1
|
Suzuki A, Higashida K, Yoshino T, Matsunaga S. Multiple Deuterium Atom Transfer Perdeuteration of Unactivated Alkenes under Base-Assisted Cobalt/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500233. [PMID: 39916445 DOI: 10.1002/anie.202500233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Indexed: 04/17/2025]
Abstract
A radical approach for hydrogenative perdeuteration of unactivated alkenes under cobalt/photoredox dual catalysis is described. The addition of a suitable base plays a key role in controlling two competing pathways by switching the catalytic performance of cobalt/photoredox catalysis. Base-assisted cobalt/photoredox dual catalysis promoted a hydrogen isotope exchange reaction of alkenes to afford deuterated alkenes via multiple repeating deuterium atom transfer/hydrogen atom abstraction processes, while consecutive reductive deuteration of alkenes proceeded in the absence of a base to afford polydeuterated alkanes. One-pot hydrogenative perdeuteration and perdeutero-arylation were also developed, providing access to various polydeuterated aliphatic compounds.
Collapse
Affiliation(s)
- Akihiko Suzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kosuke Higashida
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuhiko Yoshino
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University Kita-ku, Sapporo, 060-0812, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
2
|
Thomas N, Welton C, Pawlak T, Raval P, Trébosc J, Jain SK, Reddy GNM. Deuteron-proton isotope correlation spectroscopy at high magnetic fields. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 136:101993. [PMID: 39954529 DOI: 10.1016/j.ssnmr.2025.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
A cross-polarization 2H-1H isotope correlation spectroscopy (CP-iCOSY) approach is presented for characterizing a deuterated amino acid, pharmaceutical compound and a solid formulation. This can be achieved by isotopic enrichment in conjunction with high magnetic field (28.2 T) and fast magic-angle spinning (MAS), enabling the rapid detection of 2H NMR spectra in a few seconds to minutes. Specifically, two-dimensional (2D) 2H-1H CP-iCOSY experiment allows the local structures and through-space interactions in a partially deuterated compounds to be elucidated. In doing so, we compare conventional spin-lock and rotor-echo-short-pulse-irradiation RESPIRATIONCP sequences for acquiring 2D 1H-2H correlation spectra. The RESPIRATIONCP sequence allows the detection of 2D peaks at lower CP contact times (0.1-1 ms) than the conventional CP (0.2-4 ms) sequence. Analysis of partially deuterated L-histidine·HCl·H2O and dopamine.HCl is presented, in which the detection of 2D peaks corresponding to 2H-1H pairs separated by greater than 4 Å distance demonstrates the potential of the presented approach for the characterization of packing interactions. These results are corroborated by NMR crystallography analysis using the Gauge-Including Projector Augmented-Wave (GIPAW) approach.
Collapse
Affiliation(s)
- Neethu Thomas
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Julien Trébosc
- University of Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Sheetal K Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
3
|
Li H, Liu Y, Zhang S, Ma L, Zeng Z, Zhou Z, Gandon V, Xu H, Yi W, Wang S. Access to N-α-deuterated amino acids and DNA conjugates via Ca(II)-HFIP-mediated reductive deutero-amination of α-oxo-carbonyl compounds. Nat Commun 2025; 16:1816. [PMID: 39979333 PMCID: PMC11842556 DOI: 10.1038/s41467-025-57098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
The development of practical and selective strategies for deuterium incorporation to construct deuterated molecules, particularly deuterium-labeled amino acids, has become as a growing focus of basic research, yet it remains a formidable challenge. Herein, we present a bioinspired calcium-HFIP-mediated site-selective reductive deutero-amination of α-oxo-carbonyl compounds with amines. Utilizing d2-Hantzsch ester as the deuterium source, this reaction attains remarkable deuteration efficiency (> 99% deuteration). It enables the synthesis of N-α-deuterated amino acid motifs with a wide range of functionality, as evidenced by over 130 examples. The method exhibits compatibility with diverse substrates, such as amino acids, peptides, drug molecules, and natural products bearing different substituents. Moreover, the application of this strategy in the synthesis of DNA-tagged N-α-deuterated amino acids/peptides has been demonstrated. This work offers an efficient and innovative solution for deuterated amino acid chemistry and holds substantial application potential in organic synthesis, medicinal chemistry, and chemical biology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, Orsay, France
