1
|
Moore RG, Crawford JM. Isolated and Paired Metal Sites in Zeolites Using Solid-State Ion Exchange. Angew Chem Int Ed Engl 2025; 64:e202505186. [PMID: 40220010 PMCID: PMC12124437 DOI: 10.1002/anie.202505186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/14/2025]
Abstract
Isolated and paired extraframework transition metal cations in zeolites are emerging as top candidates for numerous applications, including, but not limited to, selective methane oxidation to methanol, selective catalytic reduction of nitrogen oxides, propane dehydrogenation, propylene epoxidation, and direct air capture of carbon dioxide. Importantly, these well-defined heterogeneous catalysts offer parallels with molecular and metalloenzyme catalytic active sites. Aqueous-phase ion exchange (APIE) is the most common synthesis technique to obtain these catalysts. Solid-state ion exchange (SSIE) is an often overlooked technique that offers synthetic advantages compared to APIE. Thus, recent advances in solid-state synthesis strategies merit contemporary contextualization. In this minireview, we describe the basic principles, methods, mechanisms, challenges, and advances in solid-state ion exchange in the context of well-defined transition metal cation active sites located in extraframework positions of the zeolite.
Collapse
Affiliation(s)
- Rio G. Moore
- Chemical and Biological Engineering DepartmentMontana State UniversityBozemanMT 59717USA
| | - James M. Crawford
- Chemical and Biological Engineering DepartmentMontana State UniversityBozemanMT 59717USA
| |
Collapse
|
2
|
Wang L, Ke J, Chai Y, Wu G, Wang C, Li L. Additive-Free Ethylene Dimerization Over Well-Defined Nickel-Zeolite Catalysts. Angew Chem Int Ed Engl 2025; 64:e202502563. [PMID: 40016924 DOI: 10.1002/anie.202502563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/01/2025]
Abstract
Ethylene dimerization is a crucial chemical process, which currently relies on organo-metallic catalysis with the assistance of overdosed additives as cocatalysts. Heterogeneous nickel catalysts have been investigated as alternatives for ethylene dimerization, however suffer from low catalytic activity and/or poor 1-butene selectivity. Herein, we report a simple two-step ion-exchange strategy for the preparation of Ni-Mg-Y zeolite containing well-defined coordinatively-unsaturated nickel centers as a promising catalyst for ethylene dimerization. Ni-Mg-Y shows unprecedent performance with 1-butene formation rate of 3.8 × 105 h-1 and 1-butene selectivity of 91.2 %, without the assistance of any cocatalysts. With the combination of advanced characterization techniques and comprehensive theoretical simulations, it has been demonstrated for the first time that the in-situ generated Ni-alkyl motif is the intrinsic active site and ethylene dimerization proceeds dominantly via the Cossee-Arlman pathway. The dynamic hydrogen transfer between ethylene/alkyl ligand and zeolite framework dedicates to the observed catalytic performance.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Ke
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Yuchao Chai
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208, P. R. China
| | - Landong Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
He Y, Xiong C, Lv L, Li D, Shi S, Xue C, Ji H. Advancing Propylene Epoxidation: the Role of Ethyl Acetate Autoxidation via Cobalt-Nickel Catalyzed C(acyl)─O Bond Scission. Angew Chem Int Ed Engl 2025; 64:e202500384. [PMID: 40034004 DOI: 10.1002/anie.202500384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The selective autoxidation for the synthesis of valuable oxygenates has provoked keen interest from both academic and industrial sectors. Although the generation of reactive oxygen species via oxygen attack on C─H bonds near ester linkages is well-established, research into aliphatic ester oxidation has primarily focused on combustion, neglecting their potential utility in oxidation processes. Herein, a protocol for producing propylene oxide through the autoxidation of ethyl acetate in tandem with propylene epoxidation is demonstrated. The ethoxy radical, generated by ester C(acyl)─O bond cleavage in situ, subsequently underwent proton-coupled electron transfer with the Co(OAc)(μ-H2O)2Ni, followed by the formation of the peracetic acid optimally suited for the epoxidation reaction. The research not only eliminates the need for co-substrates in the epoxidation process but also fills the application gap in bulk-ester autoxidation, offering insights into the effective utilization of oxy-intermediates in autoxidation reactions.
