1
|
Kasahara Y, Takeda T, Dekura S, Ishii Y, Anetai H, Takai A, Hisaki I, Takeuchi M, Akutagawa T. Supramolecular Polymorphism of the Hydrogen-Bonded C3-Symmetrical Hexadehydrotribenzo[12]annulene Derivative. J Am Chem Soc 2025. [PMID: 40413634 DOI: 10.1021/jacs.5c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The C3-symmetric hexadehydrotribenzo[12]annulene ([12]DBA) derivative (1a) with three tetradecylamide (-NHCOC14H29) chains capable of hydrogen-bonding interaction formed either a two-dimensional lamellar (LM) or a one-dimensional (1D) nanofiber (NF) molecular assembly, depending on the association state of the amide hydrogen bonds in the solution phase. The intermolecular amide hydrogen-bonding modes in the LM and NF structures were different from each other. The NF structure was metastable, 2.2 kJ mol-1 less stable than that of the LM structure, and was obtained through organogel formation. In CHCl3, 1a exhibited a 1D association behavior following the isodesmic model (K = 2.18 × 103 M-1) due to intermolecular amide hydrogen bonds, whereas the presence of CH3CN inhibited this association state. The NF structure had larger amplitude dynamics about the polar amide group than that of the LM structure, undergoing a phase transition from the NF to the LM structure upon heating. The absorption spectra of NF and solid-state LM were different from each other, exhibiting different optical properties. The coexistence of intermolecular amide hydrogen bonds and van der Waals interactions among the C3-symmetric molecules resulted in polymorphic phenomena, where energetically similar molecular assemblies were expressed.
Collapse
Affiliation(s)
- Yotaro Kasahara
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shun Dekura
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yoshiki Ishii
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hayato Anetai
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
| | - Atsuro Takai
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science, The University of Osaka, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Takeuchi
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Dong J, Gao X, Ni C, Yang H, He X, Li Z, Tian L. Interfacial effects on metal-organic frameworks for boosting electrocatalytic reactions. Chem Commun (Camb) 2025. [PMID: 40400419 DOI: 10.1039/d5cc02077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Metal-organic framework (MOF) materials exhibit great potential in the field of electrocatalysis due to their high specific surface area, tunable pore structures, and abundant active sites. However, further enhancement of their electrocatalytic performance is often limited by factors such as electron transport efficiency, accessibility of active sites, and interfacial reaction kinetics. Interface engineering strategies have been proposed as a promising strategy for modifying MOF-based catalysts for optimizing their catalytic performance. Significant progress has been made in recent years. Based on this, this review summarizes recent developments in interface modification to enhance MOF materials, focusing on the unique effects induced by the interfacial modification of MOF materials, such as optimizing electron transport and conductivity, increasing the exposure of active sites, improving mass transfer of reactants/products, and stabilizing interfacial structures. Additionally, the applications of various types of MOF-based composite materials for promoting electrocatalytic performance that induced by interfacial effects are also manifested. Finally, the challenges and perspectives of this interesting field are also discussed to offer guidance for the future design of more advanced MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Jianguo Dong
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xuena Gao
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Huimin Yang
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
3
|
Zhang G, Chen L. Two-Dimensional Conductive Metal-Organic Frameworks: Promising Materials for Advanced Energy Storage. Chemphyschem 2025; 26:e202400769. [PMID: 39963085 DOI: 10.1002/cphc.202400769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/21/2025] [Indexed: 03/15/2025]
Abstract
With the rapid development of science and technology and for a sustainable future, the main energy resources in the world are transitioning from fossil fuels to renewable electricity which is conceived to play a predominant role in the future. Therefore, it is essential to develop high-performance energy-storage devices such as supercapacitors and rechargeable batteries, and even though they are commercialized, intense research efforts are still devoted to further improving the device performance, e. g. energy density, safety, durability, and charging rate. Therefore, exploring new advanced materials for better devices is a promising approach. Recently, the emerging two-dimensional conductive metal-organic frameworks (2D c-MOFs) with their inherent electrical conductivities and porosity, rich redox active sites, and tailor-made architectures and functions have attracted considerable attention among the energy-storage community. The initial research results revealed that 2D c-MOFs are promising electrode materials for advanced energy storage.
Collapse
Affiliation(s)
- Guang Zhang
- Department of Chemistry, Tianjin University, Tianjin, 300350, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Jiao J, Yang M, Ye X, Zhang Y, Jiang Y, Meng Z. A Trimming-π Strategy for Constructing Functional Conductive Metal-Organic Frameworks Using Metalloporphyrazine Units. Angew Chem Int Ed Engl 2025; 64:e202502066. [PMID: 40008842 DOI: 10.1002/anie.202502066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 02/27/2025]
Abstract
Developing functional metal-organic frameworks (MOFs) with high electrical conductivity is crucial for their applications as advanced electronic materials. In this work, we for the first time construct a new family of functional and highly conductive MOFs using metalloporphyrazine (MPz) ligands based on a trimming-π concept via cutting the benzene ring from molecular metallopthalocynine (MPc). The deprotonation-after-coordination synthetic method affords crystalline MPz-Cu-NH MOFs with square lattices. Four-point probe conductivity measurements reveal the high room temperature electrical conductivity of MPz-based MOFs ranging from 3.5×10-2 to 1.3×10-1 S cm-1, two orders of magnitude higher than the MPc-based MOF counterparts. Temperature-dependent conductivity measurements and electronic band structure analysis demonstrate ultra-small activation energies with potential metallic conducting behavior for the MPz-Cu-NH MOFs. Encapsulation of the aromatic guest molecules with different electron-donating and -withdrawing features allows the conductivity modulation of the CuPz-Cu-NH in a wide range spanning two orders of magnitude. These conductive MPz-Cu-NH MOFs with built-in MPz functional units exhibit MPz identity-dependent sensing performance, and realize highly sensitive detection of NH3 and NO2 using a low driving voltage of 0.1 V.
Collapse
Affiliation(s)
- Junqiang Jiao
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Mingyu Yang
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Xiangxin Ye
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zheng Meng
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
5
|
Xie K, Wang D, Lin L, Wang P, Guo X, Zhang S. Ligand Regulated the Coordination Environment of Cobalt-Group-MOF for Efficient Electrocatalytic Oxygen Reduction/Evolution Catalysis. J Phys Chem Lett 2025; 16:4164-4172. [PMID: 40249847 DOI: 10.1021/acs.jpclett.5c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
In recent years, the TMN4 moieties have demonstrated significant catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in graphene, CxNy, and other carbon-based two-dimensional (2D) support materials. Modifying the coordination number and species of N atoms in the TMN4 moieties has proven to be an effective approach to regulate their catalytic activity. In this research, by incorporating different triphenylene ligands, we have successfully constructed TMA2B2 (TM = Co, Rh, Ir; A/B = N, O, S, Se) moieties with varying coordination environments within 2D metal organic frameworks (MOFs), which are linked by TM and triphenylene. These moieties serve as an effective model to elucidate the structure-property relationship of two-dimensional 2D-MOFs in OER and ORR. Our findings confirm that alterations in the coordination environment can finely tune the d-band electron distribution of the TM within the TMA2B2 unit, particularly activating the dyz and dz2 orbitals of O2, thereby influencing the interactions between TM and key intermediates. We discovered that the regulatory effect of the coordination environment is closely linked to the electronegativity of the coordinating atoms, which led us to establish reliable descriptors such as φ1 and φ2 to elucidate the impact of coordination environments on the performance of OER/ORR. This criterion can be applied to numerous other 2D-MOFs and provides an in-depth understanding of the structure-activity relationship facilitates the development of highly efficient bifunctional electrocatalysts for OER and ORR applications.
Collapse
Affiliation(s)
- Kun Xie
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Dongbin Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
- School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan, China
| | - Pengtao Wang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
| | - Xiangyu Guo
- School of Science, Constructor University, Bremen 28759, Germany
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Chen J, Li G, Bu F, Tian J, Liu L, Wang Y, Zhang J, Li X, Li X, Yang Z, Chao D, Zhao D. Tandem Assembly and Etching Chemistry towards Mesoporous Conductive Metal-Organic Frameworks for Sodium Storage Over 50,000 Cycles. Angew Chem Int Ed Engl 2025; 64:e202500287. [PMID: 39981933 DOI: 10.1002/anie.202500287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
Despite two-dimensional (2D) conductive metal-organic frameworks (cMOFs) being attractive due to their intrinsic electrical conductivity and redox activity for energy applications, alleviating the constrained mass transfer within long-range micropore channels remains a significant challenge. Herein, we present a tandem assembly and etching chemistry, to incorporate perpendicularly aligned mesopores into the micropores of cMOFs, via a bi-functional modulator. Synchrotron spectral and morphological analyses demonstrate that the elaborate ammonia modulator first coordinates with Zn2+ forming defects during the initial self-assembly of cMOF oligomers, which then initiates mesoporous cMOFs via in situ etching. In situ spectroscopy and theoretical simulations further reveal that such a unique perpendicular mesoporous structure shorts the micropore channels by two orders of magnitude and relaxes the inherent ion stacking within micropores, leading to five times faster Na+ transport and a remarkable rate capability at 250 C and sodium storage lifespan over 50,000 cycles. Our protocol opens up a new avenue for introducing mesopores into microporous cMOFs for advanced energy applications and beyond.
