pore structure, and open metal sites. However, it is difficult to prepare high-porosity MOF-based membranes by conventional membrane preparation methods. In this study, a high-porosity free-standing MOF-based safety separator, denoted the BCM separator, is prepared through a nano-interfacial supramolecular adhesion strategy. The BCM separator has a large specific surface area (450.22 m2 g-1) and porosity (62.0%), a high electrolyte uptake (475 wt%), and can maintain its morphology at 200 °C. The ionic conductivity and t Li + of the BCM separator are 1.97 and 0.72 mS cm-1, respectively. Li//LiFePO4 cells with BCM separators have a capacity retention rate of 95.07% after 1100 cycles at 5 C, a stable high-temperature cycling performance of 300 cycles at 80 °C, and good capacity retention at -40 °C. Li//NCM811 cells with BCM separators exhibit significantly improved rate performance and cycling performance. Pouch cells with BCM separators can work at 120 °C and have good safety at high temperature.
Collapse
Affiliation(s)
- You Gao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qing-Song Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Man-Cheng Long
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Guo-Rui Zhu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
8
|
Lian M, Zhao J, Zhang D, Ye S, Li Y, Yang D, Yang XJ, Wu B. Incorporation of an Anion-Coordinated Triple Helicate into a Thin Film for Choline Recognition in an Aqueous System. Angew Chem Int Ed Engl 2024; 63:e202401228. [PMID: 38354230 DOI: 10.1002/anie.202401228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Functional thin films, being fabricated by incorporating discrete supramolecular architectures, have potential applications in research areas such as sensing, energy storage, catalysis, and optoelectronics. Here, we have determined that an anion-coordinated triple helicate can be solution-processed into a functional thin film by incorporation into a polymethyl methacrylate (PMMA) matrix. The thin films fabricated by the incorporation of the anion-coordinated triple helicate show multiple optical properties, such as fluorescence, CD, and CPL. In addition, the film has the ability to recognize choline and choline derivatives in a water system. The successful recognition of Ch+ by the film represents the first example of utilizing 'aniono'-supramolecular architectures for biomolecule detection in aqueous solution and opens up a new route for designing biocompatible functional materials.
Collapse
Affiliation(s)
- Mingli Lian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055, Xi'an, China
| | - Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Sheng Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Yidan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, China
| |
Collapse
|
9
|
Abazari R, Sanati S, Bajaber MA, Javed MS, Junk PC, Nanjundan AK, Qian J, Dubal DP. Design and Advanced Manufacturing of NU-1000 Metal-Organic Frameworks with Future Perspectives for Environmental and Renewable Energy Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306353. [PMID: 37997226 DOI: 10.1002/smll.202306353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Metal-organic frameworks (MOFs) represent a relatively new family of materials that attract lots of attention thanks to their unique features such as hierarchical porosity, active metal centers, versatility of linkers/metal nodes, and large surface area. Among the extended list of MOFs, Zr-based-MOFs demonstrate comparably superior chemical and thermal stabilities, making them ideal candidates for energy and environmental applications. As a Zr-MOF, NU-1000 is first synthesized at Northwestern University. A comprehensive review of various approaches to the synthesis of NU-1000 MOFs for obtaining unique surface properties (e.g., diverse surface morphologies, large surface area, and particular pore size distribution) and their applications in the catalysis (electro-, and photo-catalysis), CO2 reduction, batteries, hydrogen storage, gas storage/separation, and other environmental fields are presented. The review further outlines the current challenges in the development of NU-1000 MOFs and their derivatives in practical applications, revealing areas for future investigation.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
| | - Ashok Kumar Nanjundan
- Schole of Engineering, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, China
| | - Deepak P Dubal
- Centre for Materials Science, School of Chemistry & Physics, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| |
Collapse
|
10
|
Zhu X, Wang Y, Nadinov I, Thomas S, Gutiérrez-Arzaluz L, He T, Wang JX, Alkhazragi O, Ng TK, Bakr OM, Alshareef HN, Ooi BS, Mohammed OF. Leveraging Intermolecular Charge Transfer for High-Speed Optical Wireless Communication. J Phys Chem Lett 2024; 15:2988-2994. [PMID: 38457267 PMCID: PMC10961838 DOI: 10.1021/acs.jpclett.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory. These intermolecular CT complexes empower precise control over the -3 dB bandwidth and net data rates in OWC applications. The resulting color converters exhibit promising performance, achieving a net data rate of ∼100 Mb/s, outperforming conventional materials commonly used in the manufacture of OWC devices. This research underscores the substantial potential of engineering intermolecular charge transfer complexes as an ongoing progression and commercialization within the OWC. This carries profound implications for future initiatives in high-speed and secure data transmission, paving the way for promising endeavors in this area.