Collapse
Affiliation(s)
- Yaorong He
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chao Xiong
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Luotian Lv
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongpo Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Sixuan Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Can Xue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Hongbing Ji
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
4
|
Cheng M, Lan J, Sun X, Wang F, Tuerdi A, Jia F, Guo Y, Liu X. Cascading Water Activation and Interfacial Lattice Oxygen over Nanocluster CuO x-Modified MnO 2 for Electrocatalytic Propylene Oxidation. Angew Chem Int Ed Engl 2025; 64:e202420780. [PMID: 39643851 DOI: 10.1002/anie.202420780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
Direct electrooxidation of propylene using water-oxidation intermediates represents a promising route for propylene glycol production. Unfortunately, this economic and environmentally friendly process suffers from low yield and poor Faradaic efficiency resulting from the mismatched oxidative capacity of reactive oxygen species and pronounced side reactions. Herein, we developed an earth-abundant metal-based nanocluster CuOx-modified MnO2 catalyst for the efficient electrooxidation of propylene into propylene glycol, achieving a remarkable production rate of 63.0 g/m2/h and 95 % Faradaic efficiency at 1.3 V vs. Ag/AgCl. Mechanistic studies revealed that the oxygen vacancy-mediated water activation on CuOx-MnO2 in synergy with the activated interfacial lattice oxygen drove the propylene oxidation to a novel *OOH pathway rather than the traditional *OH route. Additionally, the interfacial interactions intensified the propylene adsorption and polarization for its activation. This work offers new insights into the mechanism of electrocatalytic propylene oxidation and presents great opportunities for the synthesis of commercial chemicals based on earth-abundant metal catalysts and renewable electricity-driven route.
Collapse
Affiliation(s)
- Ming Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jintong Lan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaoxian Sun
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fanyu Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ailijiang Tuerdi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Falong Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiao Liu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
5
|
Liu H, Liu L, Qin Q, Li J, Li B, He X, Ji H. Comparative Study of PtM (M=Cu, Zn, Ga, Mn, Fe, In, Ce) Bimetals on Zincosilicate for Propane Dehydrogenation Reaction. Chemistry 2024; 30:e202402764. [PMID: 39327774 DOI: 10.1002/chem.202402764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Silicoaluminate zeolites have relatively strong Brönsted (B) acid properties that can easily lead to deep cracking reactions, making them less favourable as carriers for propane dehydrogenation. Here, we utilise zincosilicate zeolite with less B-acid produced by the introduction of the heteroatom Zn into the framework as a carrier, followed by simultaneous ion exchange (IE) of M monometallic or PtM bimetallic (M=Cu, Zn and Ga, etc.). The optimized PtZn/Zn-4 exhibits a superior propane dehydrogenation performance over PtCu/Zn-4 and PtGa/Zn-4, which can achieve a propane conversion of about 30 % in a pure propane atmosphere at 550 °C and can be operated for at least 168 h without significant deactivation. Characterization techniques such as spherical aberration corrected transmission electron microscopy, in situ X-ray photoelectron spectroscopy, and in situ diffuse reflectance infrared fourier transform spectroscopy with different gas adsorptions are used to investigate these PtM@zeolite catalysts in order to deepen the understanding of acid site identification, promoter effect and catalysis.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liyang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiuju Qin
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jinfeng Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Bin Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaohui He
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Technology Research Center for Synthesis and Separation of Thermosensitive Chemicals, Guangzhou, 510275, China
| | - Hongbing Ji
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Fine Chemical Industry Research Institute, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
6
|
Li W, Qin B, Dong Z, Chai Y, Wu G, Ma Y, Wang M, Liu X, Ma D, Li L. Direct propylene epoxidation with molecular oxygen over titanosilicate zeolites. Natl Sci Rev 2024; 11:nwae305. [PMID: 39440269 PMCID: PMC11493086 DOI: 10.1093/nsr/nwae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024] Open
Abstract
The direct epoxidation of propylene with molecular oxygen represents a desired route for propylene oxide (PO) production with 100% theoretical atomic economy. However, this aerobic epoxidation reaction suffers from the apparent trade-off between propylene conversion and PO selectivity, and remains a key challenge in catalysis. We report that Ti-Beta zeolites containing isolated framework Ti species can efficiently catalyze the aerobic epoxidation of propylene. Stable propylene conversion of 25% and PO selectivity of up to 90% are achieved at the same time, matching the levels of industrial ethylene aerobic epoxidation processes. H-terminated pentacoordinated Ti species in Beta zeolite frameworks are identified as the preferred active sites for propylene aerobic epoxidation and the reaction is initiated by the participation of lattice oxygen in Ti-OH. These results are expected to spark new technology for the industrial production of PO toward more sustainable chemistry and chemical engineering.