Collapse
Affiliation(s)
- Jiahao Chen
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Gaoyang Li
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Key Laboratory of Silicate Cultural Relics Conservation, School of Cultural Heritage and Information Management, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiazhuang Tian
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Lin Liu
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yifeng Wang
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xingjin Li
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xiang Li
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zhuo Yang
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Aqueous Battery Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and Faculty of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Tao S, Cao Z, Xiao X, Song Z, Xiong D, Tian Y, Deng W, Liu Y, Hou H, Zou G, Ji X. Tunable Platform Capacity of Metal-Organic Frameworks via High-Entropy Strategy for Ultra-Fast Sodium Storage. NANO-MICRO LETTERS 2025; 17:201. [PMID: 40138092 PMCID: PMC11947337 DOI: 10.1007/s40820-025-01706-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Precise regulation of the platform capacity/voltage of electrode materials contributes to the efficient operation of sodium-ion fast-charging devices. However, the design of such electrode materials is still in a blank stage. Herein, based on tunable metal-organic frameworks, we have designed a novel material system-two-dimensional high-entropy metal-organic frameworks (HE-MOFs), which exhibits unique properties in sodium storage and is of vital importance for realizing fast-charging batteries. Furthermore, we have found that the high-entropy effect can regulate the electronic structure, the sodium-ion migration environment, and the sodium-ion storage active sites, thereby meeting the requirements of electrode materials for sodium-ion fast-charging devices. Impressively, the HE-MOFs material still maintains a reversible specific capacity of 89 mAh g-1 at a current density of 20 A g-1. It presents an ideal sodium storage voltage plateau of approximately 0.5 V, and its platform capacity is increased to 122.7 mAh g-1, far superior to that of Mn-MOFs (with no platform capacity). This helps to reduce safety hazards during the fast-charging process and demonstrates its great application value in the fields of fast-charging sodium-ion batteries and capacitors. Our research findings have broken the barriers to the application of non-conductive MOFs as energy storage materials, enhanced the understanding of the regulation of platform capacity and voltage, and paved the way for the realization of high-security sodium-ion fast-charging devices.
Collapse
Affiliation(s)
- Shusheng Tao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ziwei Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Xuhuan Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Zirui Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Dengyi Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Ye Tian
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Wentao Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Youcai Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
8
|
Tao S, Wang J, Zhang J. Conductive Metal-Organic Frameworks and Their Electrocatalysis Applications. ACS NANO 2025; 19:9484-9512. [PMID: 40057943 DOI: 10.1021/acsnano.4c14989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Recently, electrically conductive metal-organic frameworks (EC-MOFs) have emerged as a wealthy library of porous frameworks with unique properties, allowing their use in diverse applications of energy conversion, including electrocatalysis. In this review, the electron conduction mechanisms in EC-MOFs are examined, while their electrical conductivities are considered. There have been various strategies to enhance the conductivities of MOFs including ligand modification, the incorporation of conducting materials, and the construction of multidimensional architectures. With sufficient conductivities being established for EC-MOFs, there have been extensive pursuits in their electrocatalysis applications, such as in the hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, N2 reduction reaction, and CO2 reduction reaction. In addition, computational modeling of EC-MOFs also exerts an important impact on revealing the synthesis-structure-performance relationships. Finally, the prospects and current challenges are discussed to provide guidelines for designing promising framework materials.
Collapse
Affiliation(s)
- Shuhui Tao
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
| | - John Wang
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Noh HJ, Cline E, Pennington DL, Lin HYG, Hendon CH, Mirica KA. Tuning the Structure-Property Relationships of Metallophthalocyanine-Based Two-Dimensional Conductive Metal-Organic Frameworks with Different Metal Linkages. J Am Chem Soc 2025. [PMID: 40013980 DOI: 10.1021/jacs.4c15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal-organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MPc-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m-1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m-1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials.
Collapse
Affiliation(s)
- Hyuk-Jun Noh
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Evan Cline
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Doran L Pennington
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
10
|
Yang H, Liu Y, Wang M, Zhang Z, Zheng YC, Li XB, Wu LZ, Feng X, Wang H. Two-Dimensional Conjugated Metal-Organic Frameworks for Photochemical Transformations. Angew Chem Int Ed Engl 2025; 64:e202422382. [PMID: 39658507 DOI: 10.1002/anie.202422382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Photochemical transformation represents an attractive pathway for the conversion of earth-abundant resources, such as H2O, CO2, O2, and N2, into valuable chemicals by utilizing sunlight as an energy source. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as the focal points in the field of photo-to-chemical conversion due to their advantages in light harvesting, electrical conductivity, mass transport, tunable electronic and porous structures, as well as abundant active sites. In this review, we highlight various physical and chemical features of 2D c-MOFs that can contribute to enhanced photo-induced exciton generation, charge transport, proton migration and redox catalysis. Then, the existing strategies to integrate suitable light absorbers and/or co-catalysts onto 2D c-MOFs for photochemical transformations (with a particular focus on H2 evolution, CO2 reduction and O2 reduction) have been discussed. Finally, the challenges and opportunities of using 2D c-MOFs in other photochemical applications (e.g., N2 fixation, organic synthesis, and environmental remediation) are assessed.
Collapse
Affiliation(s)
- Huilan Yang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yi Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhixuan Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing, 102205, P. R. China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing, 102205, P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Huaping Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
11
|
Jiang K, Yan P, Shi P, Zhang J, Chai X, Wang Y, Zhu C, Yang C, Lu C, Liu Y, Cao K, Zhuang X. Two-Dimensional Silver-Isocyanide Frameworks. Angew Chem Int Ed Engl 2025; 64:e202417658. [PMID: 39354679 DOI: 10.1002/anie.202417658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow band gaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92 %. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.
Collapse
Affiliation(s)
- Kaiyue Jiang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Pu Yan
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Xinyu Chai
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
| | - Yunfei Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chongqing Yang
- Carbon Capture and Utilization Research Center, College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kecheng Cao
- School of Physical Science and Technology and Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 130 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
12
|
Lin Z, Dai S, Yao S, Lin QC, Fu M, Chung LH, Han B, He J. Diacetylene-bridged covalent organic framework as crystalline graphdiyne analogue for photocatalytic hydrogen evolution. Chem Sci 2025; 16:1948-1956. [PMID: 39722787 PMCID: PMC11667833 DOI: 10.1039/d4sc06633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Graphdiyne (GDY) alone as a photocatalyst is unsatisfactory because of its low crystallinity, limited regulation of the band gap, weak photogenerated charge separation, etc., and heterojunctioning with other materials is necessary to activate the photocatalytic activity of GDY. Through elaborate design, a diacetylene-rich linker (S2) was prepared and employed to construct a crystalline and structurally well-defined GDY-like covalent organic framework (COF, namely S2-TP COF) which merges the merits of both COF and GDY to boost the photocatalytic hydrogen evolution reaction (HER). By theoretical prediction on the donor-acceptor (D-A) pair, two other monoacetylene-bridged COFs (S1-TP COF and S3-TP COF) were prepared for comparison. Exhibiting enhanced separation and suppressed recombination of photogenerated excitons, Pt-photodeposited S2-TP COF showed a higher HER rate (10.16 mmol g-1 h-1) than the other two non-GDY-like COFs (3.71 and 1.13 mmol g-1 h-1). A joint experimental-theoretical study suggests that the appropriate D-A structure for photogenerated charge separation and diacetylene motif as the adsorption site are the key reasons for the boosted HER. This work opens a new avenue for the rational design of COFs as GDY mimics for photocatalytic application.
