1
|
Gu M, Jiang L, Wang H, Chen Q, Hao Y, Li L, Hu F, Zhang X, Wu Y, Wang G, Peng S. Iodine-Induced Redirection of Active Sources in Cu-Based Catalysts during Efficient and Stable Water Oxidation. J Am Chem Soc 2025. [PMID: 40280874 DOI: 10.1021/jacs.5c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Enhancing the mechanistic regulation of the oxygen evolution reaction (OER) is crucial for developing efficient and stable electrocatalysts. However, the dynamic variation of surface structure during the electrocatalytic process limits the accurate identification of the active source and underlying reaction mechanism. Herein, we report an iodine-doping strategy to direct the reconstruction of active species in CuS catalysts toward an unconventional oxygen vacancy oxidation mechanism, thereby overcoming the activity and stability limitations. Mechanistic analysis indicates that the electronic manipulation, weak coordination of Cu-S bonds, and lattice distortion induced by iodine-doping facilitate the thermodynamically favorable Cu2+ to Cu3+ oxidation during OER. The decisively formed oxygen vacancies are emphasized as a genuine active source to promote hydroxyl adsorption, with hypervalent Cu species acting as auxiliary sites to accelerate deprotonation by strengthening Cu-O covalent. Consequently, the optimal iodine-doped CuS exhibits a reduced overpotential of 189 mV at 10 mA cm-2 and superb stability prolonging to 1250 h. When used as a bifunctional electrode in a membrane electrode assembly electrolyzer, it also exhibits a low voltage of 1.65 V at 1 A cm-2, with electrolysis durability of 480 h and a low hydrogen cost of US$1.70/kg H2, outperforming the 2026 targets set by the U.S. Department of Energy.
Collapse
Affiliation(s)
- Mingzheng Gu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Ling Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Hao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qiao Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaojun Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yuping Wu
- Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China
| | - Guangfeng Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Shengjie Peng
- Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Wang Y, Qin Y, Liu S, Zhao Y, Liu L, Zhang D, Zhao S, Liu J, Wang J, Liu Y, Wu H, Jia B, Qu X, Li H, Qin M. Mesoporous Single-Crystalline Particles as Robust and Efficient Acidic Oxygen Evolution Catalysts. J Am Chem Soc 2025; 147:13345-13355. [PMID: 40196994 DOI: 10.1021/jacs.4c18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The scarcity of iridium (Ir) limits its widespread use in acidic oxygen evolution reaction (OER). Herein, mesoporous single-crystalline spinel Co3O4 with atomically dispersed low-valence-state Ir has been developed to enable Ir's efficient and stable utilization. The surface Pourbaix diagram suggests that under acidic OER conditions, O* fully covers both Co3O4(111) and (110) surfaces, passivating Co sites but enhancing Co3O4's structural stability, a benefit further improved by Ir doping. Mesopores offer numerous loading sites for Ir single atoms (13.8 wt %), which activate the originally O*-passivated Co3O4(111) surface by creating high-intrinsic-activity Co-Ir bridge sites; meanwhile, Ir and Co leaching rates are reduced to about 1/4 and 1/5, respectively, compared to conventional Ir/Co3O4 catalysts. Our catalyst exhibits a low η10 of 248 mV for over 100 h, showcasing its potential in water electrolysis.
Collapse
Affiliation(s)
- Yong Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Yunpu Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Sijia Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongzhi Zhao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Luan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Shangqing Zhao
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jianfang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yadong Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoyang Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Baorui Jia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 301811, China
| | - Xuanhui Qu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Mingli Qin
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
3
|
Qi M, Tong H, Li G, Zheng X, Liu Y, Ye C, Yan Z, Jiang D. Synergizing RuO 2 with Fe-doped Co 2RuO 4 for boosting alkaline electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2025; 684:181-188. [PMID: 39826505 DOI: 10.1016/j.jcis.2025.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Designing and development of electrocatalysts with high catalytic capacity and stability for oxygen evolution reaction (OER) is significant for sustainable water splitting. In this study, we rationally designed Fe-doped Co2RuO4/RuO2 heterostructure electrocatalysts on nickel foam (NF) through mixture hydrothermal, ion exchanging, and calcining methods. The synergistic effect between the Fe-Co2RuO4/RuO2 heterogeneous interfaces can result in superior inherent activity. Meanwhile, the unique nanosheet on nanosheet structure delivers abundant exposed active sites, leading to improved catalytic activity. The resultant Fe-Co2RuO4/RuO2 heterostructured catalysts possessed superior OER property, attaining a current density of 50 mA cm-2 with only 253 mV overpotential in 1.0 M KOH alkaline solution, and demonstrating good durability with continuous operation for up to 50 h. This research provides robust support for the research and development of RuO2-based electrocatalysts through effective interface engineering and doping strategies, and opens up new avenues for the industrial application of water splitting technology.
Collapse
Affiliation(s)
- Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Gaojie Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Cheng Ye
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013 China
| | - Zaoxue Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China.
