1
|
Roy S, Pramanik P, Bhattacharya S. Exploring the role of G-quadruplex DNA, and their structural polymorphism, in targeting small molecules for the design of anticancer therapeutics: Progress, challenges, and future directions. Biochimie 2025; 234:120-145. [PMID: 40250703 DOI: 10.1016/j.biochi.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Selective stabilization of non-canonical G-quadruplex DNA structures by small molecules can be a potential target for anticancer therapeutics. The primary motivation for the molecular design of these G-quadruplex binders is to restrict the transcriptional machinery, which can impede cancer cell progression. This review article comprises the structural diversity of different G-quadruplex DNA, the design strategy for targeting these structures with small molecules, and various G-quadruplex binding ligands which have been expanded by the chemists and biologists over the past few decades. Further, the existence of G-quadruplex structures inside human cells, the significant challenges for designing these selective G-quadruplex binding ligands, current status, and progress towards achieving this goal have also been discussed.
Collapse
Affiliation(s)
- Soma Roy
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Pulakesh Pramanik
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India; School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata, 700032, India; Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, 517619, India.
| |
Collapse
|
2
|
Muscarella S, Treccarichi I, D'Anna L, Spinello A. Rationalizing the structural basis of organic-platinum hybrid complexes binding towards quadruplex-duplex hybrids through all-atom simulations. J Inorg Biochem 2025; 268:112904. [PMID: 40199142 DOI: 10.1016/j.jinorgbio.2025.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/10/2025]
Abstract
Guanine-rich sequences containing complementary base pairs can fold into non-canonical quadruplex-duplex hybrid (QDH) conformations. These structures possess unique structural features, leading to the presence of a peculiar binding pocket that can be distinguished from a canonical double helix or a G-quadruplex (G4) structure. Recently, two organic-metal hybrid platinum complexes, able to selectively and strongly recognize a particular type of QDH with a lateral duplex stem-loop, were reported in the literature. However, solution structures are not available for all the investigated compounds, leaving unanswered questions on the structural traits underlying the different binding affinity of these complexes. In this work, we address this gap using all-atom simulations to unravel the key features driving the high selectivity of these organic‑platinum hybrid complexes at an atomistic level. In particular, their binding affinity depends on a delicate balance between the extended π-π stacking interactions performed in the G4-duplex binding pocket and the capacity to form stable hydrogen bonds with the surrounding nucleobases. Thus, our findings provide essential insights to guide the rational design of novel compounds that selectively target QDH structures.
Collapse
Affiliation(s)
- Salvatore Muscarella
- Università di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Irene Treccarichi
- Università di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Angelo Spinello
- Università di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy.
| |
Collapse
|
3
|
Bian T, Gao S, Sun X, Zhou S, Pei Y, Song J. Single-Molecule Detection on Intrastrand Interactions among G4 Clusters. Anal Chem 2025; 97:11617-11626. [PMID: 40408126 DOI: 10.1021/acs.analchem.5c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
G-quadruplexes (G4s) are noncanonical DNA structures that regulate gene expression by serving as mechanical barriers. Telomeric DNA and oncogenic promoter regions (e.g., c-KIT and h-RAS) often contain multiple G-quadruplex structures, which may regulate the transcription of adjacent genes through their interactions. These G4 clusters hold significant therapeutic potential as drug targets for cancer treatment. Thus, understanding the interactions within G4 clusters is of considerable importance. However, current bulk measurements struggle to elucidate the dynamic interactions among multiple intrastranded G4s due to the presence of potential interstrand interactions. Herein, we establish a single-molecule platform to investigate the intrastrand interactions between G4s in the c-KIT promoter region. Our results reveal that these G4 units interact to form higher-order structures, with kit* acting as a key regulator that couples and influences the formation and stability of adjacent G4 units. This single-molecule platform can also detect interactions between small-molecule ligands and consecutive G4 clusters. Compared to CX-5461, PDS is a more effective inhibitor of c-KIT. This single-molecule detection method provides robust support for investigating the intrastrand interactions between consecutive G4 structures.