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Reisenbauer JC, Sicinski KM, Arnold FH. Catalyzing the future: recent advances in chemical synthesis using enzymes. Curr Opin Chem Biol 2024; 83:102536. [PMID: 39369557 PMCID: PMC11588546 DOI: 10.1016/j.cbpa.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Biocatalysis has the potential to address the need for more sustainable organic synthesis routes. Protein engineering can tune enzymes to perform in cascade reactions and for efficient synthesis of enantiomerically enriched compounds, using both natural and new-to-nature reaction pathways. This review highlights recent achievements in biocatalysis, especially the development of novel enzymatic syntheses to access versatile small molecule intermediates and complex biomolecules. Biocatalytic strategies for the degradation of persistent pollutants and approaches for biomass valorization are also discussed. The transition of chemical synthesis to a greener future will be accelerated by implementing enzymes and engineering them for high performance and new activities.
Collapse
Affiliation(s)
- Julia C Reisenbauer
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Kathleen M Sicinski
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, United States.
| |
Collapse
|
5
|
Xiao G, Sun H, Jiang G, Liu Y, Song G, Kong D. Binary Catalytic Hydrogen/Deuterium Exchange of Free α-Amino Acids and Derivatives. Chemistry 2024; 30:e202402045. [PMID: 39042826 DOI: 10.1002/chem.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The increasing demand for deuterium-labeled amino acids and derivatives has heightened interest in direct hydrogen/deuterium exchange reactions of free amino acids. Existing methods, including biocatalysis and metal catalysis, typically require expensive deuterium sources or excessive use of deuterium reagents and often struggle with site selectivity. In contrast, this binary catalysis system, employing benzaldehyde and Cs2CO3 in the presence of inexpensive D2O with minimal stoichiometric quantities, facilitates efficient hydrogen/deuterium exchange at the α-position of amino acids without the need for protecting groups in the polar aprotic solvent DMSO. The process is highly compatible with most natural and non-natural α-amino acids and derivatives, even those with potentially reactive functionalities. This advancement not only addresses the cost and efficiency concerns of existing methods but also significantly broadens the applicability and precision of deuterium labeling in biochemical research.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gege Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
6
|
Zmich A, Perkins LJ, Bingman C, Buller AR. Elucidation of the stereochemical mechanism of cystathionine γ-lyase reveals how substrate specificity constrains catalysis. ACS Catal 2024; 14:11196-11204. [PMID: 39391268 PMCID: PMC11464002 DOI: 10.1021/acscatal.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes play essential roles in metabolism and have found applications for organic synthesis and as enzyme therapeutics. The vinylglycine ketimine (VGK) subfamily hosts a growing set of enzymes that play diverse roles in primary and secondary metabolism. However, the molecular determinates of substrate specificity and the complex acid-base chemistry that enables VGK catalysis remain enigmatic. We use a recently discovered amino acid γ-lyase as a model system to probe catalysis in this enzyme family. We discovered that two stereochemically distinct proton transfer pathways occur. Combined kinetic and spectroscopic analysis revealed that progression through the catalytic cycle is correlated with the presence of an H-bond donor after Cγ of an amino acid substrate, suggesting substrate binding is kinetically coupled to a conformational change. High-resolution X-ray crystallography shows that cystathionine-γ-lyases generate an s-trans intermediate and that this geometry is likely conserved throughout the VGK family. An H-bond acceptor in the active site templates substrate binding but does so by pre-organizing substrates away from catalytically productive orientations. Mutagenesis eliminates this pre-organization, such that there is a relaxation of the substrate specificity, but an increase in k cat for diverse substrates. We exploit this information to perform preparative scale α,β,β-tri-deuteration of polar amino acids. Together, these data untangle a complex mode of substrate specificity and provide a foundation for the future study and applications of VGK enzymes.