| |
Collapse
|
4
|
Chen Y, Yang S, Wang T, Li S, Liu X, Zhang W, Cao R. Mo-Doped α-MnO 2 for Enhanced Electrocatalytic Water Oxidation. CHEMSUSCHEM 2025; 18:e202401553. [PMID: 39422073 DOI: 10.1002/cssc.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Manganese is a key metal involved in the catalysis of natural photosynthesis. Thus, the investigation of Mn-based electrocatalysts for water oxidation is of high importance. This work reports the doping of Mo into α-MnO2 nanorods to improve the water oxidation performance. The doping of Mo can transform the microstructure of α-MnO2 from nanorods into nanosphere superstructures. As a dopant, Mo expands the α-MnO2 lattice to result in a decrease in the average oxidation state of Mn and the generation of oxygen vacancies, which are beneficial to water oxidation catalysis. Under optimized doping, the overpotential of 2.34 wt.% Mo/α-MnO2 is reduced by 80 mV (at 10 mA/cm2) compared with pure α-MnO2.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
5
|
He B, Bai F, Jain P, Li T. A Review of Surface Reconstruction and Transformation of 3d Transition-Metal (oxy)Hydroxides and Spinel-Type Oxides during the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411479. [PMID: 39916593 PMCID: PMC11899548 DOI: 10.1002/smll.202411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Developing efficient and sustainable electrocatalysts for the oxygen evolution reaction (OER) is crucial for advancing energy conversion and storage technologies. 3d transition-metal (oxy)hydroxides and spinel-type oxides have emerged as promising candidates due to their structural flexibility, oxygen redox activity, and abundance in earth's crust. However, their OER performance can be changed dynamically during the reaction due to surface reconstruction and transformation. Essentially, multiple elementary processes occur simultaneously, whereby the electrocatalyst surfaces undergo substantial changes during OER. A better understanding of these elementary processes and how they affect the electrocatalytic performance is essential for the OER electrocatalyst design. This review aims to critically assess these processes, including oxidation, surface amorphization, transformation, cation dissolution, redeposition, and facet and electrolyte effects on the OER performance. The review begins with an overview of the electrocatalysts' structure, redox couples, and common issues associated with electrochemical measurements of 3d transition-metal (oxy)hydroxides and spinels, followed by recent advancements in understanding the elementary processes involved in OER. The challenges and new perspectives are presented at last, potentially shedding light on advancing the rational design of next-generation OER electrocatalysts for sustainable energy conversion and storage applications.
Collapse
Affiliation(s)
- Biao He
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Fan Bai
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Priya Jain
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Tong Li
- Faculty of Mechanical EngineeringAtomic‐scale CharacterisationRuhr‐Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
6
|
Deng N, Wang Y, Feng Y, Shui Y, Wang G, Kang W, Cheng B. Copper dual-doping strategy of porous carbon nanofibers and nickel fluoride nanorods as bi-functional oxygen electrocatalysis for effective zinc-air batteries. J Colloid Interface Sci 2025; 678:162-173. [PMID: 39243717 DOI: 10.1016/j.jcis.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Designing and developing efficient, low-cost bi-functional oxygen electrocatalysts is essential for effective zinc-air batteries. In this study, we propose a copper dual-doping strategy, which involves doping both porous carbon nanofibers (PCNFs) and nickel fluoride nanoparticles with copper alone, successfully preparing copper-doped nickel fluoride (NiF2) nanorods and copper nanoparticles co-modified PCNFs (Cu@NiF2/Cu-PCNFs) as an efficient bi-functional oxygen electrocatalyst. When copper is doped into the PCNFs in the form of metallic nanoparticles, the doped elemental copper can improve the electronic conductivity of composite materials to accelerate electron conduction. Meanwhile, the copper doping for NiF2 can significantly promote the transformation of nickel fluoride nanoparticles into nanorod structures, thus increasing the electrochemical active surface area and enhancing mass diffusion. The Cu-doped NiF2 nanorods also possess an optimized electronic structure, including a more negative d-band center, smaller bandgap width and lower reaction energy barrier. Under the synergistic effect of these advantages, the obtained Cu@NiF2/Cu-PCNFs exhibit outstanding bi-functional catalytic performances, with a low overpotential of 0.68 V and a peak power density of 222 mW cm-2 in zinc-air batteries (ZABs) and stable cycling for 800 h. This work proposes a one-step way based on the dual-doping strategy, providing important guidance for designing and developing efficient catalysts with well-designed architectures for high-performance ZABs.
Collapse
Affiliation(s)
- Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yilong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yang Feng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yewen Shui
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Gang Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
7
|
Hartnett AC, Evenson RJ, Thorarinsdottir AE, Veroneau SS, Nocera DG. Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction? J Am Chem Soc 2025; 147:1123-1133. [PMID: 39702923 DOI: 10.1021/jacs.4c14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La3+ incorporation into Co3O4. Powder X-ray diffraction (PXRD), Raman spectroscopy and extended X-ray absorption fine structure (EXAFS) reveal smaller domain sizes with decreased long-range order and increased amorphization for La-modified Co3O4. This lattice deconstruction is exacerbated under the conditions of OER as indicated by operando spectroscopies. The overpotential for OER decreases with increasing La3+ concentration, with maximum activity achieved at 17% La incorporation. HRTEM images and electron diffraction patterns clearly show the formation of an amorphous overlayer during OER catalysis that is accelerated with La3+ addition. O 1s XPS spectra after OER show the loss of lattice-oxide and an increase in peak intensities associated with hydroxylated or defective O-atom environments, consistent with Co(O)x(OH)y species in an amorphous overlayer. Our results suggest that improved catalytic activity of oxides incorporated with La3+ ions (and likely other metal ions) is due to an increase in the number of terminal octahedral Co(O)x(OH)y edge sites upon Co3O4 lattice deconstruction, rather than enhanced intrinsic catalysis.
Collapse
Affiliation(s)
- Alaina C Hartnett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan J Evenson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Etxebarria A, Lopez Luna M, Martini A, Hejral U, Rüscher M, Zhan C, Herzog A, Jamshaid A, Kordus D, Bergmann A, Kuhlenbeck H, Roldan Cuenya B. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catal 2024; 14:14219-14232. [PMID: 39324051 PMCID: PMC11421220 DOI: 10.1021/acscatal.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Water splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers. Due to the complexity of studying the catalysts at working conditions, the active phase and the role that iron exerts in conjunction with Ni are still a matter of investigation. Here, we study this topic with NiO(001) and Ni0.75Fe0.25O x (001) thin film model electrocatalysts employing surface-sensitive techniques. We show that iron constrains the growth of the oxyhydroxide phase formed on top of the Ni or NiFe oxide, which is considered the active phase for the OER. Besides, operando Raman and grazing incidence X-ray absorption spectroscopy experiments reveal that the presence of iron affects both, the disorder level of the active phase and the oxidative charge around Ni during OER. The observed compositional, structural, and electronic properties of each system have been correlated with their electrochemical performance.
