1
|
Lu Y, Wang M, Li M, Yu L, Li Y. Conduction Pathways of Quinoxalinyl Molecules in the STM-BJ-Fabricated Nanogap. J Phys Chem A 2025; 129:1665-1672. [PMID: 39907275 DOI: 10.1021/acs.jpca.4c07707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Quinoxaline (Qx) terminated with two mercaptomethyl (-SMe) anchoring ligands demonstrated two conductance values when studied using the scanning tunneling microscope-based break-junction (STM-BJ) technique. Further research showed that the observed low and high conductances (termed GL and GH) resulted from two electron transfer pathways of different lengths with distinct molecular binding configurations. GL arises from the two terminal -SMe groups attached to the Au electrodes, and GH appears when one of the two Au-S linkages is replaced by an Au-N linkage where N of Qx is anchored to the electrode. This is one of the few instances where a single molecule can independently exhibit two different conductance states without an external stimulus, thereby offering a desired molecular prototype for developing conductance-dependent molecular electronics, such as molecular switches and other functional molecular devices.
Collapse
Affiliation(s)
- Yuhua Lu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingzhen Wang
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengxiao Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lei Yu
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yunchuan Li
- The State Key Laboratory of Refractories and Metallurgy, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
2
|
Tan M, Sun F, Zhao X, Zhao Z, Zhang S, Xu X, Adijiang A, Zhang W, Wang H, Wang C, Li Z, Scheer E, Xiang D. Conductance Evolution of Photoisomeric Single-Molecule Junctions under Ultraviolet Irradiation and Mechanical Stretching. J Am Chem Soc 2024; 146:6856-6865. [PMID: 38413090 DOI: 10.1021/jacs.3c13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A comprehensive understanding of carrier transport in photoisomeric molecular junctions is crucial for the rational design and delicate fabrication of single-molecule functional devices. It has been widely recognized that the conductance of azobenzene (a class of photoisomeric molecules) based molecular junctions is mainly determined by photoinduced conformational changes. In this study, it is demonstrated that the most probable conductance of amine-anchored azobenzene-based molecular junctions increases continuously upon UV irradiation. In contrast, the conductance of pyridyl-anchored molecular junctions with an identical azobenzene core exhibits a contrasting trend, highlighting the pivotal role that anchoring groups play, potentially overriding (even reversing) the effects of photoinduced conformational changes. It is further demonstrated that the molecule with cis-conformation cannot be fully mechanically stretched into the trans-conformation, clarifying that it is a great challenge to realize a reversible molecular switch by purely mechanical operation. Additionally, it is revealed that the coupling strength of pyridyl-anchored molecules is dramatically weakened when the UV irradiation time is prolonged, whereas it is not observed for amine-anchored molecules. The mechanisms for these observations are elucidated with the assistance of density functional theory calculations and UV-Vis spectra combined with flicker noise measurements which confirm the photoinduced conformational changes, providing insight into understanding the charge transport in photoisomeric molecular junctions and offering a routine for logical designing synchro opto-mechanical molecular switches.
Collapse
Affiliation(s)
- Min Tan
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Feng Sun
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Xueyan Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Zhibin Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xiaona Xu
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Chuankui Wang
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Zongliang Li
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China
| | - Elke Scheer
- Department of Physics, University of Konstanz, Konstanz 78457, Germany
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Jago D, Liu C, Daaoub AHS, Gaschk E, Walkey MC, Pulbrook T, Qiao X, Sobolev AN, Moggach SA, Costa‐Milan D, Higgins SJ, Piggott MJ, Sadeghi H, Nichols RJ, Sangtarash S, Vezzoli A, Koutsantonis GA. An Orthogonal Conductance Pathway in Spiropyrans for Well-Defined Electrosteric Switching Single-Molecule Junctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306334. [PMID: 37817372 PMCID: PMC11475379 DOI: 10.1002/smll.202306334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 10/12/2023]
Abstract
While a multitude of studies have appeared touting the use of molecules as electronic components, the design of molecular switches is crucial for the next steps in molecular electronics. In this work, single-molecule devices incorporating spiropyrans, made using break junction techniques, are described. Linear spiropyrans with electrode-contacting groups linked by alkynyl spacers to both the indoline and chromenone moieties have previously provided very low conductance values, and removing the alkynyl spacer has resulted in a total loss of conductance. An orthogonal T-shaped approach to single-molecule junctions incorporating spiropyran moieties in which the conducting pathway lies orthogonal to the molecule backbone is described and characterized. This approach has provided singlemolecule conductance features with good correlation to molecular length. Additional higher conducting states are accessible using switching induced by UV light or protonation. Theoretical modeling demonstrates that upon (photo)chemical isomerization to the merocyanine, two cooperating phenomena increase conductance: release of steric hindrance allows the conductance pathway to become more planar (raising the mid-bandgap transmission) and a bound state introduces sharp interference near the Fermi level of the electrodes similarly responding to the change in state. This design step paves the way for future use of spiropyrans in single-molecule devices and electrosteric switches.