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Zhang MY, Ji RX, Fang L, Shen JS. Spectral-Sensing System for Distinguishing CH 3OH and CD 3OD. J Phys Chem B 2024. [PMID: 39052231 DOI: 10.1021/acs.jpcb.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Spectrally discriminating CH3OH and CD3OD, and even detecting CH3OH contents in the CD3OD solvent, are important yet have not been achieved so far, likely owing to their very similar chemical/physical properties. Herein, dynamic transesterification reactions, which can be achieved via two-step proton transfers, can be signaled via ultraviolet UV-visible (UV/vis) absorption and fluorescence spectroscopies under mild experimental conditions. Introduction of strong electron-withdrawing groups, such as -NO2, to the aromatic ring (benzoic acid moiety or phenol moiety) of carboxylate esters to activate the esters is important for transesterification reactions and is an intriguing method for modulating the selectivity of the spectral response. The rate constant of the transesterification reaction enhanced with increasing the total number of strong electron-withdrawing groups. Furthermore, the rate constants of esters in which substituent(s) are connected to the phenol moiety are higher than those of corresponding esters in which substituent(s) are connected to the benzoic acid moiety. In transesterification systems, added aliphatic amines mainly play two roles: (i) lowering the energy barrier of the first transesterification step via the formation of intermolecular hydrogen bonding in ternary systems and (ii) deprotonating the released 4-nitrophenol in UV/vis absorption spectral systems to generate an UV/vis absorption spectral signal reporter, i.e., nitrophenolate anions. As a result of the methanol-mediated transesterification reaction, spectral-sensing systems can be established for discriminating CH3OH and CD3OD and even detecting low CH3OH contents in the CD3OD solvent, owing to the kinetic isotope effect. This is the first example of spectral recognition between CD3OD and CH3OH.
Collapse
Affiliation(s)
- Mu-Yi Zhang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Rui-Xue Ji
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Lei Fang
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiang-Shan Shen
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
8
|
Zheng J, Tang J, Jin S, Hu H, Jiang ZJ, Chen J, Bai JF, Gao Z. Site-Selective Deuteration of α-Amino Esters with 2-Hydroxynicotinaldehyde as a Catalyst. ACS OMEGA 2024; 9:26963-26972. [PMID: 38947810 PMCID: PMC11209932 DOI: 10.1021/acsomega.3c09974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
An efficient method has been developed for the synthesis of α-deuterated α-amino esters via hydrogen isotope exchange of α-amino esters in D2O with 2-hydroxynicotinaldehyde as a catalyst under mild conditions. This methodology exhibits a wide range of substrate scopes, remarkable functional group tolerance, and affording the desired products in good yields with excellent deuterium incorporation. Notably, the ortho-hydroxyl group and the pyridine ring of the catalyst play a crucial role in the catalytic activity, which not only stabilizes the carbon-anion intermediates but also enhances the acidity of the amino esters' α-C-H bond.
Collapse
Affiliation(s)
- Jinfeng Zheng
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- School
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s
Republic of China
| | - Jianbo Tang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shenhao Jin
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Hao Hu
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jia Chen
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- Ningbo
Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People’s Republic of China
| |
Collapse
|
9
|
Park S, Kim JH, Kim D, Kim Y, Kim S, Kim S. Simple and Efficient Enantioselective α-Deuteration Method of α-Amino Acids without External Chiral Sources. JACS AU 2024; 4:2246-2251. [PMID: 38938805 PMCID: PMC11200243 DOI: 10.1021/jacsau.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024]
Abstract
Deuterium-labeled α-amino acids are useful in research related to drug discovery and biomedical science. However, a high degree of site selectivity and stereoselectivity in the deuterium incorporation process is still difficult to achieve. Herein, we report a new enantioselective deuteration method at the α-position of several amino acids without external chiral sources. The proposed deuteration methods (NaOEt and EtOD) are highly selective and simple. Additionally, we provide a mechanistic study for this enantioretentive deuteration.