Collapse
Affiliation(s)
- Zhiqing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Songyao Dai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Shan Yao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Qia-Chun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Mengying Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Bin Han
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
13
|
Cui F, García-López V, Wang Z, Luo Z, He D, Feng X, Dong R, Wang X. Two-Dimensional Organic-Inorganic van der Waals Hybrids. Chem Rev 2025; 125:445-520. [PMID: 39692750 DOI: 10.1021/acs.chemrev.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Collapse
Affiliation(s)
- Fucai Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Víctor García-López
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Daowei He
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| | - Xinran Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- School of Integrated Circuits, Nanjing University, Suzhou 215163, China
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Interdisciplinary Research Center for Future Intelligent Chips (Chip-X), Nanjing University, Suzhou 215163, China
- Suzhou Laboratory, Suzhou 215163, China
| |
Collapse
|
14
|
Cao H, Shi L, Xiong Z, Zhu H, Wang H, Wang K, Yang Z, Zhang HF, Liu L, O'Keeffe M, Li M, Chen Z. Two-Periodic MoS 2-Type Metal-Organic Frameworks with Intrinsic Intralayer Porosity for High-Capacity Water Sorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414362. [PMID: 39568295 DOI: 10.1002/adma.202414362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Indexed: 11/22/2024]
Abstract
2D metal-organic frameworks (2D-MOFs) are an important class of functional porous materials. However, the low porosity and surface area of 2D-MOFs have greatly limited their functionalities and applications. Herein, the rational synthesis of a class of mos-MOFs with molybdenum disulfide (mos) net based on the assembly of trinuclear metal clusters and 3-connected tripodal organic ligands is reported. The non-crystallographic (3,6)-connected mos net, different from the 3-connected hcb net of graphene, offers abundant intralayer voids courtesy of the split of one node into two. Indeed, mos-MOFs exhibit high apparent Brunauer-Emmett-Teller surface areas, significantly superior to those of other 2D-MOF analogs. Markedly, hydrolytically stable Cr-mos-MOF-1 displays an impressive water vapor uptake of 0.75 g g-1 at 298 K and P/P0 = 0.9, among the highest in 2D-MOFs. The combined water adsorption and X-ray diffraction study reveal the water adsorption mechanisms, suggesting the importance of intralayer porosities of mos-MOFs for high-performance water capture. This study paves the way for a reliable approach to synthesizing 2D-MOFs with high porosity and surface areas for diverse applications.
Collapse
Affiliation(s)
- Honghao Cao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Le Shi
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhangyi Xiong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Haiyun Zhu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Hao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Kun Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zhenning Yang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Hai-Feng Zhang
- College of Chemistry and Chemical Engineering, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, P. R. China
| | - Lingmei Liu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Mian Li
- College of Chemistry and Chemical Engineering, Shantou University and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, P. R. China
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
15
|
Karki S, Jalife S, Wang X, Lin YH, Wu JI, Miljanić OŠ. Columnar Organization of Nonalternant Fluorinated Dehydrobenzannulenes. Chemistry 2024; 30:e202402913. [PMID: 39189940 DOI: 10.1002/chem.202402913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Two new partially fluorinated dehydrobenzannulenes have been prepared by inter- and intramolecular oxidative homocoupling of diyne precursors. These systems contain fluorinated and nonfluorinated arene rings in a desymmetrized non-alternant arrangement. Both macrocycles are roughly planar and organize into extended columns in the solid state. The assembly of these columns is mediated by the combination of dispersion interactions, slipped [π⋅⋅⋅π] stacking interactions of the perfluorinated rings with each other, and their association with the nonfluorinated rings in the molecules of the neighboring macrocycles. These results suggest that partial fluorination of dehydrobenzannulenes can serve as a versatile motif for their assembly into columnar superstructures.
Collapse
Affiliation(s)
- Sumitra Karki
- Department of Chemistry, University of Houston, United States of America
| | - Said Jalife
- Department of Chemistry, University of Houston, United States of America
| | - Xiqu Wang
- Department of Chemistry, University of Houston, United States of America
| | - Yun-Hsien Lin
- Department of Chemistry, University of Houston, United States of America
| | - Judy I Wu
- Department of Chemistry, University of Houston, United States of America
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, United States of America
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Zhang W, Wu X, Peng X, Zhu L, Wang H, Liu H, Yuan H. Construction of Solution Processable NUS-8/PANI Nanosheets via Template-Directed Polymerization for Ultratrace Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405636. [PMID: 39340280 DOI: 10.1002/smll.202405636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Indexed: 09/30/2024]
Abstract
The advancement of wireless gas sensing signifies a substantial leap forward in gas detection and intelligent monitoring technologies. This necessitates stringent design criteria for gas sensitive materials with good solution processability, conductivity, and porosity, whose design and synthesis remain challenging yet highly sought-after. Herein, the fabrication of NUS-8/polyaniline (PANI) nanosheets is presented with excellent solution processability, high porosity, triboelectric property, and superior electrical conductivity via a template-directed polymerization strategy. Solution processable NUS-8 nanosheets, synthesized directly by a "one-pot" approach, serve as templates to enhance the "on-site" polymerization of aniline, resulting in the formation of PANI layer on NUS-8 nanosheets with a thickness of 7 nm. The resultant NUS-8/PANI nanosheets exhibit outstanding solution processability, and a film conductivity of 8.6 S m-1. The solution processability enables the facile fabrication of homogeneous and compact NUS-8/PANI films and thus their integration onto electronic devices targeted for multifunctional sensing. The NUS-8/PANI coated sensors demonstrate sensitive and selective detection at room temperature toward ultratrace ammonia with a detection limit of 120 ppb. A wireless sensing system based on the NUS-8/PANI-coated sensor is capable to monitor the spoilage process of meat. This study paves novel avenues for designing and synthesizing gas-sensitive materials for practical applications.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Zhu
- Key Laboratory, Engineering University of PAP, Xi'an, 710086, P. R. China
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Liu
- Quality and Standards Academy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
17
|
Thaggard GC, Wilson GR, Naik M, Quetel MA, Lim J, Maldeni Kankanamalage BKP, Smith MD, Shustova NB. A Change of Pace: Record Photoresponse through Spirooxazine Confinement in a Metal-Organic Matrix. J Am Chem Soc 2024; 146:31746-31756. [PMID: 39501763 DOI: 10.1021/jacs.4c10636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Modern and upcoming high-speed optoelectronics as well as secure data storage or solar energy harvesting technologies integrating stimuli-responsive materials fully rely on the fundamental concept of rapid transitions between discrete states possessing different properties. Relatively slow transition kinetics between those states for commonly used classes of photochromic compounds in solution or bulk solids severely restrict the applicability of stimuli-responsive materials for device development. Herein, we report a multivariate strategy based on a photochromic spirooxazine derivative, coordinatively integrated in the solvent-free confined space of a solid-state matrix, such as a metal-organic framework (MOF), for the first time, resulting in the fastest photoresponse reported for any solid-state material to date. The photoisomerization rate for the developed photochromic material was estimated to be 126 s-1, surpassing any literature reports to the best of our knowledge. We also shed light on the fundamentals of the correlation between framework topology, the nature of organic linkers, and the presence/absence of organic solvent within the scaffold voids on the material photoresponse using a series of isoreticular frameworks. Overall, the presented conceptual approach allows for tailoring the isomerization kinetics of photochromic molecules in the solid state over a range of 4 orders of magnitude-an unprecedented span that provides a pathway for addressing challenges associated with the response rate and photoisomerization, which are key criteria in stimuli-responsive material development.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mamata Naik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Molly A Quetel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Tai H, Ding W, Zhang X, Liang K, Rong Y, Liu Z. Upgrading Structural Conjugation in Three-Dimensional Ni-Based Metal-Organic Frameworks for Promoting Electrical Conductivity and Specific Capacitance. Inorg Chem 2024; 63:18083-18091. [PMID: 39295589 DOI: 10.1021/acs.inorgchem.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for electrochemical energy storage and conversion due to their high specific surface areas, abundant active sites, and excellent chemical and structural tunability. However, the direct utilization of MOFs as electrochemical materials is a challenge because of the poor electroconductivity induced by the insulating nature of most organic linkers. Herein, a conjugated three-dimensional Ni-MOF {Ni(HBTC)(BPE)}n (Ni-BPE) with a 2-fold interpenetrating structure was developed via the coordination polymerization of Ni2+, a H3BTC ligand (1,3,5-benzenetricarboxylic acid), and a vinyl-functionalized bipyridine linker (1,2-di(4-pyridyl)ethylene, BPE). Ni-BPE displayed an enhanced conjugation system compared to analogous and insulated Ni-BPY that is constructed by the Ni-BTC layer and ordinary bipyridine linker (4,4'-bipyridine, BPY). Notably, upgrading structural conjugation promoted a dramatical ∼204 times increase in the electroconductivity of Ni-BPE compared to Ni-BPY. More importantly, Ni-BPE displayed a higher specific capacitance of 633.2 F g-1 (316.6 C g-1) at 1 A g-1, which exhibited a significant ∼1.5-fold enhancement than Ni-BPY. Furthermore, the asymmetric supercapacitor can reach a good energy density of 25.2 Wh kg-1 with a reasonable cycle stability of 71.0% over 5000 cycles. This work provides an effective method for optimizing the structure of insulating MOFs to enhance the electroconductivity and specific capacitance.