Collapse
Affiliation(s)
- Weijie Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Qin
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuoya Dong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuchao Chai
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingwu Liu
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Landong Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Wang J, Dong X, Feng G, Lu X, Wu G, Li G, Li S, Mao J, Chen A, Song Y, Zeng J, Wei W, Chen W. Spatial-coupled Ampere-level Electrochemical Propylene Epoxidation over RuO 2/Ti Hollow-fiber Penetration Electrodes. Angew Chem Int Ed Engl 2024; 63:e202411173. [PMID: 39109442 DOI: 10.1002/anie.202411173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024]
Abstract
The electrochemical propylene epoxidation reaction (PER) provides a promising route for ecofriendly propylene oxide (PO) production, instantly generating active halogen/oxygen species to alleviate chloride contamination inherent in traditional PER. However, the complex processes and unsatisfactory PO yield for current electrochemical PER falls short of meeting industrial application requirements. Herein, a spatial-coupling strategy over RuO2/Ti hollow-fiber penetration electrode (HPE) is adopted to facilitate efficient PO production, significantly improving PER performance to ampere level (achieving over 80 % PO faradaic efficiency and a maximum PO current density of 859 mA cm-2). The synergetic combination of the penetration effect of HPE and the spatial-coupled reaction sequence, enables the realization of ampere-level PO production with high specificity, exhibiting significant potentials for economically viable PER applications.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Xiaocheng Lu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Gangfeng Wu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Shoujie Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Jianing Mao
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| |
Collapse
|
8
|
Li W, Deng X, Ma Y, Qin B, Dang J, Wu G, Yang S, Li L. Zeolite-Encaged Isolated Palladium Redox Centers toward Sustainable Wacker-Type Oxidations. J Am Chem Soc 2024; 146:27600-27609. [PMID: 39324993 DOI: 10.1021/jacs.4c08813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The selective oxidation of olefins by molecular oxygen holds great importance in the chemical industry due to its remarkable adaptability in constructing carbonyl compounds. Classical homogeneous Wacker oxidation with a complex system of PdCl2-CuCl2-H2O is currently employed in the industrial production of acetaldehyde, which suffers from several key drawbacks. The development of alternative heterogeneous catalytic systems for Wacker-type oxidations has been hotly pursued for decades. Herein, we report a novel heterogeneous catalyst, namely Pd@FAU containing exclusive singular Pd sites confined in zeolite, showing remarkable performance in the Wacker-type oxidation of light olefins to the corresponding carbonyl compounds. Typically, stable propylene conversion rates of 2.3-3.5 mol/molPd/min and an acetone selectivity of 75-89% can be achieved simultaneously, surpassing the state-of-the-art homogeneous Wacker oxidation systems. In situ spectroscopic investigations disclose the spontaneous redox cycle of Pd+-Pd2+-Pd+ in Pd@FAU during the reaction, in significant contrast to the known Pd2+-Pd0-Pd2+ redox cycle. Theoretical calculations reveal the unique reaction pathway and mechanism of Wacker-type oxidation over Pd@FAU, without the participation of water as the nucleophile. Overall, a novel heterogeneous catalyst of Pd@FAU has been developed for Wacker-type oxidations with the unique reaction mechanism fully interpreted. This study will contribute to more sustainable Wacker-type oxidations and further improve the current understanding of Pd redox catalysis.