Collapse
Affiliation(s)
- Soojun Park
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Hyun Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- College
of Pharmacy, Chung-Ang University, 84, Heukseok-ro, Seoul 06974, Republic of Korea
| | - Dongjun Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yeonjoon Kim
- Chemistry
Department, Colorado State University, Fort Collins, Colorado 80523, United States
- Department
of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Seonah Kim
- Chemistry
Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Sanghee Kim
- College
of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Zhang T, Jin Z, Zhao H, Lai C, Liu Z, Luo P, Dong Z, Wang F. Aqueous alkaline phosphate facilitates the non-exchangeable deuteration of peptides and proteins. RSC Adv 2024; 14:8075-8080. [PMID: 38464689 PMCID: PMC10921277 DOI: 10.1039/d3ra08636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The incorporation of deuterium into peptides and proteins holds broad applications across various fields, such as drug development and structural characterization. Nevertheless, current methods for peptide/protein deuteration often target exchangeable labile sites or require harsh conditions for stable modification. In this study, we present a late-stage approach utilizing an alkaline phosphate solution to achieve deuteration of non-exchangeable backbone sites of peptides and proteins. The specific deuteration regions are identified through ultraviolet photodissociation (UVPD) and mass spectrometry analysis. This deuteration strategy demonstrates site and structure selectivity, with a notable affinity for labeling the α-helix regions of myoglobin. The deuterium method is particularly suitable for peptides and proteins that remain stable under high pH conditions.
Collapse
Affiliation(s)
- Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhixiong Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518000 China
| | - Zhe Dong
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518000 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Han G, Li G, Sun Y. Electrocatalytic Hydrogenation Using Palladium Membrane Reactors. JACS AU 2024; 4:328-343. [PMID: 38425903 PMCID: PMC10900496 DOI: 10.1021/jacsau.3c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 03/02/2024]
Abstract
Hydrogenation is a crucial chemical process employed in a myriad of industries, often facilitated by metals such as Pd, Pt, and Ni as catalysts. Traditional thermocatalytic hydrogenation usually necessitates high temperature and elevated pressure, making the process energy intensive. Electrocatalytic hydrogenation offers an alternative but suffers from issues such as competing H2 evolution, electrolyte separation, and limited solvent selection. This Perspective introduces the evolution and advantages of the electrocatalytic Pd membrane reactor (ePMR) as a solution to these challenges. ePMR utilizes a Pd membrane to physically separate the electrochemical chamber from the hydrogenation chamber, permitting the use of water as the hydrogen source and eliminating the need for H2 gas. This setup allows for greater control over reaction conditions, such as solvent and electrolyte selection, while mitigating issues such as low Faradaic efficiency and complex product separation. Several representative hydrogenation reactions (e.g., hydrogenation of C=C, C≡C, C=O, C≡N, and O=O bonds) achieved via ePMR over the past 30 years were concisely discussed to highlight the unique advantages of ePMR. Promising research directions along with the advancement of ePMR for more challenging hydrogenation reactions are also proposed. Finally, we provide a prospect for future development of this distinctive hydrogenation strategy using hydrogen-permeable membrane electrodes.