Collapse
Affiliation(s)
- Hongbo Tai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Wenyu Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Xuan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Kaicheng Liang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yang Rong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
19
|
Lu C, Choi JY, Check B, Fang X, Spotts S, Nuñez D, Park J. Thiatruxene-Based Conductive MOF: Harnessing Sulfur Chemistry for Enhanced Proton Transport. J Am Chem Soc 2024; 146:26313-26319. [PMID: 39283998 DOI: 10.1021/jacs.4c08659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Functionalizing the organic building blocks of electrically conductive MOFs (EC-MOFs) can be a powerful method for adjusting the electronic structure and introducing a specific chemistry. However, designing EC-MOF linkers with reactive functional groups for postsynthetic modification is challenging due to the requirements of d-p conjugation. This work addresses such design limitations by synthesizing an EC-MOF, Cu-thiatruxene (Cu-thiaTRX). This conductive framework incorporated a truxene-based linker with heterocyclic sulfur, allowing for efficient conjugation and an electrical conductivity of 2.2 × 10-2 S cm-1. Harnessing sulfur chemistry in Cu-thiaTRX involves a two-step postsynthetic modification: oxidation and SNAr. The sulfinic groups introduced in the framework enabled tunable proton conductivity, leading to a 200-fold improvement. These results highlight the importance of a rational linker design for functionalization.
Collapse
Affiliation(s)
- Chenwei Lu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brianna Check
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Samuel Spotts
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dario Nuñez
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
20
|
Behboudikhiavi S, Chanteux G, Babu B, Faniel S, Marlec F, Robert K, Magnin D, Lucaccioni F, Omale JO, Apostol P, Piraux L, Lethien C, Vlad A. Direct Electrodeposition of Electrically Conducting Ni 3(HITP) 2 MOF Nanostructures for Micro-Supercapacitor Integration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401509. [PMID: 38698603 DOI: 10.1002/smll.202401509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/20/2024] [Indexed: 05/05/2024]
Abstract
Micro-supercapacitors emerge as an important electrical energy storage technology expected to play a critical role in the large-scale deployment of autonomous microdevices for health, sensing, monitoring, and other IoT applications. Electrochemical double-layer capacitive storage requires a combination of high surface area and high electronic conductivity, with these being attained only in porous or nanostructured carbons, and recently found also in conducting metal-organic frameworks (MOFs). However, techniques for conformal deposition at micro- and nanoscale of these materials are complex, costly, and hard to upscale. Herein, the study reports direct, one step non-sacrificial anodic electrochemical deposition of Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 - Ni3(HITP)2, a porous and electrically conducting MOF. Employing this strategy enables the growth of Ni3(HITP)2 films on a variety of 2D substrates as well as on 3D nanostructured substrates to form Ni3(HITP)2 nanotubes and Pt@ Ni3(HITP)2 core-shell nanowires. Based on the optimal electrodeposition protocols, Ni3(HITP)2 films interdigitated micro-supercapacitors are fabricated and tested as a proof of concept.
Collapse
Affiliation(s)
- Sepideh Behboudikhiavi
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Géraldine Chanteux
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Binson Babu
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Sébastien Faniel
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Florent Marlec
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
| | - Kevin Robert
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Fabio Lucaccioni
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Joel Ojonugwa Omale
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Luc Piraux
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Christophe Lethien
- Institut d'Electronique, de Microélectronique et de Nanotechnologies, Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, 59000, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 33 rue Saint Leu, Amiens, Cedex, 80039, France
- Institut Universitaire de France (IUF), Saint-Michel 103, Paris, 75005, France
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| |
Collapse
|
21
|
Yang J, Chen Z, Zhang L, Zhang Q. Covalent Organic Frameworks for Photocatalytic Reduction of Carbon Dioxide: A Review. ACS NANO 2024; 18:21804-21835. [PMID: 39116003 DOI: 10.1021/acsnano.4c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline networks with extended backbones cross-linked by covalent bonds. Due to the semiconductive properties and variable metal coordinating sites, along with the rapid development in linkage chemistry, the utilization of COFs in photocatalytic CO2RR has attracted many scientists' interests. In this Review, we summarize the latest research progress on variable COFs for photocatalytic CO2 reduction. In the first part, we present the development of COF linkages that have been used in CO2RR, and we discuss four mechanisms including COFs as intrinsic photocatalysts, COFs with photosensitive motifs as photocatalysts, metalated COF photocatalysts, and COFs with semiconductors as heterojunction photocatalysts. Then, we summarize the principles of structural designs including functional building units and stacking mode exchange. Finally, the outlook and challenges have been provided. This Review is intended to give some guidance on the design and synthesis of diverse COFs with different linkages, various structures, and divergent stacking modes for the efficient photoreduction of CO2.
Collapse
Affiliation(s)
- Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR 999077, China
| |
Collapse
|
22
|
Lu Y, Samorì P, Feng X. Rational Construction of Two-Dimensional Conjugated Metal-Organic Frameworks (2D c-MOFs) for Electronics and Beyond. Acc Chem Res 2024; 57:1985-1996. [PMID: 38963189 PMCID: PMC11256355 DOI: 10.1021/acs.accounts.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
ConspectusTwo-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a novel class of multifunctional materials, attracting increasing attention due to their highly customizable chemistry yielding programmable and unprecedented structures and properties. In particular, over the past decade, the synergistic relationship between the conductivity and porosity of 2D c-MOFs has paved the way toward their widespread applications. Despite their promising potential, the majority of 2D c-MOFs have yet to achieve atomically precise crystal structures, hindering the full understanding and control over their electronic structure and intrinsic charge transport characteristics. When modulating the charge transport properties of two-dimensional layered framework materials, decoupling the charge transport processes within and in between layers is of paramount importance, yet it represents a significant challenge. Unfortunately, 2D c-MOFs systems developed so far have failed to address such a major research target, which can be achieved solely by manipulating charge transport properties in 2D c-MOFs. 2D c-MOFs offer a significant advantage over organic radical molecules and covalent organic frameworks: polymerization through oxidative coordination is a viable route to form "spin-concentrated assemblies". However, the role of these spin centers in charge transport processes is still poorly understood, and the intrinsic dynamics and properties of these spins have seldom been investigated. Consequently, overcoming these challenges is essential to unlock the full potential of 2D c-MOFs in electronics and other related fields, as a new type of quantum materials.In this Account, we summarize and discuss our group's efforts to achieve full control at the atomic level over the structure of 2D c-MOFs and their applications in electronics and spintronics, thereby providing distinct evidence on 2D c-MOFs as a promising platform for exploring novel quantum phenomena. First, we unravel the key role played by the rational design of the ligands to decrease the boundary defects, achieve atomically precise large single crystals, and investigate the intrinsic charge transport properties of 2D c-MOFs. The advantages and disadvantages of the current structural elucidation strategies will be discussed. Second, the fundamental challenge in 2D c-MOF charge transport studies is to decouple the in-plane and interlayer charge transport pathways and achieve precise tuning of the charge transport properties in 2D c-MOFs. To address this challenge, we propose a design concept for the second-generation conjugated ligands, termed "programmable conjugated ligands", to replace the current first-generation ligands which lack modifiability as they mainly consist of sp2 hybridization atoms. Our efforts also extend to controlling the spin dynamics properties of 2D c-MOFs as "spin concentrated assemblies" using a bottom-up strategy.We hope this Account provides enlightening fundamental insights and practical strategies to overcome the major challenges of 2D c-MOFs for electronics and spintronics. Through the rational design of structural modulation within the 2D plane and interlayer interactions, we are committed to making significant steps forward for boosting the functional complexity of this blooming family of materials, thereby opening clear perspectives toward their practical application in electronics with the ultimate goal of inspiring further development of 2D c-MOFs and unleashing their full potential as an emerging quantum material.