Collapse
Affiliation(s)
- Xin Zhu
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Simil Thomas
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tengyue He
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Xin Wang
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar Alkhazragi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Materials
Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Boon S. Ooi
- Photonics
Laboratory, Division of Computer, Electrical, and Mathematical Sciences
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, Division of Physical Science
and Engineering, King Abdullah University
of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Ettlinger R, Vornholt SM, Roach MC, Tuttle RR, Thai J, Kothari M, Boese M, Holwell A, Duncan MJ, Reynolds M, Morris RE. Mixed Metal-Organic Framework Mixed-Matrix Membranes: Insights into Simultaneous Moisture-Triggered and Catalytic Delivery of Nitric Oxide using Cryo-scanning Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49835-49842. [PMID: 37818956 PMCID: PMC10614190 DOI: 10.1021/acsami.3c11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
The fundamental chemical and structural diversity of metal-organic frameworks (MOFs) is vast, but there is a lack of industrial adoption of these extremely versatile compounds. To bridge the gap between basic research and industry, MOF powders must be formulated into more application-relevant shapes and/or composites. Successful incorporation of varying ratios of two different MOFs, CPO-27-Ni and CuBTTri, in a thin polymer film represents an important step toward the development of mixed MOF mixed-matrix membranes. To gain insight into the distribution of the two different MOFs in the polymer, we report their investigation by Cryo-scanning electron microscopy (Cryo-SEM) tomography, which minimizes surface charging and electron beam-induced damage. Because the MOFs are based on two different metal ions, Ni and Cu, the elemental maps of the MOF composite cross sections clearly identify the size and location of each MOF in the reconstructed 3D model. The tomography run was about six times faster than conventional focused ion beam (FIB)-SEM and the first insights to image segmentation combined with machine learning could be achieved. To verify that the MOF composites combined the benefits of rapid moisture-triggered release of nitric oxide (NO) from CPO-27-Ni with the continuous catalytic generation of NO from CuBTTri, we characterized their ability to deliver NO individually and simultaneously. These MOF composites show great promise to achieve optimal dual NO delivery in real-world medical applications.
Collapse
Affiliation(s)
- Romy Ettlinger
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Simon M. Vornholt
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Madeline C. Roach
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Robert R. Tuttle
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Jonathan Thai
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Maadhav Kothari
- ZEISS Research
Microscopy Solutions, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany
| | - Markus Boese
- ZEISS Research
Microscopy Solutions, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany
| | - Andy Holwell
- Carl
Zeiss
Microscopy Ltd, Cambourne, Cambridge CB23 6DW, United Kingdom
| | - Morven J. Duncan
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Melissa Reynolds
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Russell E. Morris
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
12
|
Wang Y, Wang JX, Alkhazragi O, Gutiérrez-Arzaluz L, Zhang H, Kang CH, Ng TK, Bakr OM, Mohammed OF, Ooi BS. Multifunctional difluoroboron β-diketonate-based luminescent receiver for a high-speed underwater wireless optical communication system. OPTICS EXPRESS 2023; 31:32516-32528. [PMID: 37859053 DOI: 10.1364/oe.500330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2023] [Indexed: 10/21/2023]
Abstract
The last decade has witnessed considerable progress in underwater wireless optical communication in complex environments, particularly in exploring the deep sea. However, it is difficult to maintain a precise point-to-point reception at all times due to severe turbulence in actual situations. To facilitate efficient data transmission, the color-conversion technique offers a paradigm shift in large-area and omnidirectional light detection, which can effectively alleviate the étendue limit by decoupling the field of view and optical gain. In this work, we investigated a series of difluoroboron β-diketonate fluorophores by measuring their photophysical properties and optical wireless communication performances. The emission colors were tuned from blue to green, and >0.5 Gb/s data transmission was achieved with individual color channel in free space by implementing an orthogonal frequency-division multiplexing (OFDM) modulation scheme. In the underwater experiment, the fluorophore with the highest transmission speed was fabricated into a 4×4 cm2 luminescent concentrator, with the concentrated emission from the edges coupled with an optical fiber array, for large-area photodetection and optical beam tracking. The net data rates of 130 Mb/s and 217 Mb/s were achieved based on nonreturn- to-zero on-off keying and OFDM modulation schemes, respectively. Further, the same device was used to demonstrate the linear light beam tracking function with high accuracy, which is beneficial for sustaining a reliable and stable connection in a dynamic, turbulent underwater environment.