Collapse
Affiliation(s)
| | | | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Chao Zhan
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Afshan Jamshaid
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Helmut Kuhlenbeck
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
9
|
Zhao X, Wu F, Hu H, Li J, Sun Y, Wang J, Zou G, Chen X, Wang Y, Fernandez C, Peng Q. N-Decorated Main-Group MgAl 2O 4 Spinel: Unlocking Exceptional Oxygen Reduction Activity for Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311268. [PMID: 38342592 DOI: 10.1002/smll.202311268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Indexed: 02/13/2024]
Abstract
The development of economical and efficient oxygen reduction reaction (ORR) catalysts is crucial to accelerate the widespread application rhythm of aqueous rechargeable zinc-air batteries (ZABs). Here, a strategy is reported that the modification of the binding energy for reaction intermediates by the axial N-group converts the inactive spinel MgAl2O4 into the active motif of MgAl2O4-N. It is found that the introduction of N species can effectively optimize the electronic configuration of MgAl2O4, thereby significantly reducing the adsorption strength of *OH and boosting the reaction process. This main-group MgAl2O4-N catalyst exhibits a high ORR activity in a broad pH range from acidic and alkaline environments. The aqueous ZABs assembled with MgAl2O4-N shows a peak power density of 158.5 mW cm-2, the long-term cyclability over 2000 h and the high stability in the temperature range from -10 to 50 °C, outperforming the commercial Pt/C in terms of activity and stability. This work not only serves as a significant candidate for the robust ORR electrocatalysts of aqueous ZABs, but also paves a new route for the effective reutilization of waste Mg alloys.
Collapse
Affiliation(s)
- Xue Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Fengqi Wu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Haidong Hu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Jinyu Li
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Yong Sun
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Xiaobo Chen
- School of Engineering, RMIT University, Carlton, VIC, 3053, Australia
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P.R. China
| | - Carlos Fernandez
- School of Pharmacy and life sciences, Robert Gordon University, Aberdeen, AB107GJ, UK
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P.R. China
| |
Collapse
|
10
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Gao ZW, Li H, Li PH, Li YY, Quan JQ, Ma N, Chen SH, Huang XJ, Song ZY, Yang M. In-situ precipitation zero-valent Co on Co 2VO 4 to activate oxygen vacancies and enhance bimetallic ions redox for efficient detection toward Hg(II). Anal Chim Acta 2024; 1306:342612. [PMID: 38692793 DOI: 10.1016/j.aca.2024.342612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Despite the widespread utilization of variable valence metals in electrochemistry, it is still a formidable challenge to enhance the valence conversion efficiency to achieve excellent catalytic activity without introducing heterophase elements. Herein, the in-situ precipitation of Co particles on Co2VO4 not only enhanced the concentration of oxygen vacancies (Ov) but also generated a greater number of low-valence metals, thereby enabling efficient reduction towards Hg(II). The electroanalysis results demonstrate that the sensitivity of Co/Co2VO4 towards Hg(II) was measured at an impressive value of 1987.74 μA μM-1 cm-2, significantly surpassing previously reported results. Further research reveals that Ov acted as the main adsorption site to capture Hg(II). The redox reactions of Co2+/Co3+ and V3+/V4+ played a synergistic role in the reduction of Hg(II), accompanied by the continuous supply of electrons from zero-valent Co to expedite the valence cycle. The Co/Co2VO4/GCE presented remarkable selectivity towards Hg(II), with excellent stability, reproducibility, and anti-interference capability. The electrode also exhibited minimal sensitivity fluctuations towards Hg(II) in real water samples, underscoring its practicality for environmental applications. This study elucidates the mechanism underlying the surface redox reaction of metal oxides facilitated by zero-valent metals, providing us with new strategies for further design of efficient and practical sensors.
Collapse
Affiliation(s)
- Zhi-Wei Gao
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, China; Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Wan Jiang New Industry Technology Development Center, Tongling, 244000, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yong-Yu Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jia-Qing Quan
- Wan Jiang New Industry Technology Development Center, Tongling, 244000, China
| | - Na Ma
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Xing-Jiu Huang
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, China; Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Meng Yang
- Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230088, China; Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China; Wan Jiang New Industry Technology Development Center, Tongling, 244000, China.
| |
Collapse
|
12
|
Wang G, Chi H, Feng Y, Fan J, Deng N, Kang W, Cheng B. MnF 2 Surface Modulated Hollow Carbon Nanorods on Porous Carbon Nanofibers as Efficient Bi-Functional Oxygen Catalysis for Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306367. [PMID: 38054805 DOI: 10.1002/smll.202306367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Indexed: 12/07/2023]
Abstract
Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2@PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2, thereby enhancing the stability of HCNRs/MnF2@PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2@PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hao Chi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yang Feng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
13
|
Lin X, Li X, Shi L, Ye F, Liu F, Liu D. In Situ Electrochemical Restructuring B-Doped Metal-Organic Frameworks as Efficient OER Electrocatalysts for Stable Anion Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308517. [PMID: 38155580 DOI: 10.1002/smll.202308517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/25/2023] [Indexed: 12/30/2023]
Abstract
Metal organic frameworks (MOFs) are promising as effective electrocatalysts toward oxygen evolution reaction (OER). However, the origin of OER activity for MOF-based electrocatalysts is still unclear because of their structure reconstruction during electrocatalysis process. Here, a novel MOF (B-MOF-Zn-Co) with spherical superstructure is developed by hydrothermal treatment of zeolitic imidazolate framework-Zn, Co (ZIF-Zn-Co) using boric acid. The resultant B-MOF-Zn-Co shows high OER activity with a low overpotential of 362 mV at 100 mA cm-2. Remarkably, B-MOF-Zn-Co displays excellent stability with only 3.6% voltage delay over 300 h at 100 mA cm-2 in alkaline electrolyte. Surprisingly, B-MOF-Zn-Co thoroughly transforms into B-doped CoOOH (B-CoOOH) during electrolysis process, which is served as actual active material for high OER electrocatalytic performance. The newly-formed B-CoOOH possesses lower energy barrier of potential-determining step (PDS) for OOH* formation compared with CoOOH, benefiting for high OER activity. More importantly, B-MOF-Zn-Co based anion exchange membrane water electrolytic cell (AEMWE) demonstrates continuously durable operation with stable current density of 200 mA cm-2 over 300 h, illustrating its potential application in practice water electrolysis. This work offers an in situ electrochemical reconstruction strategy for the development of stable and effective OER electrocatalysts toward practice AEMWE.