Collapse
Affiliation(s)
- Yang Lu
- Université
de Strasbourg, CNRS, ISIS, UMR
7006, 8 Alleé Gaspard
Monge, 67000 Strasbourg, France
- Max
Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
- Center
for Advancing Electronics Dresden and Faculty of Chemistry and Food
Chemistry, Technische Universität
Dresden, 01067 Dresden, Germany
| | - Paolo Samorì
- Université
de Strasbourg, CNRS, ISIS, UMR
7006, 8 Alleé Gaspard
Monge, 67000 Strasbourg, France
| | - Xinliang Feng
- Max
Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
- Center
for Advancing Electronics Dresden and Faculty of Chemistry and Food
Chemistry, Technische Universität
Dresden, 01067 Dresden, Germany
| |
Collapse
|
23
|
Bao P, Cheng L, Yan X, Nie X, Su X, Wang HG, Chen L. 2D Conjugated Metal-Organic Frameworks Bearing Large Pore Apertures and Multiple Active Sites for High-Performance Aqueous Dual-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202405168. [PMID: 38668683 DOI: 10.1002/anie.202405168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 07/09/2024]
Abstract
2D conjugated metal-organic frameworks (2D c-MOFs) with large pore sizes and high surface areas are advantageous for adsorbing iodine species to enhance the electrochemical performance of aqueous dual-ion batteries (ADIBs). However, most of the reported 2D c-MOFs feature microporous structures, with few examples exhibiting mesoporous characteristics. Herein, we developed two mesoporous 2D c-MOFs, namely PA-TAPA-Cu-MOF and PA-PyTTA-Cu-MOF, using newly designed arylimide based multitopic catechol ligands (6OH-PA-TAPA and 8OH-PA-PyTTA). Notably, PA-TAPA-Cu-MOF exhibits the largest pore sizes (3.9 nm) among all reported 2D c-MOFs. Furthermore, we demonstrated that these 2D c-MOFs can serve as promising cathode host materials for polyiodides in ADIBs for the first time. The incorporation of triphenylamine moieties in PA-TAPA-Cu-MOF resulted in a higher specific capacity (423.4 mAh g-1 after 100 cycles at 1.0 A g-1) and superior cycling performance, retaining 96 % capacity over 1000 cycles at 10 A g-1 compared to PA-PyTTA-Cu-MOF. Our comparative analysis revealed that the increased number of N anchoring sites and larger pore size in PA-TAPA-Cu-MOF facilitate efficient anchoring and conversion of I3 -, as supported by spectroscopic electrochemistry and density functional theory calculations.
Collapse
Affiliation(s)
- Pengli Bao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Linqi Cheng
- Key Laboratory of polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaoli Yan
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xinming Nie
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Xi Su
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Heng-Guo Wang
- Key Laboratory of polyoxometalate and Reticular Material Chemistry of Ministry of Education and Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
24
|
Park KC, Lim J, Thaggard GC, Shustova NB. Mining for Metal-Organic Systems: Chemistry Frontiers of Th-, U-, and Zr-Materials. J Am Chem Soc 2024; 146:18189-18204. [PMID: 38943655 DOI: 10.1021/jacs.4c06088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
The conceptual framework presented in this Perspective overviews the design principles of innovative thorium-based materials that could address urgent needs of the medicinal, nuclear energy, and waste remediation sectors from the lens of zirconium and uranium analogs. We survey the intersections of Zr, Th, and U chemistry with a focus on how the intrinsic behavior of each metal translates to broader material properties, including, but not limited to, structural and topological diversity, preferential metal-ligand binding, and reactivity. On the example of several classes of materials, including organometallic complexes, polyoxometalates, and the primary focus of this Perspective, metal-organic frameworks (MOFs), the design principles that govern the preparation of Zr-, Th-, and U-compounds, including oxophilicity, variation in oxidation states, and stable coordination environments have been considered. Further, we highlight how the impact of the mentioned variables may shift throughout the progression from discrete molecular systems to extended structures. We discuss the common assumption that zirconium-organic materials are typically considered a close analog of thorium-based congeners in areas such as material design and preparation. Through consideration of fundamental chemistry principles, we shed light on the relationships between Zr-, Th-, and U-based materials and highlight how a critical analysis of their distinct properties can be used to target a desired material performance. As a result, we provide a detailed understanding of Th-based materials chemistry by anchoring their fundamental properties between two well-studied reference points, zirconium- and uranium-containing analogs.
Collapse
Affiliation(s)
- Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
25
|
Zhang XY, Yang Y, Liang WB, Li Y, Yuan R, Xiao DR. Pyrenetetrasulfonate-grafted 2D ultrathin metal-organic layer as new electrochemiluminescence emitters for ultrasensitive microRNA-21 assay. J Colloid Interface Sci 2024; 674:745-752. [PMID: 38955006 DOI: 10.1016/j.jcis.2024.06.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The exploration of novel electrochemiluminescence (ECL) luminophores with excellent ECL properties is a current research hotspot in the ECL field. Herein, a novel high-efficiency Ru-complex-free ECL emitter PyTS-Zr-BTB-MOL has been prepared by using porous ultrathin Zr-BTB metal-organic layer (MOL) as carrier to coordinatively graft the cheap and easily available polycyclic aromatic hydrocarbon (PAH) derivative luminophore PyTS whose ECL performance has never been investigated. Gratifyingly, the ECL intensity and efficiency of PyTS-Zr-BTB-MOL were markedly enhanced compared to both PyTS monomers and PyTS aggregates. The main reason was that the distance between pyrene rings was greatly expanded after the PyTS grafting on the Zr6 clusters of Zr-BTB-MOL, which overcame the aggregation-caused quenching (ACQ) effect of PyTS and thus enhanced the ECL emission. Meanwhile, the porous nanosheet structure of PyTS-Zr-BTB-MOL could distinctly increase the exposure of PyTS luminophores and shorten the diffusion paths of coreactants and electrons/ions, which effectively promoted the electrochemical excitation of more PyTS luminophores and thus achieved a further ECL enhancement. In light of the remarkable ECL property of PyTS-Zr-BTB-MOL, it was employed as an ECL indicator to build a novel high-sensitivity ECL biosensor for microRNA-21 determination, possessing a satisfactory response range (100 aM to 100 pM) and an ultralow detection limit (10.4 aM). Overall, this work demonstrated that using MOLs to coordinatively graft the PAH derivative luminophores to eliminate the ACQ effect and increase the utilization rate of the luminophores is a promising and efficient strategy to develop high-performance Ru-complex-free ECL materials for assembling ultrasensitive ECL biosensing platforms.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yan Li
- Analytical & Testing Center, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
26
|
Yang M, Zhang Y, Zhu R, Tan J, Liu J, Zhang W, Zhou M, Meng Z. Two-Dimensional Conjugated Metal-Organic Frameworks with a Ring-in-Ring Topology and High Electrical Conductance. Angew Chem Int Ed Engl 2024; 63:e202405333. [PMID: 38623864 DOI: 10.1002/anie.202405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M=Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, P.R. China
| | - Jinxin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
27
|
Lim J, Park KC, Thaggard GC, Liu Y, Maldeni Kankanamalage BKP, Toler DJ, Ta AT, Kittikhunnatham P, Smith MD, Phillpot SR, Shustova NB. Friends or Foes: Fundamental Principles of Th-Organic Scaffold Chemistry Using Zr-Analogs as a Guide. J Am Chem Soc 2024; 146:12155-12166. [PMID: 38648612 DOI: 10.1021/jacs.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The fundamental interest in actinide chemistry, particularly for the development of thorium-based materials, is experiencing a renaissance owing to the recent and rapidly growing attention to fuel cycle reactors, radiological daughters for nuclear medicine, and efficient nuclear stockpile development. Herein, we uncover fundamental principles of thorium chemistry on the example of Th-based extended structures such as metal-organic frameworks in comparison with the discrete systems and zirconium extended analogs, demonstrating remarkable over two-and-half-year chemical stability of Th-based frameworks as a function of metal node connectivity, amount of defects, and conformational linker rigidity through comprehensive spectroscopic and crystallographic analysis as well as theoretical modeling. Despite exceptional chemical stability, we report the first example of studies focusing on the reactivity of the most chemically stable Th-based frameworks in comparison with the discrete Th-based systems such as metal-organic complexes and a cage, contrasting multicycle recyclability and selectivity (>97%) of the extended structures in comparison with the molecular compounds. Overall, the presented work not only establishes the conceptual foundation for evaluating the capabilities of Th-based materials but also represents a milestone for their multifaceted future and foreshadows their potential to shape the next era of actinide chemistry.
Collapse
Affiliation(s)
- Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Yuan Liu
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Donald J Toler
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - An T Ta
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | | | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
28
|
Shan Z, Xiao JZ, Wu M, Wang J, Su J, Yao MS, Lu M, Wang R, Zhang G. Topologically Tunable Conjugated Metal-Organic Frameworks for Modulating Conductivity and Chemiresistive Properties for NH 3 Sensing. Angew Chem Int Ed Engl 2024; 63:e202401679. [PMID: 38389160 DOI: 10.1002/anie.202401679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Electrically conductive metal-organic frameworks (cMOFs) have garnered significant attention in materials science due to their potential applications in modern electrical devices. However, achieving effective modulation of their conductivity has proven to be a major challenge. In this study, we have successfully prepared cMOFs with high conductivity by incorporating electron-donating fused thiophen rings in the frameworks and extending their π-conjugated systems through ring-closing reactions. The conductivity of cMOFs can be precisely modulated ranging from 10-3 to 102 S m-1 by regulating their dimensions and topologies. Furthermore, leveraging the inherent tunable electrical properties based on topology, we successfully demonstrated the potential of these materials as chemiresistive gas sensors with an outstanding response toward 100 ppm NH3 at room temperature. This work not only provides valuable insights into the design of functional cMOFs with different topologies but also enriches the cMOF family with exceptional conductivity properties.