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou 310014, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Zhou Y, Xu D, Zhang Y, Zhou H. G-Quadruplexes in Tumor Immune Regulation: Molecular Mechanisms and Therapeutic Prospects in Gastrointestinal Cancers. Biomedicines 2025; 13:1057. [PMID: 40426885 PMCID: PMC12109316 DOI: 10.3390/biomedicines13051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure self-assembled by guanine-rich sequences. Recent studies have not only revealed the key role of G4 in gene regulation, DNA replication, and telomere maintenance but also showed that it plays a core role in regulating the tumor immune microenvironment. G4 participates in tumor immune escape and the inhibition of immune response by regulating immune checkpoint molecules, cytokine expression, immune cell function, and their interaction network, thus significantly affecting the effect of tumor immunotherapy. This article systematically reviews the molecular mechanism of G4 in tumor immune regulation, especially gastrointestinal tumors, and explores the potential and application prospects of G4-targeted drug strategies in improving anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Huaixiang Zhou
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Hile SE, Weissensteiner MH, Pytko KG, Dahl J, Kejnovsky E, Kejnovská I, Hedglin M, Georgakopoulos-Soares I, Makova K, Eckert KA. Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome. Nucleic Acids Res 2025; 53:gkaf352. [PMID: 40298112 PMCID: PMC12038398 DOI: 10.1093/nar/gkaf352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
G-quadruplexes (G4s) are functional elements of the human genome, some of which inhibit DNA replication. We investigated replication of G4s within highly abundant microsatellite (GGGA, GGGT) and transposable element (L1 and SVA) sequences. We found that genome-wide, numerous motifs are located preferentially on the replication leading strand and the transcribed strand templates. We directly tested replicative polymerase ϵ and δ holoenzyme inhibition at these G4s, compared to low abundant motifs. For all G4s, DNA synthesis inhibition was higher on the G-rich than C-rich strand or control sequence. No single G4 was an absolute block for either holoenzyme; however, the inhibitory potential varied over an order of magnitude. Biophysical analyses showed the motifs form varying topologies, but replicative polymerase inhibition did not correlate with a specific G4 structure. Addition of the G4 stabilizer pyridostatin severely inhibited forward polymerase synthesis specifically on the G-rich strand, enhancing G/C strand asynchrony. Our results reveal that replicative polymerase inhibition at every G4 examined is distinct, causing complementary strand synthesis to become asynchronous, which could contribute to slowed fork elongation. Altogether, we provide critical information regarding how replicative eukaryotic holoenzymes navigate synthesis through G4s naturally occurring thousands of times in functional regions of the human genome.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States
| | - Matthias H Weissensteiner
- Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Kara G Pytko
- Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Joseph Dahl
- National Institute of Environmental Health Sciences, Z01 ES065070, Durham, NC 27709, United States
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
| | - Mark Hedglin
- Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Kateryna D Makova
- Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States
| |
Collapse
|
6
|
Lin J, Gong Z, Lu Y, Cai J, Zhang J, Tan J, Huang Z, Chen S. Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy. Molecules 2025; 30:1805. [PMID: 40333779 PMCID: PMC12029830 DOI: 10.3390/molecules30081805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
G-quadruplex (G4) structures are non-canonical nucleic acid conformations that play crucial roles in gene regulation, DNA replication, and telomere maintenance. Recent studies have highlighted G4 ligands as promising anticancer agents due to their ability to modulate oncogene expression and induce DNA damage. By stabilizing G4 structures, these ligands affect tumor progression. Additionally, they have been implicated in tumor immunity modulation, particularly through the activation and immunogenic cell death induction of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Moreover, their disruption of telomere maintenance and regulation of key oncogenes, such as c-MYC and KRAS, position them as candidates for immune-based therapeutic interventions. Despite their therapeutic potential, challenges remain in optimizing their clinical applications, particularly in patient stratification and elucidating their immunomodulatory effects. This review provides a comprehensive overview of the mechanisms through which G4 ligands influence tumor progression and immune regulation, highlighting their potential role in future cancer immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuobin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (J.L.); (Z.G.); (Y.L.); (J.C.); (J.Z.); (J.T.); (Z.H.)