Collapse
Affiliation(s)
- Weijie Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xin Deng
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yujie Ma
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
| | - Bin Qin
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jian Dang
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester, M13 9PL, U.K
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, P. R. China
| | - Landong Li
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
9
|
Wei G, Zhou L, Luo J, Yu B, Ding F, Song J, Shi Y, Zhang J, Feng X, Liu N. Insight into the Catalytic Oxidation Mechanism of Hydrogen Isotopes by Pt Clusters Confined by Silicalite-1. Inorg Chem 2024; 63:14171-14182. [PMID: 39001852 DOI: 10.1021/acs.inorgchem.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Highly efficient removal of low concentrations of hydrogen isotope gas in air is crucial for the safe operation of nuclear energy plants. Herein, silicalite-1-confined Pt cluster catalysts were used for the catalytic oxidation of hydrogen isotopes, and the related catalytic mechanism was revealed. Increased temperature in direct hydrogen reduction treatment slightly increased the size of Pt clusters from 1.6 nm at 400 °C to 1.8 nm at 600 °C. The catalyst reduced at 600 °C exhibited excellent performance (99%) in hydrogen isotope oxidation at 75 °C, as well as high stability and catalytic efficiency in continuous and intermittent operation for 7200 min. X-ray absorbance spectroscopy confirmed the existence of Pt clusters in the catalysts, and the theoretical results showed that the total net charge was -0.07 e, indicating a slight charge transfer from the zeolite to the Pt atoms. The metal-support interaction thermally stabilized Pt clusters and altered the metal electronic structure, which enhanced the catalytic activity following a hydroperoxyl (OOH)-mediated route. Based on the low reaction temperature, efficient hydrogen conversion rate, and high stability, the silicalite-1-confined Pt cluster catalyst is expected to be used in hydrogen isotope oxidation treatment to achieve nuclear safety.
Collapse
Affiliation(s)
- Guilin Wei
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Linsen Zhou
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Junhong Luo
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Bin Yu
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Fengyun Ding
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiangfeng Song
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Yan Shi
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Jianqiao Zhang
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, PR China
| | - Xingwen Feng
- Institute of Materials, China Academy of Engineering Physics, Jiangyou, Sichuan 621908, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
10
|
Baruah MJ, Dutta R, Zaki MEA, Bania KK. Heterogeneous Iron-Based Catalysts for Organic Transformation Reactions: A Brief Overview. Molecules 2024; 29:3177. [PMID: 38999129 PMCID: PMC11243350 DOI: 10.3390/molecules29133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Iron (Fe) is considered to be one of the most significant elements due to its wide applications. Recent years have witnessed a burgeoning interest in Fe catalysis as a sustainable and cost-effective alternative to noble metal catalysis in organic synthesis. The abundance and low toxicity of Fe, coupled with its competitive reactivity and selectivity, underscore its appeal for sustainable synthesis. A lot of catalytic reactions have been performed using heterogeneous catalysts of Fe oxide hybridized with support systems like aluminosilicates, clays, carbonized materials, metal oxides or polymeric matrices. This review provides a comprehensive overview of the latest advancements in Fe-catalyzed organic transformation reactions. Highlighted areas include cross-coupling reactions, C-H activation, asymmetric catalysis, and cascade processes, showcasing the versatility of Fe across a spectrum of synthetic methodologies. Emphasis is placed on mechanistic insights, elucidating the underlying principles governing iron-catalyzed reactions. Challenges and opportunities in the field are discussed, providing a roadmap for future research endeavors. Overall, this review illuminates the transformative potential of Fe catalysis in driving innovation and sustainability in organic chemistry, with implications for drug discovery, materials science, and beyond.