Collapse
Affiliation(s)
- Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian-Ze Xiao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Miaomiao Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinjian Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ming-Shui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Zhongguancun Beiertiao No. 1, Haidian, Beijing, 100190, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
29
|
Choi JY, Check B, Fang X, Blum S, Pham HTB, Tayman K, Park J. Photocatalytic Hydrogen Peroxide Production through Functionalized Semiconductive Metal-Organic Frameworks. J Am Chem Soc 2024. [PMID: 38602882 DOI: 10.1021/jacs.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hydrogen peroxide (H2O2) holds significance as a vital chemical with the potential to serve as an energy carrier. Compared with the conventional anthraquinone process, photocatalytic H2O2 production has emerged as an appealing alternative because of its energy efficiency and environmental sustainability. However, the existing photocatalysts suffer from low catalytic efficiency, limited tunability of optical properties, and reliance on sacrificial agents due to high energy loss caused by inefficient charge separation. Therefore, developing catalysts with tunable optical properties and efficient charge separation is desirable. In this work, we introduce postsynthetic functionalization into an electrically conductive metal-organic framework, namely, DPT-MOF. Leveraging DPT (3,6-di(4-pyridyl)-1,2,4,5-tetrazine) as a pillar ligand, we exploited click-type chemistry to manipulate band position and charge separation efficiency, allowing for photocatalytic nonsacrificial H2O2 production. Notably, the fluorine-functionalized MOF exhibited the highest H2O2 production rate of 1676 μmol g-1 h-1 under visible light in O2-saturated water among our other samples. This high production rate is attributed to the tuned electronic structure and prolonged charge lifetime facilitated by the fluorine groups. This work highlights the effectiveness of postsynthetic methodology in tuning optical properties, opening a promising avenue for advancing the field of semiconductive MOF-based photocatalysis.
Collapse
Affiliation(s)
- Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Brianna Check
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xiaoyu Fang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Samson Blum
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kyle Tayman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
30
|
Heo CY, Díaz-Ramírez ML, Park SH, Kang M, Hong CS, Jeong NC. Solvent-Driven Dynamics: Crafting Tailored Transformations of Cu(II)-Based MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9068-9077. [PMID: 38345827 DOI: 10.1021/acsami.3c18858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs), a sort of crystalline porous coordination polymers composed of metal ions and organic linkers, have been intensively studied for their ability to take up nonpolar gas-phase molecules such as ethane and ethylene. In this context, interpenetrated MOFs, where multiple framework nets are entwined, have been considered promising materials for capturing nonpolar molecules due to their relatively higher stability and smaller micropores. This study explores a solvent-assisted reversible strategy to interpenetrate and deinterpenetrate a Cu(II)-based MOF, namely, MOF-143 (noninterpenetrated form) and MOF-14 (doubly interpenetrated forms). Interpenetration was achieved using protic solvents with small molecular sizes such as water, methanol, and ethanol, while deinterpenetration was accomplished with a Lewis-basic solvent, pyridine. Additionally, this study investigates the adsorptive separation of ethane and ethylene, which is a significant application in the chemical industry. The results showed that interpenetrated MOF-14 exhibited higher ethane and ethylene uptakes compared to the noninterpenetrated MOF-143 due to narrower micropores. Furthermore, we demonstrate that pristine MOF-14 displayed higher ethane selectivity than transformed MOF-14 from MOF-143 by identifying the "fraction of micropore volume" as a key factor influencing ethane uptake. These findings highlight the potential of controlled transformations between interpenetrated and noninterpenetrated MOFs, anticipating that larger MOF crystals with narrower micropores and higher crystallinity will be more suitable for selective gas capture and separation applications.
Collapse
Affiliation(s)
- Cheol Yeong Heo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
| | - Mariana L Díaz-Ramírez
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
- Center for Basic Science, DGIST, Daegu 42988, Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
- Center for Basic Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
31
|
Zhang Q, Lan XY, Chen XQ, Hong JM. Elucidating the roles of Ni ions and crosslinking heteroatoms in Ni 3(BHT) 2/2GO as electron shuttles for electrocatalytic oxidation of tetracycline hydrochloride. CHEMOSPHERE 2024; 349:140849. [PMID: 38043619 DOI: 10.1016/j.chemosphere.2023.140849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
As a hot candidate for marine pollution control, electrocatalytic oxidation strongly depends on the characteristics of anode materials. Even though emerging 2D metal-organic frameworks (2D-MOFs)/graphene oxide (GO) complex has satisfied the conductive and tunable requirements of anode, electrocatalytic efficiency still needs to be improved by maximizing the electron carriers or shuttles. Herein, we capitalized upon crosslinking heteroatoms as pointcut to adjust the electron distribution, mobility, and transfer orientation in 2D-MOFs/GO. As a result, Ni3(BHT)2/2GO (metal centers: Ni; crosslinking heteroatoms: S), which was much higher than materials with metal centers of Cu or crosslinking heteroatoms of N, achieved superior conductivity and 100% tetracycline hydrochloride removal within 12 min. In Ni3(BHT)2/2GO, Ni ions and S atoms cooperated as electron shutters rather than isolated active center and granted accelerated electron transfer from 2D-MOFs to GO layers. Furthermore, Ni sites and S crosslinking heteroatoms exhibited superior activity for ⋅O2- and ⋅OH generation, whereas 1O2 depended more on C and O substrates. All experiments, theory calculations, and application expanding approved the practice feasibility of 2D-MOFs/GO in electrocatalytic oxidation by adjusting crosslinking heteroatoms. All these results provided new perspectives on the micro-molecular regulation for improving electrocatalytic efficiency.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Xin-Yue Lan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Xiao-Qi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China
| | - Jun-Ming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen, 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen, 361021, China.
| |
Collapse
|
32
|
Pham HTB, Choi JY, Stodolka M, Park J. Maximizing the Potential of Electrically Conductive MOFs. Acc Chem Res 2024. [PMID: 38294773 DOI: 10.1021/acs.accounts.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
ConspectusElectrically conductive metal-organic frameworks (EC-MOFs) have emerged as a compelling class of materials, drawing increasing attention due to their unique properties facilitating charge transport within porous structures. The synergy between electrical conductivity and porosity has opened a wide range of applications, including electrocatalysis, energy storage, chemiresistive sensing, and electronic devices that have been underexplored for their insulating counterparts. Despite these promising prospects, a prevalent challenge arises from the predominant adoption of two-dimensional (2D) structures by most EC-MOFs. These 2D frameworks often show modest surface areas and short interlayer distances, hindering molecular accessibility, which deviates from the inherent characteristics of conventional MOFs. Furthermore, the quest for efficient charge transport imposes design constraints, leading to a restricted selection of functional building blocks. Additionally, there is a lack of established functionalization methods within EC-MOFs, limiting their functional diversity. Thus, these challenges have impeded EC-MOFs from reaching their full potential.In this Account, we summarize and discuss our group's efforts aimed at enhancing molecular accessibility and deploying the functional diversity of EC-MOFs. Our focus on enhancing molecular accessibility involves several strategies. First, we employed macrocyclic ligands with intrinsic pockets as the building blocks for EC-MOFs. The integrated intrinsic pockets in the frameworks supplement surface areas and additional pores to enhance molecular accessibility. The resulting macrocyclic ligand-based EC-MOFs exhibit exceptionally high surface areas and confer advantages in electrochemical performances. Second, our efforts extend to addressing the structural limitations, frequently associated with EC-MOFs' 2D structures. Through the pillar insertion strategy, we transformed a 2D EC-MOF platform into a three-dimensional (3D) structure, thereby achieving higher porosity and enhanced molecular accessibility. In pursuing functional diversity, we have delved into molecular-level tuning of EC-MOF building blocks. We demonstrated that electron-rich alkyne-based pockets in the macrocyclic ligands can host transition metals and alkali ions, enabling ion selectivity and showcasing diverse use of EC-MOFs. We utilized a postsynthetic approach to further functionalize metal nodes on the molecular level within an EC-MOF framework, introducing a proton-conducting pathway while preserving its electrical conductivity.We aspire for this Account to provide practical insights and strategies to surmount structural and functional diversity limitations in the realm of EC-MOFs. By integrating enhanced molecular accessibility and diverse functionality, our endeavor to propel the utility of these materials will inspire further rational development for future EC-MOFs and unlock their full potential.