Collapse
|
13
|
Wang JX, Wang Y, Almalki M, Yin J, Shekhah O, Jia J, Gutiérrez-Arzaluz L, Cheng Y, Alkhazragi O, Maka VK, Ng TK, Bakr OM, Ooi BS, Eddaoudi M, Mohammed OF. Engineering Metal-Organic Frameworks with Tunable Colors for High-Performance Wireless Communication. J Am Chem Soc 2023. [PMID: 37421307 DOI: 10.1021/jacs.3c03672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as excellent platforms possessing tunable and controllable optical behaviors that are essential in high-speed and multichannel data transmission in optical wireless communications (OWCs). Here, we demonstrate a novel approach to achieving a tunable wide modulation bandwidth and high net data rate by engineering a combination of organic linkers and metal clusters in MOFs. More specifically, two organic linkers of different emission colors, but equal molecular length and connectivity, are successfully coordinated by zirconium and hafnium oxy-hydroxy clusters to form the desired MOF structures. The precise change in the interactions between these different organic linkers and metal clusters enables control over fluorescence efficiency and excited state lifetime, leading to a tunable modulation bandwidth from 62.1 to 150.0 MHz and a net data rate from 303 to 363 Mb/s. The fabricated color converter MOFs display outstanding performance that competes, and in some instances surpasses, those of conventional materials commonly used in light converter devices. Moreover, these MOFs show high practicality in color-pure wavelength-division multiplexing (WDM), which significantly improved the data transmission link capacity and security by the contemporary combining of two different data signals in the same path. This work highlights the potential of engineered MOFs as a game-changer in OWCs, with significant implications for future high-speed and secure data transmission.
Collapse
Affiliation(s)
- Jian-Xin Wang
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Maram Almalki
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, P. R. China
| | - Osama Shekhah
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiangtao Jia
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Youdong Cheng
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar Alkhazragi
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vijay K Maka
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Division of Computer, Electrical, and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Li J, Wang A, Qiu S, Wang X, Li J. A 12-Connected [Y 4(( μ3-OH) 4] 8+ Cluster-Based Luminescent Metal-Organic Framework for Selective Turn-on Detection of F - in H 2O. Molecules 2023; 28:1893. [PMID: 36838884 PMCID: PMC9960892 DOI: 10.3390/molecules28041893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Fluoride ion (F-) is one of the most hazardous elements in potable water. Over intake of F- can give rise to dental fluorosis, kidney failure, or DNA damage. As a result, developing affordable, equipment-free and credible approaches for F- detection is an important task. In this work, a new three dimensional rare earth cluster-based metal-organic framework assembled from lanthanide Y(III) ion, and a linear multifunctional ligand 3-nitro-4,4'-biphenyldicarboxylic acid, formulated as {[Y(μ3-OH)]4[Y(μ3-OH)(μ2-H2O)0.25(H2O)0.5]4[μ4-nba]8}n (1), where H2nba = 3-nitro-4,4'-biphenyldicarboxylic acid, has been hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 crystallizes in tetragonal system with P4¯21m space group, and features a 3D framework with 1D square 18.07(3)2 Å2 channels running along the [0,0,1] or c-axis direction. The structure of 1 is built up of unusual eight-membered rings formed by two types of {Y4O4} clusters connected to each other via 12 μ4-nba2- and 4 μ3-OH- ligands. Three crystallographic independent Y3+ ions display two coordinated configurations with a seven-coordinated distorted monocapped trigonal-prism (YO7) and an eight-coordinated approximately bicapped trigonal-prism (YO8). 1 is further stabilized through O-H⋯O, O-H⋯N, C-H⋯O, and π⋯π interactions. Topologically, MOF 1 can be simplified as a 12-connected 2-nodal Au4Ho topology with a Schläfli symbol {420·628·818}{43}4 or a 6-connected uninodal pcu topology with a Schläfli symbol {412·63}. The fluorescent sensing application of 1 was investigated to cations and anions in H2O. 1 exhibits good luminescence probing turn-on recognition ability toward F- and with a limit detection concentration of F- down to 14.2 μM in aqueous solution (Kec = 11403 M-1, R2 = 0.99289, σ = 0.0539). The findings here provide a feasible detection platform of LnMOFs for highly sensitive discrimination of F- in aqueous media.