Collapse
Affiliation(s)
- Manash J Baruah
- Department of Chemistry, DCB Girls' College, Jorhat 785001, Assam, India
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Rupjyoti Dutta
- CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
11
|
Chen J, Liu X, Zhang P, Zhang S, Zhou H, Li L, Luo H, Wang H, Sun Y. Aerobic Oxidative Carboxylation of Styrene Over Cobalt Catalysts: Integrated CO 2 Capture and Conversion. CHEMSUSCHEM 2024; 17:e202301567. [PMID: 38517635 DOI: 10.1002/cssc.202301567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The direct synthesis of cyclic carbonates through oxidative carboxylation of alkenes using CO2 and O2 offers a sustainable and carbon-neutral method for CO2 utilization, which is, however, still a largely unexplored field. Here we develop a single-atom catalyst (SAC) Co-N/O-C as the earth-abundant metal catalyst for the oxidative carboxylation of styrene with CO2 and O2. Remarkably, even using the flue gas as an impure CO2 and O2 source, desired cyclic carbonate could be obtained with moderate productivity, which shows the potential for integrated CO2 capture and conversion, leveraging the high CO2 adsorption capacity of Co-N/O-C. In addition, the catalyst can be reused five times without an obvious decline in activity. Detailed characterizations and theoretical calculations elucidate the crucial role of single Co atoms in activating O2 and CO2, as well as controlling selectivity.
Collapse
Affiliation(s)
- Junjun Chen
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Xiaofang Liu
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Peipei Zhang
- CNOOC Institute of Chemical & Advanced Materials (Beijing) Co. Ltd., Beijing, 102209, P. R. China
| | - Shunan Zhang
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Haozhi Zhou
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Lin Li
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Hu Luo
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Wang
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Carbon Neutrality, Shanghai Tech University, Shanghai, 201203, P. R. China
| |
Collapse
|
12
|
Qu Z, He G, Zhang T, Fan Y, Guo Y, Hu M, Xu J, Ma Y, Zhang J, Fan W, Sun Q, Mei D, Yu J. Tricoordinated Single-Atom Cobalt in Zeolite Boosting Propane Dehydrogenation. J Am Chem Soc 2024; 146:8939-8948. [PMID: 38526452 DOI: 10.1021/jacs.3c12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Propane dehydrogenation (PDH) reaction has emerged as one of the most promising propylene production routes due to its high selectivity for propylene and good economic benefits. However, the commercial PDH processes usually rely on expensive platinum-based and poisonous chromium oxide based catalysts. The exploration of cost-effective and ecofriendly PDH catalysts with excellent catalytic activity, propylene selectivity, and stability is of great significance yet remains challenging. Here, we discovered a new active center, i.e., an unsaturated tricoordinated cobalt unit (≡Si-O)CoO(O-Mo) in a molybdenum-doped silicalite-1 zeolite, which afforded an unprecedentedly high propylene formation rate of 22.6 molC3H6 gCo-1 h-1 and apparent rate coefficient of 130 molC3H6 gCo-1 h-1 bar-1 with >99% of propylene selectivity at 550 °C. Such activity is nearly one magnitude higher than that of previously reported Co-based catalysts in which cobalt atoms are commonly tetracoordinated, and even superior to that of most of Pt-based catalysts under similar operating conditions. Density functional theory calculations combined with the state-of-the-art characterizations unravel the role of the unsaturated tricoordinated Co unit in facilitating the C-H bond-breaking of propane and propylene desorption. The present work opens new opportunities for future large-scale industrial PDH production based on inexpensive non-noble metal catalysts.