Collapse
Affiliation(s)
- Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science & Engineering Program, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
33
|
Hu L, Wang F, Jing Y. High Catalytic Activity of Co-centered 2D Metal Organic Frameworks toward Bifunctional Oxygen Evolution and Reduction Reactions: Rationalized by Spin Polarization Effect. J Phys Chem Lett 2023; 14:11429-11437. [PMID: 38085676 DOI: 10.1021/acs.jpclett.3c02752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
CoX4 (X = NH, S, and O) motifs have demonstrated their high catalytic activity in the platforms of metal organic frameworks (MOFs), however, the underlying reason is still unrevealed. Herein, we propose monolayers constructed by linking TMNxO4-x motifs (TM = Fe, Co, Ni, Cu) with trioxotriangulenes (TOTs) as suitable models to clarify the structure-property-performance relationship of 2D MOFs for the oxygen evolution/reduction reaction (OER/ORR). The highly robust catalytic activity of CoNxO4-x for both the OER and the ORR has been confirmed, even surpassing that of most previously reported 2D MOFs and SACs. This activity is attributed to the moderate interaction between Co and the key intermediate species, which can be modulated by the coordinating atoms. We reveal spin momentum as a reliable activity descriptor in rationalizing the OER/ORR activity, which can be extended to many other 2D MOFs. The elucidated structure-activity relationship is significant for the development of effective bifunctional OER/ORR electrocatalysts.
Collapse
Affiliation(s)
- Liang Hu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Feifan Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
34
|
Thaggard GC, Park KC, Lim J, Maldeni Kankanamalage BKP, Haimerl J, Wilson GR, McBride MK, Forrester KL, Adelson ER, Arnold VS, Wetthasinghe ST, Rassolov VA, Smith MD, Sosnin D, Aprahamian I, Karmakar M, Bag SK, Thakur A, Zhang M, Tang BZ, Castaño JA, Chaur MN, Lerch MM, Fischer RA, Aizenberg J, Herges R, Lehn JM, Shustova NB. Breaking the photoswitch speed limit. Nat Commun 2023; 14:7556. [PMID: 37985777 PMCID: PMC10660956 DOI: 10.1038/s41467-023-43405-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
The forthcoming generation of materials, including artificial muscles, recyclable and healable systems, photochromic heterogeneous catalysts, or tailorable supercapacitors, relies on the fundamental concept of rapid switching between two or more discrete forms in the solid state. Herein, we report a breakthrough in the "speed limit" of photochromic molecules on the example of sterically-demanding spiropyran derivatives through their integration within solvent-free confined space, allowing for engineering of the photoresponsive moiety environment and tailoring their photoisomerization rates. The presented conceptual approach realized through construction of the spiropyran environment results in ~1000 times switching enhancement even in the solid state compared to its behavior in solution, setting a record in the field of photochromic compounds. Moreover, integration of two distinct photochromic moieties in the same framework provided access to a dynamic range of rates as well as complementary switching in the material's optical profile, uncovering a previously inaccessible pathway for interstate rapid photoisomerization.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | | | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Esther R Adelson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Virginia S Arnold
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Shehani T Wetthasinghe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Vitaly A Rassolov
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Manisha Karmakar
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Sayan Kumar Bag
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Minjie Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen, Guangdong, 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| | - Jorge A Castaño
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
| | - Manuel N Chaur
- Departamento de Química, Universidad del Valle, AA 25360, Cali, Colombia
- Centro de Excelencia en Neuvos Materiales (CENM), Universidad del Valle, AA 25360, Cali, Colombia
| | - Michael M Lerch
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Rainer Herges
- Otto Diels Institute of Organic Chemistry, University of Kiel, 24118, Kiel, Germany
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 67000, Strasbourg, France
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
35
|
Apostol P, Gali SM, Su A, Tie D, Zhang Y, Pal S, Lin X, Bakuru VR, Rambabu D, Beljonne D, Dincă M, Vlad A. Controlling Charge Transport in 2D Conductive MOFs─The Role of Nitrogen-Rich Ligands and Chemical Functionality. J Am Chem Soc 2023; 145. [PMID: 37921430 PMCID: PMC10655089 DOI: 10.1021/jacs.3c07503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Two-dimensional electrically conducting metal-organic frameworks (2D-e-MOFs) have emerged as a class of highly promising functional materials for a wide range of applications. However, despite the significant recent advances in 2D-e-MOFs, developing systems that can be postsynthetically chemically functionalized, while also allowing fine-tuning of the transport properties, remains challenging. Herein, we report two isostructural 2D-e-MOFs: Ni3(HITAT)2 and Ni3(HITBim)2 based on two new 3-fold symmetric ligands: 2,3,7,8,12,13-hexaaminotriazatruxene (HATAT) and 2,3,8,9,14,15-hexaaminotribenzimidazole (HATBim), respectively, with reactive sites for postfunctionalization. Ni3(HITAT)2 and Ni3(HITBim)2 exhibit temperature-activated charge transport, with bulk conductivity values of 44 and 0.5 mS cm-1, respectively. Density functional theory analysis attributes the difference to disparities in the electron density distribution within the parent ligands: nitrogen-rich HATBim exhibits localized electron density and a notably lower lowest unoccupied molecular orbital (LUMO) energy relative to HATAT. Precise amounts of methanesulfonyl groups are covalently bonded to the N-H indole moiety within the Ni3(HITAT)2 framework, modulating the electrical conductivity by a factor of ∼20. These results provide a blueprint for the design of porous functional materials with tunable chemical functionality and electrical response.
Collapse
Affiliation(s)
- Petru Apostol
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Sai Manoj Gali
- Laboratory
for Chemistry of Novel Materials, Materials Research Institute, Université de Mons, Place du Parc 20, Mons 7000, Belgium
| | - Alice Su
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Da Tie
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Yan Zhang
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Shubhadeep Pal
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Xiaodong Lin
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Vasudeva Rao Bakuru
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Darsi Rambabu
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, Materials Research Institute, Université de Mons, Place du Parc 20, Mons 7000, Belgium
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Alexandru Vlad
- Institute
of Condensed Matter and Nanosciences, Molecular Chemistry, Materials
and Catalysis, Université Catholique
de Louvain, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
36
|
Feng S, Duan H, Tan H, Hu F, Liu C, Wang Y, Li Z, Cai L, Cao Y, Wang C, Qi Z, Song L, Liu X, Sun Z, Yan W. Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework. Nat Commun 2023; 14:7063. [PMID: 37923720 PMCID: PMC10624846 DOI: 10.1038/s41467-023-42844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The development of two-dimensional (2D) magnetic semiconductors with room-temperature ferromagnetism is a significant challenge in materials science and is important for the development of next-generation spintronic devices. Herein, we demonstrate that a 2D semiconducting antiferromagnetic Cu-MOF can be endowed with intrinsic room-temperature ferromagnetic coupling using a ligand cleavage strategy to regulate the inner magnetic interaction within the Cu dimers. Using the element-selective X-ray magnetic circular dichroism (XMCD) technique, we provide unambiguous evidence for intrinsic ferromagnetism. Exhaustive structural characterizations confirm that the change of magnetic coupling is caused by the increased distance between Cu atoms within a Cu dimer. Theoretical calculations reveal that the ferromagnetic coupling is enhanced with the increased Cu-Cu distance, which depresses the hybridization between 3d orbitals of nearest Cu atoms. Our work provides an effective avenue to design and fabricate MOF-based semiconducting room-temperature ferromagnetic materials and promotes their practical applications in next-generation spintronic devices.
Collapse
Affiliation(s)
- Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Chaocheng Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Liang Cai
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Yuyang Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xuguang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
| |
Collapse
|
37
|
Peng M, You D, Jin Z, Ni C, Shi H, Shao J, Shi X, Zhou L, Shao P, Yang L, Luo X. Investigating the potential of structurally defective UiO-66 for Sb (V) removal from tailing wastewater. ENVIRONMENTAL RESEARCH 2023; 236:116752. [PMID: 37527747 DOI: 10.1016/j.envres.2023.116752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Antimony contamination of tailings from the mining process remain attracted a great amount of concern. In this study, defective UiO-66-X crystal materials are rationally constructed using trifluoroacetic acid and hydrochloric acid as modulators for the removal of Sb(V) from actual tailing sand leachates. XRD and TG characterizations reveal that the number and kind of defects in UiO-66 are influenced by the type of modulators and the addition of trifluoroacetic acid makes UiO-66-TFA contain both cluster and ligand defects. Adsorption experiments show that UiO-66 and UiO-66-HCl achieve 100% removal of Sb(V) at pH 7.5 of the tailing sand leachate, and up to 90% removal of Sb(V) by the three materials at pH 2.5. It is noteworthy that the removal rate of Sb(V) by UiO-66-HCl is still satisfactory even under strongly acidic conditions at pH 0.5, with good potential for practical applications. Four kinetic models are used to fit the adsorption data and the analysis shows that the mechanism of Sb(V) adsorption by three adsorbent is all pseudo-second order and chemisorption acts as an important role in the adsorption process. In addition, the fixed bed adsorption experiments show that the material exhibit good prospects for practical applications.