Collapse
Affiliation(s)
- Xuanni Lin
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xue Li
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fenghui Ye
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dong Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
14
|
Zhong X, Xu J, Chen J, Wang X, Zhu Q, Zeng H, Zhang Y, Pu Y, Hou X, Wu X, Niu Y, Zhang W, Wu YA, Wang Y, Zhang B, Huang K, Feng S. Spatially and Temporally Resolved Dynamic Response of Co-Based Composite Interface during the Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:7467-7479. [PMID: 38446421 DOI: 10.1021/jacs.3c12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Interfacial interaction dictates the overall catalytic performance and catalytic behavior rules of the composite catalyst. However, understanding of interfacial active sites at the microscopic scale is still limited. Importantly, identifying the dynamic action mechanism of the "real" active site at the interface necessitates nanoscale, high spatial-time-resolved complementary-operando techniques. In this work, a Co3O4 homojunction with a well-defined interface effect is developed as a model system to explore the spatial-correlation dynamic response of the interface toward oxygen evolution reaction. Quasi in situ scanning transmission electron microscopy-electron energy-loss spectroscopy with high spatial resolution visually confirms the size characteristics of the interface effect in the spatial dimension, showing that the activation of active sites originates from strong interfacial electron interactions at a scale of 3 nm. Multiple time-resolved operando spectroscopy techniques explicitly capture dynamic changes in the adsorption behavior for key reaction intermediates. Combined with density functional theory calculations, we reveal that the dynamic adjustment of multiple adsorption configurations of intermediates by highly activated active sites at the interface facilitates the O-O coupling and *OOH deprotonation processes. The dual dynamic regulation mechanism accelerates the kinetics of oxygen evolution and serves as a pivotal factor in promoting the oxygen evolution activity of the composite structure. The resulting composite catalyst (Co-B@Co3O4/Co3O4 NSs) exhibits an approximately 70-fold turnover frequency and 20-fold mass activity than the monomer structure (Co3O4 NSs) and leads to significant activity (η10 ∼257 mV). The visual complementary analysis of multimodal operando/in situ techniques provides us with a powerful platform to advance our fundamental understanding of interfacial structure-activity relationships in composite structured catalysts.
Collapse
Affiliation(s)
- Xia Zhong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Jingyao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hui Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Xiangyan Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, P. R. China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Haase FT, Ortega E, Saddeler S, Schmidt FP, Cruz D, Scholten F, Rüscher M, Martini A, Jeon HS, Herzog A, Hejral U, Davis EM, Timoshenko J, Knop-Gericke A, Lunkenbein T, Schulz S, Bergmann A, Roldan Cuenya B. Role of Fe decoration on the oxygen evolving state of Co 3O 4 nanocatalysts. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:2046-2058. [PMID: 38449571 PMCID: PMC10913145 DOI: 10.1039/d3ee02809g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.
Collapse
Affiliation(s)
- Felix T Haase
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Eduardo Ortega
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Sascha Saddeler
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany
| | - Franz-Philipp Schmidt
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Fabian Scholten
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Martina Rüscher
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Andrea Martini
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Uta Hejral
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Earl M Davis
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Axel Knop-Gericke
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36 45470 Mülheim Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen [CENIDE], University of Duisburg-Essen Essen Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society Berlin Germany
| |
Collapse
|
16
|
Jin J, Yin J, Hu Y, Zheng Y, Liu H, Wang X, Xi P, Yan CH. Stabilizing Sulfur Sites in Tetraoxygen Tetrahedral Coordination Structure for Efficient Electrochemical Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202313185. [PMID: 38059914 DOI: 10.1002/anie.202313185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO4 2- , PO3 2- , SeO4 2- , etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4 ) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Yao Zheng
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Hongbo Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Xinyao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Frontiers Science Centre for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Zhang Z, Jia C, Ma P, Feng C, Yang J, Huang J, Zheng J, Zuo M, Liu M, Zhou S, Zeng J. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat Commun 2024; 15:1767. [PMID: 38409177 PMCID: PMC10897172 DOI: 10.1038/s41467-024-46176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Developing efficient and economical electrocatalysts for acidic oxygen evolution reaction (OER) is essential for proton exchange membrane water electrolyzers (PEMWE). Cobalt oxides are considered promising non-precious OER catalysts due to their high activities. However, the severe dissolution of Co atoms in acid media leads to the collapse of crystal structure, which impedes their application in PEMWE. Here, we report that introducing acid-resistant Ir single atoms into the lattice of spinel cobalt oxides can significantly suppress the Co dissolution and keep them highly stable during the acidic OER process. Combining theoretical and experimental studies, we reveal that the stabilizing effect induced by Ir heteroatoms exhibits a strong dependence on the distance of adjacent Ir single atoms, where the OER stability of cobalt oxides continuously improves with decreasing the distance. When the distance reduces to about 0.6 nm, the spinel cobalt oxides present no obvious degradation over a 60-h stability test for acidic OER, suggesting potential for practical applications.