Collapse
Affiliation(s)
- Ziqiang Qu
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Guangyuan He
- School of Environmental Science and Engineering and School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yaqi Fan
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yanxia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Min Hu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Qiming Sun
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Donghai Mei
- School of Environmental Science and Engineering and School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Chai Y, Qin B, Li B, Dai W, Wu G, Guan N, Li L. Zeolite-encaged mononuclear copper centers catalyze CO 2 selective hydrogenation to methanol. Natl Sci Rev 2023; 10:nwad043. [PMID: 37547060 PMCID: PMC10401316 DOI: 10.1093/nsr/nwad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/12/2022] [Accepted: 01/14/2023] [Indexed: 08/08/2023] Open
Abstract
The selective hydrogenation of CO2 to methanol by renewable hydrogen source represents an attractive route for CO2 recycling and is carbon neutral. Stable catalysts with high activity and methanol selectivity are being vigorously pursued, and current debates on the active site and reaction pathway need to be clarified. Here, we report a design of faujasite-encaged mononuclear Cu centers, namely Cu@FAU, for this challenging reaction. Stable methanol space-time-yield (STY) of 12.8 mmol gcat-1 h-1 and methanol selectivity of 89.5% are simultaneously achieved at a relatively low reaction temperature of 513 K, making Cu@FAU a potential methanol synthesis catalyst from CO2 hydrogenation. With zeolite-encaged mononuclear Cu centers as the destined active sites, the unique reaction pathway of stepwise CO2 hydrogenation over Cu@FAU is illustrated. This work provides a clear example of catalytic reaction with explicit structure-activity relationship and highlights the power of zeolite catalysis in complex chemical transformations.
Collapse
Affiliation(s)
| | | | - Bonan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | | |
Collapse
|
14
|
Liu H, Liu W, Xue G, Tan T, Yang C, An P, Chen W, Zhao W, Fan T, Cui C, Tang Z, Li G. Modulating Charges of Dual Sites in Multivariate Metal-Organic Frameworks for Boosting Selective Aerobic Epoxidation of Alkenes. J Am Chem Soc 2023; 145:11085-11096. [PMID: 37162302 DOI: 10.1021/jacs.3c00460] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective aerobic epoxidation of alkenes without any additives is of great industrial importance but still challenging because the competitive side reactions including C═C bond cleavage and isomerization are difficult to avoid. Here, we show fabricating Cu(I) single sites in pristine multivariate metal-organic frameworks (known as CuCo-MOF-74) via partial reduction of Cu(II) to Cu(I) ions during solvothermal reaction. Impressively, CuCo-MOF-74 is characteristic with single Cu(I), Cu(II), and Co(II) sites, and they exhibit the substantially enhanced selectivity of styrene oxide up to 87.6% using air as an oxidant at almost complete conversion of styrene, ∼25.8% selectivity increased over Co-MOF-74, as well as good catalytic stability. Contrast experiments and theoretical calculation indicate that Cu(I) sites contribute to the substantially enhanced selectivity of epoxides catalyzed by Co(II) sites. The adsorption of two O2 molecules on dual Co(II) and Cu(I) sites is favorable, and the projected density of state of the Co-3d orbital is closer to the Fermi level by modulating with Cu(I) sites for promoting the activation of O2 compared with dual-site Cu(II) and Co(II) and Co(II) and Co(II), thus contributing to the epoxidation of the C═C bond. When other kinds of alkenes are used as substrates, the excellent selectivity of various epoxides is also achieved over CuCo-MOF-74. We also prove the universality of fabricating Cu(I) sites in other MOF-74 with various divalent metal nodes.
Collapse
Affiliation(s)
- Hanlin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangxin Xue
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Ting Tan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P. R. China
| | - Wenshi Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chengqian Cui
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
15
|
Li R, Liu C, Fan Y, Fu Q, Bao X. Metal-oxide interactions modulating the activity of active oxygen species on atomically dispersed silver catalysts. Chem Commun (Camb) 2023; 59:3854-3857. [PMID: 36911985 DOI: 10.1039/d3cc00617d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The activity of active oxygen species on supported Ag atoms can be effectively modulated by metal-support interactions using different oxide supports. The strong interaction between Ag and Al2O3 with more electrons transferred from Ag to Al2O3 leads to the formation of more Ag-O2- (superoxide) species, responsible for the selective oxidation of ethylene to ethylene oxide. The relatively weak interaction between Ag and SiO2 induces the generation of Ag-O (atomic oxygen) and Ag-O22- (peroxide) species, which are more active for complete oxidation of CO and ethylene to CO2. This work is of significance for deep understanding of active surface species in atomically dispersed metal catalysts.