Collapse
Affiliation(s)
| | | | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
12
|
Gao J, Zhou C, Hai Y. Stereoselective Biocatalytic α-Deuteration of L-Amino Acids by a Pyridoxal 5'-Phosphate-Dependent Mannich Cyclase. Chembiochem 2023; 24:e202300561. [PMID: 37779345 PMCID: PMC10874886 DOI: 10.1002/cbic.202300561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/03/2023]
Abstract
α-Deuterated amino acids are valuable building blocks for developing deuterated drugs, and are important tools for studying biological systems. Biocatalytic deuteration represents an attractive strategy to directly access enantiopure α-deuterated amino acids. Here, we show that a PLP-dependent Mannich cyclase, LolT, involved in the biosynthesis of loline alkaloids, is capable of deuterating a diverse range of L-amino acids, including basic and acidic, nonpolar and polar, aliphatic and aromatic amino acids. Furthermore, complete deuteration of many amino acids can be achieved within minutes with exquisite control on the site- and stereoselectivity. During the course of this investigation, we also unexpectedly discovered that LolT exhibits β-elimination activity with L-cystine and O-acetyl-L-serine, confirming our previous hypothesis based on structural and phylogenetic analysis that LolT, a Cα-C bond forming enzyme, is evolved from a primordial Cβ-S lyase family. Overall, our study demonstrates that LolT is an extremely versatile biocatalyst, and can be used for not only heterocyclic quaternary amino acid biosynthesis, but also biocatalytic amino acid deuteration.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Chen Zhou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
13
|
Rowbotham JS, Nicholson JH, Ramirez MA, Urata K, Todd PMT, Karunanithy G, Lauterbach L, Reeve HA, Baldwin AJ, Vincent KA. Biocatalytic reductive amination as a route to isotopically labelled amino acids suitable for analysis of large proteins by NMR. Chem Sci 2023; 14:12160-12165. [PMID: 37969586 PMCID: PMC10631221 DOI: 10.1039/d3sc01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/20/2023] [Indexed: 11/17/2023] Open
Abstract
We demonstrate an atom-efficient and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use of pre-labeled 2H-reducing agents, and therefore vastly simplifies product cleanup. Notably, this strategy enables 2H, 15N, and an asymmetric centre to be introduced at a molecular site in a single step, with full selectivity, under benign conditions, and with near 100% atom economy. The method facilitates the preparation of amino acid isotopologues on a half-gram scale. These amino acids have wide applicability in the analytical life sciences, and in particular for NMR spectroscopic analysis of proteins. To demonstrate the benefits of the approach for enabling the workflow of protein NMR chemists, we prepared l-[α-2H,15N, β-13C]-alanine and integrated it into a large (>400 kDa) heat-shock protein oligomer, which was subsequently analysable by methyl-TROSY techniques, revealing new structural information.
Collapse
Affiliation(s)
- Jack S Rowbotham
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Jake H Nicholson
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Miguel A Ramirez
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Kouji Urata
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Peter M T Todd
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Gogulan Karunanithy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory Oxford UK
| | - Lars Lauterbach
- Technische Universität Berlin, Institute for Chemistry Straße des 17. Juni 135 10437 Berlin Germany
| | - Holly A Reeve
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory Oxford UK
- Kavli Institute for Nanoscience Discovery, University of Oxford Oxford OX1 3QU UK
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory South Parks Road Oxford UK
| |
Collapse
|
14
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
15
|
Zmich A, Perkins LJ, Bingman C, Acheson JF, Buller AR. Multiplexed Assessment of Promiscuous Non-Canonical Amino Acid Synthase Activity in a Pyridoxal Phosphate-Dependent Protein Family. ACS Catal 2023; 13:11644-11655. [PMID: 37720819 PMCID: PMC10501158 DOI: 10.1021/acscatal.3c02498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Pyridoxal phosphate (PLP)-dependent enzymes afford access to a variety of non-canonical amino acids (ncAAs), which are premier buildings blocks for the construction of complex bioactive molecules. The vinylglycine ketimine (VGK) subfamily of PLP-dependent enzymes plays a critical role in sulfur metabolism and is home to a growing set of secondary metabolic enzymes that synthesize γ-substituted ncAAs. Identification of VGK enzymes for biocatalysis faces a distinct challenge because the subfamily contains both desirable synthases as well as lyases that break down ncAAs. Some enzymes have both activities, which may contribute to pervasive mis-annotation. To navigate this complex functional landscape, we used a substrate multiplexed screening approach to rapidly measure the substrate promiscuity of 40 homologs in the VGK subfamily. We found that enzymes involved in transsulfuration are less likely to have promiscuous activities and often possess undesirable lyase activity. Enzymes from direct sulfuration and secondary metabolism generally had a high degree of substrate promiscuity. From this cohort, we identified an exemplary γ-synthase from Caldicellulosiruptor hydrothermalis (CahyGS). This enzyme is thermostable and has high expression (~400 mg protein per L culture), enabling preparative scale synthesis of thioether containing ncAAs. When assayed with l-allylglycine, CahyGS catalyzes a stereoselective γ-addition reaction to afford access to a unique set of γ-methyl branched ncAAs. We determined high-resolution crystal structures of this enzyme that define an open-close transition associated with ligand binding and set the stage for future engineering within this enzyme subfamily.