Collapse
Affiliation(s)
- Mingming Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Deng You
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhennan Jin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Chenquan Ni
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Jiachuang Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xuanyu Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lei Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China.
| |
Collapse
|
38
|
Chen P, Su X, Wang C, Zhang G, Zhang T, Xu G, Chen L. Two-Dimensional Conjugated Metal-Organic Frameworks with Large Pore Apertures and High Surface Areas for NO 2 Selective Chemiresistive Sensing. Angew Chem Int Ed Engl 2023; 62:e202306224. [PMID: 37280160 DOI: 10.1002/anie.202306224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
The emergence of two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with pronounced electrical properties (e.g., high conductivity) has provided a novel platform for efficient energy storage, sensing, and electrocatalysis. Nevertheless, the limited availability of suitable ligands restricts the number of available types of 2D c-MOFs, especially those with large pore apertures and high surface areas are rare. Herein, we develop two new 2D c-MOFs (HIOTP-M, M=Ni, Cu) employing a large p-π conjugated ligand of hexaamino-triphenyleno[2,3-b:6,7-b':10,11-b'']tris[1,4]benzodioxin (HAOTP). Among the reported 2D c-MOFs, HIOTP-Ni exhibits the largest pore size of 3.3 nm and one of the highest surface areas (up to 1300 m2 g-1 ). As an exemplary application, HIOTP-Ni has been used as a chemiresistive sensing material and displays high selective response (405 %) and a rapid response (1.69 min) towards 10 ppm NO2 gas. This work demonstrates significant correlation linking the pore aperture of 2D c-MOFs to their sensing performance.
Collapse
Affiliation(s)
- Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Xi Su
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Chuanzhe Wang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Gang Xu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou, Fujian, 350108, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
39
|
Wilson GR, Park KC, Thaggard GC, Martin CR, Hill AR, Haimerl J, Lim J, Maldeni Kankanamalage BKP, Yarbrough BJ, Forrester KL, Fischer RA, Pellechia PJ, Smith MD, Garashchuk S, Shustova NB. Cooperative and Orthogonal Switching in the Solid State Enabled by Metal-Organic Framework Confinement Leading to a Thermo-Photochromic Platform. Angew Chem Int Ed Engl 2023; 62:e202308715. [PMID: 37486788 DOI: 10.1002/anie.202308715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo-thermo-responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli-responsive moieties within a metal-organic framework (MOF), leading to the preparation of a novel photo-thermo-responsive spiropyran-diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli-responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo-photochromism.
Collapse
Affiliation(s)
- Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kelly L Forrester
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
40
|
Abbas M, Maceda AM, Xiao Z, Zhou HC, Balkus KJ. Transformation of a copper-based metal-organic polyhedron into a mixed linker MOF for CO 2 capture. Dalton Trans 2023; 52:4415-4422. [PMID: 36916445 DOI: 10.1039/d2dt04162f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A new mixed linker metal-organic framework (MOF) has been synthesized from a copper-based metal-organic polyhedron (MOP-1) and 2,2'-bipyridine (2,2'-bipy). The CuMOF-Bipy with a formula of [Cu2(2,2'-bpy)2(m-BDC)2]n is comprised of a binuclear Cu(II) node coordinated to 2,2'-bipy, and isophthalic acid (m-BDC), which bridges to neighboring nodes. The crystal structure of CuMOF-Bipy consists of a stacked two-dimensional framework with the sql topology. CuMOF-Bipy was characterized by single-crystal X-ray diffraction (SC-XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and CO2 sorption. CuMOF-Bipy was shown to have one-dimensional sinusoidal channels that allow diffusion of CO2 but not N2.
Collapse
Affiliation(s)
- Muhammad Abbas
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Amanda M Maceda
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080, USA
| |
Collapse
|
41
|
Zhang Z, Valente DS, Shi Y, Limbu DK, Momeni MR, Shakib FA. In Silico High-Throughput Design and Prediction of Structural and Electronic Properties of Low-Dimensional Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9494-9507. [PMID: 36749899 DOI: 10.1021/acsami.2c22665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advent of π-stacked layered metal-organic frameworks (MOFs), which offer electrical conductivity on top of permanent porosity and high surface area, opened up new horizons for designing compact MOF-based devices such as battery electrodes, supercapacitors, and spintronics. Permutation of structural building blocks, including metal nodes and organic linkers, in these electrically conductive (EC) materials, results in new systems with unprecedented and unexplored physical and chemical properties. With the ultimate goal of providing a platform for accelerated material design and discovery, here we lay the foundations for the creation of the first comprehensive database of EC-MOFs with an experimentally guided approach. The first phase of this database, coined EC-MOF/Phase-I, is composed of 1,057 bulk and monolayer structures built by all possible combinations of experimentally reported organic linkers, functional groups, and metal nodes. A high-throughput screening (HTS) workflow is constructed to implement density functional theory calculations with periodic boundary conditions to optimize the structures and calculate some of their most relevant properties. Because research and development in the area of EC-MOFs has long been suffering from the lack of appropriate initial crystal structures, all of the geometries and property data have been made available for the use of the community through an online platform that was developed during the course of this work. This database provides comprehensive physical and chemical data of EC-MOFs as well as the convenience of selecting appropriate materials for specific applications, thus accelerating the design and discovery of EC-MOF-based compact devices.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dylan S Valente
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuliang Shi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad R Momeni
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri─Kansas City, Kansas City, Missouri 64110, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
42
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
43
|
Sun C, Wang W, Mu X, Zhang Y, Wang Y, Ma C, Jia Z, Zhu J, Wang C. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54266-54275. [PMID: 36399651 DOI: 10.1021/acsami.2c17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of metal-organic frameworks (MOFs) and flexible fabrics has been recently considered as a promising strategy applied in wearable electronic devices. We synthesized a flexible fabric-based Cu-HHTP film consisted of Cu2+ ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) via a self-sacrificial template method. The obtained Cu-HHTP film displays an outstanding nanostructured surface and uniformity. Iodine molecules are first introduced into the pores of Cu-HHTP to investigate the influence of guest molecules on electrical conductivity in a 2D guest-host system. After doping, the conductivity of the Cu-HHTP film shows an increased dependent on the doping time, and the maximum value is more than 30 times that of the original MOFs. The enhanced electrical conductivity results from an intriguing redox interaction occurred between the confined iodine molecules and the framework. The organic ligands are oxidized by iodine molecules, and generating new ions allows for subsequent participation in the regulation of the mixed valence bands of copper ions in MOFs, changing the ratio of Cu2+/Cu+, promoting the charge transport of the framework, and then synergistically enhancing the electronic conductivity. This study successfully prepared a flexible fabric-based conductive I2@Cu-HHTP film and presented insights into revealing the behavior of iodine molecules after entering the Cu-HHTP pores, expanding the possibilities of Cu-HHTP used in flexible wearable electronics.
Collapse
Affiliation(s)
- Chongcai Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Weike Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Xueyang Mu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yifan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yong Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Chuang Ma
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Zhen Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Jiankang Zhu
- Guangzhou Special Pressure Equipment Inspection and Research Institute National Graphene Product Quality Supervision and Inspection Center, Guangzhou, Guangdong510700, P. R. China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| |
Collapse
|
44
|
Snook KM, Zasada LB, Chehada D, Xiao DJ. Oxidative control over the morphology of Cu 3(HHTP) 2, a 2D conductive metal–organic framework. Chem Sci 2022; 13:10472-10478. [PMID: 36277645 PMCID: PMC9473509 DOI: 10.1039/d2sc03648g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
The morphology of electrically conductive metal–organic frameworks strongly impacts their performance in applications such as energy storage and electrochemical sensing. However, identifying the appropriate conditions needed to achieve a specific nanocrystal size and shape can be a time-consuming, empirical process. Here we show how partial ligand oxidation dictates the morphology of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), a prototypical 2D conductive metal–organic framework. Using organic quinones as the chemical oxidant, we demonstrate that partial oxidation of the ligand prior to metal binding alters the nanocrystal aspect ratio by over 60-fold. Systematically varying the extent of initial ligand oxidation leads to distinct rod, block, and flake-like morphologies. These results represent an important advance in the rational control of Cu3(HHTP)2 morphology and motivate future studies into how ligand oxidation impacts the nucleation and growth of 2D conductive metal–organic frameworks. The morphology of a copper-based 2D conductive metal–organic framework can be tuned via controlled ligand oxidation. Using quinone oxidants, we show how partial ligand oxidation prior to metal binding alters the nanocrystal aspect ratio by >60-fold.![]()
Collapse
Affiliation(s)
- Kathleen M. Snook
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Leo B. Zasada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dina Chehada
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Dianne J. Xiao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|