Collapse
Affiliation(s)
- Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou, 550018, PR China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chen Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jin Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Junming Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiana Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Mingkai Liu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China.
| |
Collapse
|
18
|
Chee SW, Lunkenbein T, Schlögl R, Roldán Cuenya B. Operando Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research? Chem Rev 2023; 123:13374-13418. [PMID: 37967448 PMCID: PMC10722467 DOI: 10.1021/acs.chemrev.3c00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.
Collapse
Affiliation(s)
- See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
19
|
Qian J, Zhang Y, Chen Z, Du Y, Ni BJ. NiCo layered double hydroxides/NiFe layered double hydroxides composite (NiCo-LDH/NiFe-LDH) towards efficient oxygen evolution in different water matrices. CHEMOSPHERE 2023; 345:140472. [PMID: 37852381 DOI: 10.1016/j.chemosphere.2023.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Engineering robust non-noble metal electrocatalysts towards efficient impure water (e.g., seawater, wastewater) oxidation is a prospective approach to achieve carbon neutrality via accelerating green hydrogen energy development. Herein, a NiCo layered double hydroxides (LDH)/NiFe LDH composite (NiCo-LDH/NiFe-LDH) was developed for oxygen evolution reaction (OER) via a hydrothermal process-electrodeposition method. The optimal NiCo-LDH/NiFe-LDH-30 composite only needed an overpotential (η) of 240 mV to drive 100 mA/cm2 in alkalized freshwater, with a low Tafel slope of 16.6 mV/dec and good stability for over 90 h. Further analyses suggested that the strong interface interaction between NiCo-LDH and NiFe-LDH accelerated the oxygen gas bubble evolution and boosted interfacial charge transfer, and the formed built-in electric field and higher oxidation state species (metal oxyhydroxides) contributed to the high intrinsic catalytic activity. The NiCo-LDH/NiFe-LDH-30 composite also held excellent OER activities in different impure water environments, including alkaline 0.5 M NaCl solution (η100 = 333 mV), alkaline lake water (η100 = 345 mV), and alkaline wastewater treatment plant (WWTP) effluent (η100 = 320 mV). More importantly, the potential effects of Cl- and CO32- in impure water were revealed during the OER process. This work elaborates on the role of built-in electric field and the strong coupling interaction in composite catalysts, which pave the way for the design of cost-effective catalysts with excellent adaptability in different water environments.
Collapse
Affiliation(s)
- Jin Qian
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Shaanxi, 710072, PR China
| | - Yichu Zhang
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Shaanxi, 710072, PR China
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Yufei Du
- Research & Development Institute in Shenzhen, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Shaanxi, 710072, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
20
|
Mondal S, Riyaz M, Bagchi D, Dutta N, Singh AK, Vinod CP, Peter SC. Distortion-Induced Interfacial Charge Transfer at Single Cobalt Atom Secured on Ordered Intermetallic Surface Enhances Pure Oxygen Production. ACS NANO 2023; 17:23169-23180. [PMID: 37955244 DOI: 10.1021/acsnano.3c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
In this work, atomic cobalt (Co) incorporation into the Pd2Ge intermetallic lattice facilitates operando generation of a thin layer of CoO over Co-substituted Pd2Ge, with Co in the CoO surface layer functioning as single metal sites. Hence the catalyst has been titled Co1-CoO-Pd2Ge. High-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy confirm the existence of CoO, with some of the Co bonded to Ge by substitution of Pd sites in the Pd2Ge lattice. The role of the CoO layer in the oxygen evolution reaction (OER) has been verified by its selective removal using argon sputtering and conducting the OER on the etched catalyst. In situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy demonstrate that CoO gets transformed to CoOOH (Co3+) in operando condition with faster charge transfer through Pd atoms in the core Pd2Ge lattice. In situ Raman spectroscopy depicts the emergence of a CoOOH phase on applying potential and shows that the phase is stable with increasing potential and time without getting converted to CoO2. Density functional theory calculations indicate that the Pd2Ge lattice induces distortion in the CoO phase and generates unpaired spins in a nonmagnetic CoOOH system resulting in an increase in the OER activity and durability. The existence of spin density even after electrocatalysis is verified from electron paramagnetic resonance spectroscopy. We have thus successfully synthesized intermetallic supported CoO during synthesis and rigorously verified the role played by an intermetallic Pd2Ge core in enhancing charge transfer, generating spin density, improving electrochemical durability, and imparting mechanical stability to a thin CoOOH overlayer. Differential electrochemical mass spectrometry has been explored to visualize the instantaneous generation of oxygen gas during the onset of the reaction.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Nilutpal Dutta
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 410008, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
21
|
Li Y, Bo T, Zuo S, Zhang G, Zhao X, Zhou W, Wu X, Zhao G, Huang H, Zheng L, Zhang J, Zhang H, Zhang J. Reversely Trapping Isolated Atoms in High Oxidation State for Accelerating the Oxygen Evolution Reaction Kinetics. Angew Chem Int Ed Engl 2023; 62:e202309341. [PMID: 37640691 DOI: 10.1002/anie.202309341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx -decorated CoSe2 (a-MoOx @CoSe2 ) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm-2 . Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tingting Bo
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shouwei Zuo
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Guikai Zhang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaojuan Zhao
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Huawei Huang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huabin Zhang
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
22
|
Maqbool A, Shahid A, Jahan Z, Bilal Khan Niazi M, Ali Inam M, Tawfeek AM, M Kamel E, Saeed Akhtar M. Development of ZnO-GO-NiO membrane for removal of lead and cadmium heavy metal ions from wastewater. CHEMOSPHERE 2023; 338:139622. [PMID: 37487982 DOI: 10.1016/j.chemosphere.2023.139622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The presence of heavy metal (HM) ions, such as lead, cadmium, and chromium in industrial wastewater discharge are major contaminants that pose a risk to human health. These HMs should separate from the wastewater to ensure the reuse of the discharged water in the process and mitigate their environmental impacts. The distinctive mechanical properties of 2D graphene oxide (GO), and the antifouling characteristics of metal oxides (ZnO/NiO) nanoparticles combined to produce composites supporting special features for wastewater treatment. This study employed solution casting and phase inversion methods to synthesize PSF-based GO, ZnO-GO, and ZnO-GO-NiO mixed matrix membranes and the effects of variation in composition on the removal of lead (Pb2+) and cadmium (Cd2+) ion was examined. Several characterization techniques including X-ray diffraction analysis, scanning electron microscopy, energy dispersive X-ray, and Fourier transform infrared spectroscopy were applied to analyze the synthesized NPs and MMMs. The composite membranes were also analyzed in terms of their porosity, permeability, hydrophilicity, surface roughness, zeta potential, thermal stability, mechanical strength, and flux regeneration at various transmembrane pressures (2-3 kgcm-2), and pH value (5.5). The highest adsorption capacities were measured to be 308.16 mg g-1 and 354.80 mg g-1 for Pb (II) and Cd (II), respectively, for membrane (M4_A) having 0.3 wt% of ZnO-GO-NiO nanocomposite, at 200 mg L-1 of feed concentration and 1.60 mL min-1 of permeate flux. The Pb (II) and Cd (II) adsorption breakthrough curves were created, and the results of the experiment were compared with the data of the Thomas model.