| |
Collapse
|
7
|
Hashimoto Y, Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Three- and four-stranded nucleic acid structures and their ligands. RSC Chem Biol 2025; 6:466-491. [PMID: 40007865 PMCID: PMC11848209 DOI: 10.1039/d4cb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Nucleic acids have the potential to form not only duplexes, but also various non-canonical secondary structures in living cells. Non-canonical structures play regulatory functions mainly in the central dogma. Therefore, nucleic acid targeting molecules are potential novel therapeutic drugs that can target 'undruggable' proteins in various diseases. One of the concerns of small molecules targeting nucleic acids is selectivity, because nucleic acids have only four different building blocks. Three- and four-stranded non-canonical structures, triplexes and quadruplexes, respectively, are promising targets of small molecules because their three-dimensional structures are significantly different from the canonical duplexes, which are the most abundant in cells. Here, we describe some basic properties of the triplexes and quadruplexes and small molecules targeting the triplexes and tetraplexes.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Mitsuki Tsuruta
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe Hyogo 650-0047 Japan
| |
Collapse
|
8
|
Yan Z, He A, Wan L, Gao Q, Jiang Y, Wang Y, Wang E, Li C, Yang Y, Li Y, Guo P, Han D. Structural Insights into an Antiparallel Chair-Type G-Quadruplex From the Intron of NOP56 Oncogene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406230. [PMID: 40047221 PMCID: PMC12021085 DOI: 10.1002/advs.202406230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/08/2025] [Indexed: 04/26/2025]
Abstract
G-quadruplex (G4) structures play important roles in various biological processes, especially the gene regulation. Nucleolar protein 56 (NOP56) is an essential component in ribosome biogenesis while its overexpression associates with various types of cancers, rendering it a significant therapeutic target. Here for the first time, an antiparallel chair-type G4 structure formed by a 21-nt DNA sequence from the intron 1 of NOP56 is reported, and its high-resolution structure is determined using solution nuclear magnetic resonance spectroscopy. The NOP56-G4 has a special fold containing two G-tetrads and a C·G·C·G tetrad, which is further capped by a C∙C base pair. The G4 ligand pyridostatin (PDS) binds at the terminal G-tetrad through π-π stacking and electrostatic interactions, increasing the melting temperature of NOP56-G4 by ≈14 °C. This study further shows that PDS can significantly reduce NOP56 mRNA levels in three cancer cell lines. This work provides an unprecedented high-resolution structural basis for a special G4 structure from the intron of NOP56 and suggests a feasibility of targeting intronic G4 for gene regulation, propelling new avenues for G4 structure-based drug design and therapeutic strategy.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Axin He
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Liqi Wan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| | - Qian Gao
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310013China
| | - Yan Jiang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yang Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | | | - Changling Li
- College of Chemistry and Materials ScienceShanghai Normal UniversityShanghai200234China
| | - Yingquan Yang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yingjie Li
- Department of PharmacologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Pei Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Da Han
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM) Renji HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
9
|
Dudek M, López-Pacios L, Sabouri N, Nogueira JJ, Martinez-Fernandez L, Deiana M. A Rationally Designed Azobenzene Photoswitch for DNA G-Quadruplex Regulation in Live Cells. Angew Chem Int Ed Engl 2025; 64:e202413000. [PMID: 39268751 DOI: 10.1002/anie.202413000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
G-quadruplex (G4) DNA structures are increasingly acknowledged as promising targets in cancer research, and the development of G4-specific stabilizing compounds may lay a fundamental foundation in precision medicine for cancer treatment. Here, we propose a light-responsive G4-binder for precise modulation of drug activation, providing dynamic and spatiotemporal control over G4-associated biological processes contributing to cancer cell death. We developed a specialized fluorinated azobenzene (AB) switch equipped with a quinoline unit and a positively charged carboxamide side chain, Q-Azo4F-C, designed for targeted binding to G4 structures within cells. Biophysical studies, combined with molecular dynamics simulations, provide insights into the unique coordination modes of the photoswitchable ligand in its trans and cis configurations when interacting with G4s. The observed variations in complexation processes between the two isomeric states in different cancer cell lines manifest in more than 25-fold reversible cytotoxic activity. Immunostaining conducted with the structure-specific G4 antibody (BG4), establishes a direct correlation between cytotoxicity and the varying extent of G4 induction regulated by the two isoforms. Finally, we demonstrate the photo-driven reversible regulation of G4 structures in lung cancer cells by Q-Azo4F-C. Our findings highlight the potential of light-responsive G4-binders in advancing precision cancer therapy through dynamic control of G4-mediated pathways.