Collapse
Affiliation(s)
- Anna Zmich
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lydia J. Perkins
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Craig Bingman
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew R. Buller
- Department of Biochemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Cordoza J, Chen PYT, Blaustein LR, Lima ST, Fiore MF, Chekan JR, Moore BS, McKinnie SMK. Mechanistic and Structural Insights into a Divergent PLP-Dependent l-Enduracididine Cyclase from a Toxic Cyanobacterium. ACS Catal 2023; 13:9817-9828. [PMID: 37497377 PMCID: PMC10367076 DOI: 10.1021/acscatal.3c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/21/2023] [Indexed: 07/28/2023]
Abstract
Cyclic arginine noncanonical amino acids (ncAAs) are found in several actinobacterial peptide natural products with therapeutically useful antibacterial properties. The preparation of ncAAs like enduracididine and capreomycidine currently takes multiple biosynthetic or chemosynthetic steps, thus limiting the commercial availability and applicability of these cyclic guanidine-containing amino acids. We recently discovered and characterized the biosynthetic pathway of guanitoxin, a potent freshwater cyanobacterial neurotoxin, that contains an arginine-derived cyclic guanidine phosphate within its highly polar structure. The ncAA l-enduracididine is an early intermediate in guanitoxin biosynthesis and is produced by GntC, a unique pyridoxal-5'-phosphate (PLP)-dependent enzyme. GntC catalyzes a cyclodehydration from a stereoselectively γ-hydroxylated l-arginine precursor via a reaction that functionally and mechanistically diverges from previously established actinobacterial cyclic arginine ncAA pathways. Herein, we interrogate l-enduracididine biosynthesis from the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using spectroscopy, stable isotope labeling techniques, and X-ray crystallography structure-guided site-directed mutagenesis. GntC initially facilitates the reversible deprotonations of the α- and β-positions of its substrate before catalyzing an irreversible diastereoselective dehydration and subsequent intramolecular cyclization. The comparison of holo- and substrate-bound GntC structures and activity assays on site-specific mutants further identified amino acid residues that contribute to the overall catalytic mechanism. These interdisciplinary efforts at structurally and functionally characterizing GntC enable an improved understanding of how nature divergently produces cyclic arginine ncAAs and generate additional tools for their biocatalytic production and downstream biological applications.