Collapse
Affiliation(s)
- David Jago
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Chongguang Liu
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Emma Gaschk
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Mark C. Walkey
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Thea Pulbrook
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Xiaohang Qiao
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Alexandre N. Sobolev
- Centre for MicroscopyCharacterisation and AnalysisUniversity of Western AustraliaStirling HighwayCrawleyWestern Australia6009Australia
| | - Stephen A. Moggach
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - David Costa‐Milan
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - Matthew J. Piggott
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| | - Hatef Sadeghi
- School of EngineeringUniversity of WarwickCoventryCV4 7ALUK
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | | | - Andrea Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StLiverpoolL69 7ZDUK
| | - George A. Koutsantonis
- School of Molecular ScienceThe University of Western Australia35 Stirling HighwayCrawleyWestern Australia6009Australia
| |
Collapse
|
4
|
Gillespie AA, Roemer M, Jago D, Sobolev AN, Nealon GL, Spackman PR, Moggach SA, Koutsantonis GA. Functionalised organometallic photoswitches containing dihydropyrene units. Dalton Trans 2023; 52:14549-14563. [PMID: 37781908 DOI: 10.1039/d3dt02505e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Functionalising organic molecular photoswitches with metal complexes has been shown to alter and enhance their switching states. These organometallic photoswitches provide a promising basis for novel smart molecular materials and molecular electronic devices. We have detailed the synthesis and characterisation of mono- and bimetallic half-sandwich ruthenium and iron complexes functionalised with alkynyl dihydropyrenes (DHP). Their electronic and photophysical properties were determined by the use of chemical, electrochemical and spectroelectrochemical techniques. The introduction of the metal alkynyl moiety allows access to additional redox and protonation states not accessible by the DHP alone. An additional metal alkynyl moiety inhibits observable photochromic switching. Analysis of the NIR and IR bands in the mixed valence complexes suggests there is a high degree of charge delocalisation across the DHP.
Collapse
Affiliation(s)
- Angus A Gillespie
- Chemistry, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Max Roemer
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - David Jago
- Chemistry, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Alexandre N Sobolev
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gareth L Nealon
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Peter R Spackman
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Stephen A Moggach
- Chemistry, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia.
| | - George A Koutsantonis
- Chemistry, School of Molecular Science, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
5
|
Mo F, Spano CE, Ardesi Y, Ruo Roch M, Piccinini G, Graziano M. Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031687. [PMID: 36772727 PMCID: PMC9919708 DOI: 10.3390/s23031687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this work, we investigate, through ab initio atomistic calculations, a pyrrole-based Molecular Field Effect Transistor (MolFET) as a single-molecule sensor for the amperometric detection of aflatoxins. In particular, we theoretically explain the gate-tuned current modulation from a chemical-physical perspective, and we support our insights through simulations. In addition, this work demonstrates that, for the case under consideration, the use of a suitable gate voltage permits a considerable enhancement in the sensor performance. The gating effect raises the current modulation due to aflatoxin from 100% to more than 103÷104%. In particular, the current is diminished by two orders of magnitude from the μA range to the nA range due to the presence of aflatoxin B1. Our work motivates future research efforts in miniaturized FET electrical detection for future pervasive electrical measurement of aflatoxins.
Collapse
Affiliation(s)
- Fabrizio Mo
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Chiara Elfi Spano
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Yuri Ardesi
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Massimo Ruo Roch
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Gianluca Piccinini
- Department of Electronics and Telecommunication, Politecnico di Torino, 10129 Torino, Italy
| | - Mariagrazia Graziano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
6
|
Ziani Z, Cobo S, Loiseau F, Jouvenot D, Lognon E, Boggio-Pasqua M, Royal G. All Visible Light Photoswitch Based on the Dimethyldihydropyrene Unit Operating in Aqueous Solutions with High Quantum Yields. JACS AU 2023; 3:131-142. [PMID: 36711101 PMCID: PMC9875246 DOI: 10.1021/jacsau.2c00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Molecular systems and devices whose properties can be modulated using light as an external stimulus are the subject of numerous research studies in the fields of materials and life sciences. In this context, the use of photochromic compounds that reversibly switch upon light irradiation is particularly attractive. However, for many envisioned applications, and in particular for biological purposes, illumination with harmful UV light must be avoided and these photoactivable systems must operate in aqueous media. In this context, we have designed a benzo[e]-fused dimethyldihydropyrene compound bearing a methyl-pyridinium electroacceptor group that meets these requirements. This compound (closed state) is able to reversibly isomerize under aerobic conditions into its corresponding cyclophanediene form (open isomer) through the opening of its central carbon-carbon bond. Both the photo-opening and the reverse photoclosing processes are triggered by visible light illumination and proceed with high quantum yields (respectively 14.5% yield at λ = 680 nm and quantitative quantum yield at λ = 470 nm, in water). This system has been investigated by nuclear magnetic resonance and absorption spectroscopy, and the efficient photoswitching behavior was rationalized by spin-flip time-dependent density functional theory calculations. In addition, it is demonstrated that the isomerization from the open to the closed form can be electrocatalytically triggered.
Collapse
Affiliation(s)
- Zakaria Ziani
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| | - Saioa Cobo
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| | | | | | - Elise Lognon
- LCPQ
UMR 5626, CNRS et Université Toulouse
III − Paul Sabatier, 118 route de Narbonne, Toulouse31062, France
| | - Martial Boggio-Pasqua
- LCPQ
UMR 5626, CNRS et Université Toulouse
III − Paul Sabatier, 118 route de Narbonne, Toulouse31062, France
| | - Guy Royal
- Univ.
Grenoble Alpes, CNRS, DCM, Grenoble38000, France
| |
Collapse
|