Collapse
Affiliation(s)
- Juan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Airong Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Shiming Qiu
- College of Chemistry and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Xiaoli Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Jiaming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
15
|
Li Y, Liu L, Meng T, Wang L, Xie Z. Structural Engineering of Ionic MOF@COF Heterointerface for Exciton-Boosting Sunlight-Driven Photocatalytic Filter. ACS NANO 2023; 17:2932-2942. [PMID: 36722852 DOI: 10.1021/acsnano.2c11339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sunlight-driven photocatalytic filters against pathogenic bioaerosols have attracted a lot of interest. However, developing an efficient interception system that shows enhanced visible-light harvesting, controllable charge dynamic, and boosted ROS generation remains a grand challenge. Here, we designed an ionic ZIF-8@iCOF nanocomposite as a sunlight-driven photocatalytic filter through elaborate structural engineering of the heterointerface between ZIF-8 and cationic iCOF layers. The photoactive experiments reveal significant improvements in the visible light absorption and sunlight-driven exciton-enhanced intersystem crossing to boost the generation of singlet oxygen (220%) and also obtain antibacterial efficiency of 99.99999% after 15 min irradiation. After combining with commercial polymer, resultant ZIF-8@iCOF/polyacrylonitrile (PAN) fibrous membranes exhibited high interception efficiency for both PM10 and PM2.5 (98%), being close to the commercial N95. This fibrous membrane also possesses good biocompatibility and strong elimination of bacteria under sunlight conditions, satisfying for the long-lasting contact usage. This finding not only showcases the promise of the porous materials-based fibrous membranes for efficient photocatalytic filter against pathogenic bioaerosols but also highlights the importance of accurate structural engineering for the advancement of sunlight-driven photocatalytic systems in environment and energy-related fields.
Collapse
Affiliation(s)
- Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liqian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tian Meng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Zhang Z. Automated Graph Neural Networks Accelerate the Screening of Optoelectronic Properties of Metal-Organic Frameworks. J Phys Chem Lett 2023; 14:1239-1245. [PMID: 36716343 DOI: 10.1021/acs.jpclett.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The numerous organic and inorganic components of metal-organic framework (MOF) materials provide intriguing optoelectronic properties. Accurately predicting the electronic structural properties of MOFs has become the main focus. This work establishes two graph neural network models, crystal graph convolutional neural networks and a materials graph network, for predicting the band gaps of more than 10 000 MOF structures and promotes to improve the prediction accuracy through automatic hyperparameter tuning algorithms. Subsequently, for exploring machine learning-assisted screening of MOFs for the broader electronic properties, the screened copper-based MOFs are compared with lead-based MAPbI3 solar cells with respect to the band gaps, densities of states, and charge density distributions, and the results have demonstrated that the overlap of the wave functions between the initial and final states of MOFs is weakened, which is conducive to the improvement of photoelectric performance. The chlorine doping strategy further enhances the advantage. The tuning of the machine learning model and hyperparameters and the doping strategy of halogen elements furnish empirical rules for the design of MOFs with excellent optoelectronic properties.
Collapse
Affiliation(s)
- Zhaosheng Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding071002, P. R. China
| |
Collapse
|
17
|
Alsadun N, Surya S, Patle K, Palaparthy VS, Shekhah O, Salama KN, Eddaoudi M. Institution of Metal-Organic Frameworks as a Highly Sensitive and Selective Layer In-Field Integrated Soil-Moisture Capacitive Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6202-6208. [PMID: 36669154 DOI: 10.1021/acsami.2c20141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing global industrialization along with the notable world population growth is projected to challenge the global environment as well as pose greater pressure on water and food needs. Foreseeably, an improved irrigation management system is essential and the quest for refined chemical sensors for soil-moisture monitoring is of tremendous importance. Nevertheless, the persisting challenge is to design and construct stable materials with the requisite sensitivity, selectivity, and high performance. Here, we report the introduction of porous metal-organic frameworks (MOFs), as the receptor layer, in capacitive sensors to efficiently sense moisture in two types of soil. Namely, our study unveiled that Cr-soc-MOF-1 offers the best sensitivity (≈24,000 pF) among the other tested MOFs for any given range of soil-moisture content, outperforming several well-known oxide materials. The corresponding increase in the sensitivities for tested MOFs at 500 Hz are ≈450, ≈200, and ≈30% for Cr-soc-MOF-1, Al-ABTC-soc-MOF, and Zr-fum-fcu-MOF, respectively. Markedly, Cr-soc-MOF-1, with its well-known water capacity, manifests an excellent sensitivity of ≈450% in clayey soil, and the analogous response time was 500 s. The noted unique sensing properties of Cr-soc-MOF-1 unveils the great potential of MOFs for soil-moisture sensing application.