Collapse
Affiliation(s)
- Jennifer
L. Cordoza
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Percival Yang-Ting Chen
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California 92093, United States
| | - Linnea R. Blaustein
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Stella T. Lima
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California 92093, United States
- Center
for Nuclear Energy in Agriculture, University
of São Paulo, Piracicaba, São Paulo 13416-000, Brazil
| | - Marli F. Fiore
- Center
for Nuclear Energy in Agriculture, University
of São Paulo, Piracicaba, São Paulo 13416-000, Brazil
| | - Jonathan R. Chekan
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Bradley S. Moore
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92903, United States
| | - Shaun M. K. McKinnie
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
18
|
Fu Y, Liu X, Xia Y, Guo X, Guo J, Zhang J, Zhao W, Wu Y, Wang J, Zhong F. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
19
|
Cordoza JL, Chen PYT, Blaustein LR, Lima ST, Fiore MF, Chekan JR, Moore BS, McKinnie SMK. Mechanistic and structural insights into a divergent PLP-dependent L-enduracididine cyclase from a toxic cyanobacterium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533663. [PMID: 36993528 PMCID: PMC10055224 DOI: 10.1101/2023.03.21.533663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cyclic arginine noncanonical amino acids (ncAAs) are found in several actinobacterial peptide natural products with therapeutically useful antibacterial properties. The preparation of ncAAs like enduracididine and capreomycidine currently takes multiple biosynthetic or chemosynthetic steps, thus limiting the commercial availability and applicability of these cyclic guanidine-containing amino acids. We recently discovered and characterized the biosynthetic pathway of guanitoxin, a potent freshwater cya-nobacterial neurotoxin, that contains an arginine-derived cyclic guanidine phosphate within its highly polar structure. The ncAA L-enduracididine is an early intermediate in guanitoxin biosynthesis and is produced by GntC, a unique pyridoxal-5'-phosphate (PLP)-dependent enzyme. GntC catalyzes a cyclodehydration from a stereoselectively γ-hydroxylated L-arginine precursor via a reaction that functionally and mechanistically diverges from previously established actinobacterial cyclic arginine ncAA pathways. Herein, we interrogate L-enduracididine biosynthesis from the cyanobacterium Sphaerospermopsis torques-reginae ITEP-024 using spectroscopic, stable isotope labeling techniques, and X-ray crystal structure-guided site-directed mutagenesis. GntC initially facilitates the reversible deprotonations of the α- and β-positions of its substrate prior to catalyzing an irreversible diastereoselective dehydration and subsequent intramolecular cyclization. The comparison of holo- and substrate bound GntC structures and activity assays on sitespecific mutants further identified amino acid residues that contribute to the overall catalytic mechanism. These interdisciplinary efforts at structurally and functionally characterizing GntC enables an improved understanding of how Nature divergently produces cyclic arginine ncAAs and generates additional tools for their biocatalytic production and downstream biological applications.
Collapse
|
20
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Sheng FF, Gu JG, Liu KH, Zhang HH. Synthesis of β-Deuterated Amino Acids via Palladium-Catalyzed H/D Exchange. J Org Chem 2022; 87:16084-16089. [PMID: 36395460 DOI: 10.1021/acs.joc.2c01654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite several synthetic approaches that have been developed for α-deuterated amino acids, the synthesis of β-deuterated amino acids has remained a challenge. Herein, we disclose a palladium catalyzed H/D exchange protocol for a β-deuterated N-protected amino amide, which can be converted to a β-deuterated amino acid simply by removal of protecting groups. This protocol is highly efficient, simply manipulated, and appliable for deuterium-labeling of many amino amides. In addition, deuterium labeling of phenylalanine derivatives was also successful when pivalic acid served as an additive to promote the H/D exchange process.
Collapse
Affiliation(s)
- Fei-Fei Sheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Jian-Guo Gu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Kai-Hui Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| | - Hong-Hai Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech. University (Nanjing Tech.), 30 Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
22
|
Alfonzo E, Das A, Arnold FH. New Additions to the Arsenal of Biocatalysts for Noncanonical Amino Acid Synthesis. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2022; 38:100701. [PMID: 36561208 PMCID: PMC9770695 DOI: 10.1016/j.cogsc.2022.100701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Noncanonical amino acids (ncAAs) merge the conformational behavior and native interactions of proteinogenic amino acids with nonnative chemical motifs and have proven invaluable in developing modern therapeutics. This blending of native and nonnative characteristics has resulted in essential drugs like nirmatrelvir, which comprises three ncAAs and is used to treat COVID-19. Enzymes are appearing prominently in recent syntheses of ncAAs, where they demonstrate impressive control over the stereocenters and functional groups found therein. Here we review recent efforts to expand the biocatalyst arsenal for synthesizing ncAAs with natural enzymes. We also discuss how new-to-nature enzymes can contribute to this effort by catalyzing reactions inspired by the vast repertoire of chemical catalysis and acting on substrates that would otherwise not be used in synthesizing ncAAs. Abiotic enzyme-catalyzed reactions exploit the selectivity afforded by a macromolecular catalyst to access molecules not available to natural enzymes and perhaps not even chemical catalysis.