Collapse
Affiliation(s)
- Arslan Maqbool
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ameen Shahid
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Zaib Jahan
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Ali Inam
- Institute of Environmental Sciences & Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
23
|
Qiao C, Usman Z, Wei J, Gan L, Hou J, Hao Y, Zhu Y, Zhang J, Cao C. Efficient O-O Coupling at Catalytic Interface to Assist Kinetics Optimization on Concerted and Sequential Proton-Electron Transfer for Water Oxidation. ACS NANO 2023. [PMID: 37377176 DOI: 10.1021/acsnano.3c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A catalyst kinetics optimization strategy based on tuning active site intermediates adsorption is proposed. Construction of the M-OOH on the catalytic site before the rate-determining step (RDS) is considered a central issue in the strategy, which can optimize the overall catalytic kinetics by avoiding competition from other reaction intermediates on the active site. Herein, the kinetic energy barrier of the O-O coupling for as-prepared sulfated Co-NiFe-LDH nanosheets is significantly reduced, resulting in the formation of M-OOH on the active site at low overpotential, which is directly confirmed by in situ Raman and charge transfer fitting results. Moreover, catalysts constructed from active sites of highly efficient intermediates make a reliable model for studying the mechanism of the OER in proton transfer restriction. In weakly alkaline environments, a sequential proton-electron transfer (SPET) mechanism replaces the concerted proton-electron transfer (CPET) mechanism, and the proton transfer step becomes the RDS; high-speed consumption of reaction intermediates (M-OOH) induces sulfated Co-NiFe-LDH to exhibit excellent kinetics.
Collapse
Affiliation(s)
- Chen Qiao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zahid Usman
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan
| | - Jie Wei
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lin Gan
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yingying Hao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiatao Zhang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
24
|
Nazari M, Ghaemmaghami M. Approach to Evaluation of Electrocatalytic Water Splitting Parameters, Reflecting Intrinsic Activity: Toward the Right Pathway. CHEMSUSCHEM 2023; 16:e202202126. [PMID: 36867113 DOI: 10.1002/cssc.202202126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Indexed: 06/10/2023]
Abstract
The development of transition metal-based non-precious-metal electrocatalysts for energy storage and conversion systems has received a lot of interest recently. To further this subject in the proper way given the development of electrocatalysts, a fair comparison of their respective performance is necessary. This Review investigates the parameters used for the comparison of electrocatalyst activity. Significant evaluation criteria employed in electrochemical water splitting studies are the overpotential at defined current density usually at 10 mA per geometric surface area, Tafel slope, exchange current density, mass activity, specific activity and turnover frequency (TOF). This Review will discuss how to identify the specific activity and TOF by electrochemical and non-electrochemical methods to represent intrinsic activity as well as the benefits and uncertainties of each technique, ensuring that each method is applied correctly when calculating intrinsic activity metrics.
Collapse
Affiliation(s)
- Mahrokh Nazari
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| | - Mostafa Ghaemmaghami
- Department of Chemistry, Tarbiat Modares University, P.O. Box, 14115-175, Tehran, Iran
| |
Collapse
|
25
|
Rabe A, Jaugstetter M, Hiege F, Cosanne N, Ortega KF, Linnemann J, Tschulik K, Behrens M. Tailoring Pore Size and Catalytic Activity in Cobalt Iron Layered Double Hydroxides and Spinels by Microemulsion-Assisted pH-Controlled Co-Precipitation. CHEMSUSCHEM 2023; 16:e202202015. [PMID: 36651237 DOI: 10.1002/cssc.202202015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 05/20/2023]
Abstract
Cobalt iron containing layered double hydroxides (LDHs) and spinels are promising catalysts for the electrochemical oxygen evolution reaction (OER). Towards development of better performing catalysts, the precise tuning of mesostructural features such as pore size is desirable, but often hard to achieve. Herein, a computer-controlled microemulsion-assisted co-precipitation (MACP) method at constant pH is established and compared to conventional co-precipitation. With MACP, the particle growth is limited and through variation of the constant pH during synthesis the pore size of the as-prepared catalysts is controlled, generating materials for the systematic investigation of confinement effects during OER. At a threshold pore size, overpotential increased significantly. Electrochemical impedance spectroscopy (EIS) indicated a change in OER mechanism, involving the oxygen release step. It is assumed that in smaller pores the critical radius for gas bubble formation is not met and therefore a smaller charge-transfer resistance is observed for medium frequencies.