Collapse
Affiliation(s)
- Norah Alsadun
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, College of Science, King Faisal University (KFU), Al-Ahsa 31982-400, Saudi Arabia
| | - Sandeep Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kamlesh Patle
- System Design Lab, Department of Information and Communication Technology, DAIICT, Gandhinagar 382007, Gujarat, India
| | - Vinay S Palaparthy
- System Design Lab, Department of Information and Communication Technology, DAIICT, Gandhinagar 382007, Gujarat, India
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Yang XM, Wang AR, Li J, Huang PL, Lu ZF, Li SY, Li JM. Synthesis, crystal structures and fluorescence properties of two 1D Zn(II) homologous coordination polymers. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
A pair of zinc(II)-based one-dimensional (1D) homologous coordination polymers, [Zn(Hdba)2(bib)]
n
(1) and [Zn(Hdba)2(bmib)]
n
(2), where H2dba = 3-hydroxybenzoic acid, bib = 1,4-bis(1-imidazolyl)benzene, and bmib = 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. The results revealed that 1 and 2 have the same zigzag infinite chain framework through the partially deprotonated Hdba– monodentate linkage and with μ
2-bib bridging the Zn(II) atoms in 1, and with μ
2-bmib bridges for the Zn(II) atoms in 2. For both 1 and 2, each zinc atom has a slightly twisted tetrahedral configuration with a N2O2 donor set. These chains of 1 and 2 are further connected into three-dimensional (3D) supramolecular structures through O–H···O, C–H···O hydrogen bonds and π···π, C–H···π stacking interactions for 1, and O–H···O, C–H···O hydrogen bonds for 2. Topologically, the 3D hydrogen-bonded organic framework or the 2D π-stacking structure of 1 can be simplified as a 4-connected
dia Diamond
type with a Schläfli symbol {66}, or as a 4-connected
sql
type with a Schläfli symbol {44·62} and a Shubnikov tetragonal plane net. The thermal stability and the solid-state fluorescence properties of 1 and 2 were investigated.
Collapse
Affiliation(s)
- Xiao-Min Yang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Ai-Rong Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Juan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Pei-Lian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Zhen-Feng Lu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Shu-Yan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Jia-Ming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| |
Collapse
|
19
|
Mondal P, Cohen SM. Self-healing mixed matrix membranes containing metal-organic frameworks. Chem Sci 2022; 13:12127-12135. [PMID: 36349091 PMCID: PMC9601252 DOI: 10.1039/d2sc04345a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 09/23/2023] Open
Abstract
Mixed-matrix membranes (MMMs) provide a means to formulate metal-organic frameworks (MOFs) into processable films that can help to advance their use in various applications. Conventional MMMs are inherently susceptible to craze or tear upon exposure to impact, cutting, bending, or stretching, which can limit their intended service life and usage. Herein, a simple, efficient, and scalable in situ fabrication approach was used to prepare self-healing MMMs containing Zr(iv)-based MOFs. The ability of these MMMs to self-heal at room temperature is based on the reversible hydrolysis of boronic-ester conjugates. Thiol-ene 'photo-click' polymerization yielded robust MMMs with ∼30 wt% MOF loading and mechanical strength that varied based on the size of MOF particles. The MMMs could undergo repeated self-healing with good retention of mechanical strength. In addition, the MMMs were catalytically active toward the degradation of the chemical warfare agent (CWA) simulant dimethyl-4-nitrophenyl phosphate (DMNP) with no change in activity after two damage-healing cycles.
Collapse
Affiliation(s)
- Prantik Mondal
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|