Collapse
Affiliation(s)
- Edwin Alfonzo
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
23
|
Welton C, Raval P, Trébosc J, Reddy GNM. Chemical exchange of labile protons by deuterium enables selective detection of pharmaceuticals in solid formulations. Chem Commun (Camb) 2022; 58:11551-11554. [PMID: 36165029 DOI: 10.1039/d2cc04585k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemically assisted swapping of labile protons by deuterons is presented for amino acids, polysaccharides, pharmaceutical compounds, and their solid formulations. Solid-state packing interactions in these compounds are elucidated by 1H-2H isotope correlation NMR spectroscopy (iCOSY). A minuscule concentration of dopamine, 5 wt% or ∼100 μg, in a solid formulation can be detected by 2H NMR at 28.2 T (1H, 1200 MHz) in under a minute.
Collapse
Affiliation(s)
- Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| | - Julien Trébosc
- University of Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France.
| |
Collapse
|
24
|
Navo CD, Oroz P, Mazo N, Blanco M, Peregrina JM, Jiménez-Osés G. Stereoselective α-Deuteration of Serine, Cysteine, Selenocysteine, and 2,3-Diaminopropanoic Acid Derivatives. Org Lett 2022; 24:6810-6815. [PMID: 36082943 DOI: 10.1021/acs.orglett.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient methodologies for synthesizing enantiopure α-deuterated derivatives of serine, cysteine, selenocysteine, and 2,3-diaminopropanoic acid have been developed. H/D exchange was achieved by deprotonation of a chiral bicyclic serine equivalent followed by selective deuteration. Additionally, diastereoselective additions of thiols, selenols, and amines to a chiral bicyclic dehydroalanine in deuterated alcohols allowed site-selective deuteration at the Cα atom of cysteine, selenocysteine, and 2,3-diaminopropanoic acid derivatives. A deuterated analogue of carbocysteine, a drug for the treatment of bronchiectasis, was synthesized.
Collapse
Affiliation(s)
- Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Nuria Mazo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Marina Blanco
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Itoga M, Yamanishi M, Udagawa T, Kobayashi A, Maekawa K, Takemoto Y, Naka H. Iridium-catalyzed α-selective deuteration of alcohols. Chem Sci 2022; 13:8744-8751. [PMID: 35975159 PMCID: PMC9350590 DOI: 10.1039/d2sc01805e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The development of chemoselective C(sp3)-H deuteration is of particular interest in synthetic chemistry. We herein report the α-selective, iridium(iii)-bipyridonate-catalyzed hydrogen(H)/deuterium(D) isotope exchange of alcohols using deuterium oxide (D2O) as the primary deuterium source. This method enables the direct, chemoselective deuteration of primary and secondary alcohols under basic or neutral conditions without being affected by coordinative functional groups such as imidazole and tetrazole. Successful substrates for deuterium labelling include the pharmaceuticals losartan potassium, rapidosept, guaifenesin, and diprophylline. The deuterated losartan potassium shows higher stability towards the metabolism by CYP2C9 than the protiated analogue. Kinetic and DFT studies indicate that the direct deuteration proceeds through dehydrogenation of alcohol to the carbonyl intermediate, conversion of [IrIII-H] to [IrIII-D] with D2O, and deuteration of the carbonyl intermediate to give the α-deuterated product.
Collapse
Affiliation(s)
- Moeko Itoga
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Masako Yamanishi
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido 1-1 Gifu 501-1193 Japan
| | - Ayane Kobayashi
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Keiko Maekawa
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts Kodo, Kyotanabe Kyoto 610-0395 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| | - Hiroshi Naka
- Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8501 Japan
| |
Collapse
|