Collapse
Affiliation(s)
- Anna Rabe
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141, Essen, Germany
- Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Maximilian Jaugstetter
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
| | - Felix Hiege
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
| | - Nicolas Cosanne
- Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Klaus Friedel Ortega
- Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Julia Linnemann
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
| | - Kristina Tschulik
- Faculty of Chemistry and Biochemistry, Analytical Chemistry II, Ruhr University Bochum, 44801, Bochum, Germany
| | - Malte Behrens
- Faculty of Chemistry, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141, Essen, Germany
- Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
- Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science (GIST), 123 Cheomdan-gwagiro (Oryang-dong), Buk-gu, Gwangju, 500-712, South Korea
| |
Collapse
|
26
|
Yang R, Bao Z, Sun Y. Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis. ACS NANOSCIENCE AU 2023; 3:140-152. [PMID: 37101590 PMCID: PMC10125369 DOI: 10.1021/acsnanoscienceau.2c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 04/28/2023]
Abstract
The marriage between nanoscience and heterogeneous catalysis has introduced transformative opportunities for accessing better nanocatalysts. However, the structural heterogeneity of nanoscale solids stemming from distinct atomic configurations makes it challenging to realize atomic-level engineering of nanocatalysts in the way that is attained for homogeneous catalysis. Here, we discuss recent efforts in unveiling and exploiting the structural heterogeneity of nanomaterials for enhanced catalysis. Size and facet control of nanoscale domains produce well-defined nanostructures that facilitate mechanistic studies. Differentiation of surface and bulk characteristics for ceria-based nanocatalysts guides new thoughts toward lattice oxygen activation. Manipulating the compositional and species heterogeneity between local and average structures allows regulation of catalytically active sites via the ensemble effect. Studies on catalyst restructurings further highlight the necessity to assess the reactivity and stability of nanocatalysts under reaction conditions. These advances promote the development of novel nanocatalysts with expanded functionalities and bring atomistic insights into heterogeneous catalysis.
Collapse
Affiliation(s)
- Rui Yang
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Zhenghong Bao
- Biomaterials,
Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Yifan Sun
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
- E-mail:
| |
Collapse
|
27
|
Du R, Zhu H, Zhao H, Lu H, Dong C, Liu M, Yang F, Yang J, Wang J, Pan J. Modulating photothermal properties by integration of fined Fe-Co in confined carbon layer of SiO 2 nanosphere for pollutant degradation and solar water evaporation. ENVIRONMENTAL RESEARCH 2023; 222:115365. [PMID: 36706906 DOI: 10.1016/j.envres.2023.115365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Environmental governance by photothermal materials especially for the separation of organic pollutants and regeneration of freshwater afford growing attention owing to their special solar-to-heat properties. Here, we construct a special functional nanosphere composed of an internal silica core coated by a thin carbon layer encapsulated plasmonic bimetallic FeCo2O4 spinel (SiO2@CoFe/C) by a facile self-assembled approach and tuned calcination. Through combining the advantage of bimetallic Fe-Co and carbon layer, this obtained nanosphere affords improved multiple environmental governing functions including peroxymonosulfate (PMS) activation to degrade pollutants and photothermal interfacial solar water evaporation. Impressively, fined bimetal (FeCo) species (20 nm) acted as main catalytic substance were distributed on the N-doping carbon thin layer, which favors electron transfer and reactive accessibility of active metals. The increasing treatment temperature of catalysts caused the optimization of the surface active metal species and tuning catalytic properties in the AOPs. Besides, the incorporation of Co in the SiO2@CoFe/C-700 could enable the improved PMS activation efficiency compared to SiO2@Fe/C-700 and the mixed SiO2@Co/C-700 and SiO2@Fe/C-700, hinting a synergetic promotion effect. The bimetal coupled catalyst SiO2@CoFe/C-700 affords enhanced photothermal properties compared to SiO2@Co/C-700. Furthermore, photothermal catalytic PMS activation using optimal SiO2@CoFe/C-700 was further explored in addressing stubborn pollutants including oxytetracycline, sulfamethoxazole, 2, 4-dichlorophenol, and phenol. The free radical quenching control suggests that both the sulfate radical, hydroxyl radical, superoxide radical, and singlet oxygen species are involved in the degradation, while the hydroxyl radical and singlet oxygen play a dominant role. Furthermore, the implementation of a solar-driven interfacial water evaporation model using SiO2@CoFe/C-700 was further studied to obtain freshwater regeneration (1.26 kg m-2 h-1, 76.81% efficiency), indicating the comprehensive ability of the constructed nanocomposites for treating complicated environmental pollution including organics removal and freshwater regeneration.
Collapse
Affiliation(s)
- Rongrong Du
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyang Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongyao Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hao Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chang Dong
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Mengting Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Fu Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, China.
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
28
|
Jia H, Yao N, Zhu J, Luo W. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. Chemistry 2023; 29:e202203073. [PMID: 36367365 DOI: 10.1002/chem.202203073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
The development of electrocatalysts with high-efficiency and clear structure-activity relationship towards the sluggish oxygen evolution reaction (OER) is essential for the wide application of water electrolyzers. Recently, the dynamic reconstruction phenomenon of the catalysts' surface structures during the OER process has been discovered. With the help of various advanced ex situ and in situ characterization, it is demonstrated that such surface reconstruction could yield actual active species to catalyze the water oxidation process. However, the attention and studies of potential interaction between reconstructed species and substrate are lacking. This review summarizes the recent development of typical reconstructed electrocatalysts and the substrate effect. First, the advanced characterization for electrocatalytic reconstruction is briefly discussed. Then, typical reconstructed electrocatalysts are comprehensively summarized and the key role of substrate effects during the OER process is emphasized. Finally, the future challenges and perspectives of surface reconstructed catalysts for water electrolysis are discussed.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
29
|
Timoshenko J, Haase FT, Saddeler S, Rüscher M, Jeon HS, Herzog A, Hejral U, Bergmann A, Schulz S, Roldan Cuenya B. Deciphering the Structural and Chemical Transformations of Oxide Catalysts during Oxygen Evolution Reaction Using Quick X-ray Absorption Spectroscopy and Machine Learning. J Am Chem Soc 2023; 145:4065-4080. [PMID: 36762901 PMCID: PMC9951215 DOI: 10.1021/jacs.2c11824] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 02/11/2023]
Abstract
Bimetallic transition-metal oxides, such as spinel-like CoxFe3-xO4 materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoxFe3-xO4 catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoxFe3-xO4 samples, we elucidate the active species and OER mechanism.