Collapse
Affiliation(s)
- Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| |
Collapse
|
16
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
17
|
Li W, Chai Y, Wu G, Li L. Stable and Uniform Extraframework Cations in Faujasite Zeolites. J Phys Chem Lett 2022; 13:11419-11429. [PMID: 36468947 DOI: 10.1021/acs.jpclett.2c02969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Extraframework transition metal ions (TMIs) in zeolites can serve as active sites for adsorption and catalysis. However, due to the complexity and mobility of extraframework cation sites, their applications are significantly limited and the structure-performance relationship is poorly understood. In this Perspective, stable and uniform TMIs in zeolites are exemplified and their characteristics are discussed. A series of TMIs can be introduced to specific cation sites of faujasite via a ligand-protected in situ synthesis route to construct uniform TMIs in the zeolite matrix, namely, TMI@FAU (TMI= Co, Ni, Cu, Rh, and Pt). Coordinatively unsaturated TMIs within faujasite are active for small-molecule adsorption and activation, and therefore, TMI@FAU zeolites show unique properties in adsorption and catalysis. TMI@FAU zeolites appear to be ideal model systems, and the well-defined structure of TMI@FAU greatly facilitates the mechanism studies by spectroscopic investigations and theoretical simulations.
Collapse
Affiliation(s)
- Weijie Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuchao Chai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangjun Wu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
18
|
Zhao J, Jiang J, Wen S, Zhang J, Zhang C, Sheng N, Liang W, Sun B, Xu W, Yang Z, Pan Y. Research on alkali metal-modified Pd catalyst for oxygen removal from propylene. Front Chem 2022; 10:987556. [PMID: 36186586 PMCID: PMC9524148 DOI: 10.3389/fchem.2022.987556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of alkali metal (Li, Na, and K)-modified Pd catalysts and Pd/Al2O3 were prepared and used to remove oxygen in a propylene flow with hydrogen’s existence. The results showed that the alkali metals could enhance the performance of the Pd catalysts and the effect followed the order of K > Na > Li. X-Ray diffraction (XRD), N2-physisorption, transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were carried out to investigate the alkali metal-modified Pd catalysts and the promotional effect mechanism was explained. The results showed that alkali metal modification increased the electron density of Pd atoms to induce the negatively charged Pd species, which could enhance the adsorption of oxygen while weakening the adsorption of propylene, and then enhance the performance of the modified catalysts for oxygen removal from unsaturated hydrocarbon. The Pd-K/A catalyst performed the best on both oxygen removal and propylene hydrogenation inhibition.
Collapse
Affiliation(s)
- Jinchong Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Song Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Changsheng Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Nan Sheng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Liang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Zhe Yang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
19
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022; 61:e202205978. [DOI: 10.1002/anie.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|
20
|
Chen Q, Peng P, Yang G, Li Y, Han M, Tan Y, Zhang C, Chen J, Jiang K, Liu L, Ye C, Xing E. Template‐Guided Regioselective Encaging of Platinum Single Atoms into Y Zeolite: Enhanced Selectivity in Semihydrogenation and Resistance to Poisoning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiang Chen
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Pai Peng
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Ganjun Yang
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yanzhi Li
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Mengxi Han
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Yaozong Tan
- School of Chemical Engineering and Technology Sun Yat-sen University Zhuhai campus Zhuhai 519082 China
| | - Chengxi Zhang
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Junwen Chen
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Wuhan Textile University Wuhan 430200 China
| | - Chenliang Ye
- College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Enhui Xing
- State Key Laboratory of Catalytic Materials and Reaction Engineering Research Institute of Petroleum Processing, Sinopec Beijing 100083 China
| |
Collapse
|