Collapse
Affiliation(s)
- Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Felix T. Haase
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Sascha Saddeler
- Institute
of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Martina Rüscher
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Hyo Sang Jeon
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Antonia Herzog
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Uta Hejral
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Arno Bergmann
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Stephan Schulz
- Institute
of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
30
|
Qiao C, Hao Y, Cao C, Zhang J. Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives. NANOSCALE 2023; 15:450-460. [PMID: 36533402 DOI: 10.1039/d2nr05783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an important semi-reaction process in electrocatalysis, oxygen evolution reaction (OER) is closely associated with electrochemical hydrogen production, CO2 electroreduction, electrochemical ammonia synthesis and other reactions, which provide electrons and protons for the related applications. Considering their fundamental mechanism, metastable high-valence metal sites have been identified as real, efficient OER catalytic sites from the recent observation by in situ characterization technology. Herein, we review the transformation mechanism of high-valence metal sites in the OER process, particularly transition metal materials (Co- and Ni-based). In particular, research progress in the transformation process and role of high-valence metal sites to optimize OER performance is summarized. The key challenges and prospects of the design of high-efficiency OER catalysts based on the above-mentioned mechanism and some new in situ characterizations are also discussed.
Collapse
Affiliation(s)
- Chen Qiao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingying Hao
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuanbao Cao
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - JiaTao Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
31
|
Kang S, Im C, Spanos I, Ham K, Lim A, Jacob T, Schlögl R, Lee J. Durable Nickel-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts through Surface Functionalization with Tetraphenylporphyrin. Angew Chem Int Ed Engl 2022; 61:e202214541. [PMID: 36274053 DOI: 10.1002/anie.202214541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/05/2022]
Abstract
NiFe-based oxides are one of the best-known active oxygen evolution electrocatalysts. Unfortunately, they rapidly lost performance in Fe-purified KOH during the reaction. Herein, tetraphenylporphyrin (TPP) was loaded on a catalyst/electrolyte interface to alleviate the destabilization of NiFe (oxy)hydroxide. We propose that the degradation occurs primarily due to the release of thermodynamically unstable Fe. TPP acts as a protective layer and suppresses the dissolution of hydrated metal at the catalyst/electrolyte interface. In the electric double layer, the nonpolar TPP layer on the NiFe surface also invigorates the redeposition of the active site, Fe, which leads to prolonging the lifetime of NiFe. The TPP-coated NiFe was demonstrated in anion exchange membrane water electrolysis, where hydrogen was generated at a rate of 126 L h-1 for 115 h at a 1.41 mV h-1 degradation rate. Consequently, TPP is a promising protective layer that could stabilize oxygen evolution electrocatalysts.
Collapse
Affiliation(s)
- Sinwoo Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea
| | - Changbin Im
- Institute of Electrochemistry, Ulm University, Ulm, Germany
| | - Ioannis Spanos
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Kahyun Ham
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea.,Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju, 61005, Republic of Korea
| | - Ahyoun Lim
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, Ulm, Germany.,Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, Ulm, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robert Schlögl
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.,Department of Inorganic Chemistry, Fritz Haber Institut der Max-Planck-Gesselschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jaeyoung Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,International Future Research Center of Chemical Energy Storage and Conversion Processes (ifRC-CHESS), GIST, Gwangju, 61005, Republic of Korea.,Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju, 61005, Republic of Korea
| |
Collapse
|
32
|
Cobalt-Doped Iron Phosphate Crystal on Stainless Steel Mesh for Corrosion-Resistant Oxygen Evolution Catalyst. Catalysts 2022. [DOI: 10.3390/catal12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report an oxygen evolution reaction (OER) catalyst prepared by the incorporation of cobalt-doped iron phosphate on stainless steel mesh (SSM) through a one-step hydrothermal method. Compared to the catalytic property of bare SSM, our OER catalyst (0.84-CoFePi) showed a 42% improvement in current density at the potential of 1.9 V vs. RHE, and the onset potential was decreased by 26.5 mV. Furthermore, the loss in current density of bulk electrolysis after 12 h in 1 M KOH (pH 14) solution and 0.0441 wt% H2SO4 (pH ≈ 3) containing 0.1 M NaCl solution was negligible (3.1% and 3.2%, respectively). Moreover, our cobalt-doped iron phosphate on SSM exhibits the dramatic improvement in corrosion resistance to a basic, mild acidic solution and chloride ions compared to bare SSM.
Collapse
|
33
|
Dong Y, Liu Q, Qi C, Zhang G, Jiang X, Gao D. Surface nitriding to improve the catalytic performance of FeNi 3 for the oxygen evolution reaction. Chem Commun (Camb) 2022; 58:12592-12595. [DOI: 10.1039/d2cc04367j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the oxygen evolution reaction, optimized Fe/Ni–Nx@FeNi3 nanosheets exhibit an overpotential of 251 mV to achieve a current density of 10 mA cm−2 and an excellent durability of 210 h.
Collapse
Affiliation(s)
- Yucan Dong
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qun Liu
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Caiyun Qi
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Guoqiang Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingdong Jiang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|