Collapse
Affiliation(s)
- Marta Dudek
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Lucía López-Pacios
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Juan J Nogueira
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049, Madrid, Spain
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Lara Martinez-Fernandez
- Departamento de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC, 28006, Madrid, Spain
| | - Marco Deiana
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
10
|
Chan KH, Zheng BX, Leung ASL, Long W, Zhao Y, Zheng Y, Wong WL. A NRAS mRNA G-quadruplex structure-targeting small-molecule ligand reactivating DNA damage response in human cancer cells for combination therapy with clinical PI3K inhibitors. Int J Biol Macromol 2024; 279:135308. [PMID: 39244134 DOI: 10.1016/j.ijbiomac.2024.135308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The Neuroblastoma RAS (NRAS) oncogene homologue plays crucial roles in diverse cellular processes such as cell proliferation, survival, and differentiation. Several strategies have been developed to inhibit NRAS or its downstream effectors; however, there is no effective drug available to treat NRAS-driven cancers and thus new approaches are needed to be established. The mRNA sequence expressing NRAS containing several guanine(G)-rich regions may form quadruplex structures (G4s) and regulate NRAS translation. Therefore, targeting NRAS mRNA G4s to repress NRAS expression at translational level with ligands may be a feasible strategy against NRAS-driven cancers but it is underexplored. We reported herein a NRAS mRNA G4-targeting ligand, B3C, specifically localized in cytoplasm in HeLa cells. It effectively downregulates NRAS proteins, reactivates the DNA damage response (DDR), causes cell cycle arrest in G2/M phase, and induces apoptosis and senescence. Moreover, combination therapy with NARS mRNA G4-targeting ligands and clinical PI3K inhibitors for cancer cells inhibition treatment is unexplored, and we demonstrated that B3C combining with PI3Ki (pictilisib (GDC-0941)) showed potent antiproliferation activity against HeLa cells (IC50 = 1.03 μM (combined with 10 μM PI3Ki) and 0.42 μM (combined with 20 μM PI3Ki)) and exhibited strong synergistic effects in inhibiting cell proliferation. This study provides new insights into drug discovery against RAS-driven cancers using this conceptually new combination therapy strategy.
Collapse
Affiliation(s)
- Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yuchen Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yingying Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
11
|
Wong F, He D, Krishnan A, Hong L, Wang AZ, Wang J, Hu Z, Omori S, Li A, Rao J, Yu Q, Jin W, Zhang T, Ilia K, Chen JX, Zheng S, King I, Li Y, Collins JJ. Deep generative design of RNA aptamers using structural predictions. NATURE COMPUTATIONAL SCIENCE 2024; 4:829-839. [PMID: 39506080 DOI: 10.1038/s43588-024-00720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
RNAs represent a class of programmable biomolecules capable of performing diverse biological functions. Recent studies have developed accurate RNA three-dimensional structure prediction methods, which may enable new RNAs to be designed in a structure-guided manner. Here, we develop a structure-to-sequence deep learning platform for the de novo generative design of RNA aptamers. We show that our approach can design RNA aptamers that are predicted to be structurally similar, yet sequence dissimilar, to known light-up aptamers that fluoresce in the presence of small molecules. We experimentally validate several generated RNA aptamers to have fluorescent activity, show that these aptamers can be optimized for activity in silico, and find that they exhibit a mechanism of fluorescence similar to that of known light-up aptamers. Our results demonstrate how structural predictions can guide the targeted and resource-efficient design of new RNA sequences.
Collapse
Affiliation(s)
- Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Dongchen He
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Liang Hong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexander Z Wang
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiuming Wang
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhihang Hu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Satotaka Omori
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Integrated Biosciences, Redwood City, CA, USA
| | - Alicia Li
- Integrated Biosciences, Redwood City, CA, USA
| | - Jiahua Rao
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qinze Yu
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wengong Jin
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Tianqing Zhang
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katherine Ilia
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jack X Chen
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shuangjia Zheng
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Irwin King
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Li
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The CUHK Shenzhen Research Institute, Shenzhen, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
12
|
Rainot A, D'Anna L, Terenzi A, Rouget R, Grandemange S, Piro B, Barone G, Barbault F, Monari A. In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes. J Phys Chem Lett 2024; 15:10881-10887. [PMID: 39441974 DOI: 10.1021/acs.jpclett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures present in diverse regions of the genome, such as telomeres and transcription initiators. Recently, the different biological roles of G4s have been evidenced as well as their role as biomarkers for tumors or viral infections. However, the fast and efficient detection of G4s in complex matrices remains elusive. In this contribution, by using long-scale molecular dynamics simulations, we propose the design of a biosensor based on organic field-effect transistors recognizing G4s. In particular, we show that the interaction of the G4s with the biosensor is translated into a change in the charge density profile, which correlates with the electrical transduction of the signal, thus allowing the detection of the nucleic acid structure. We also provide rules of thumb for the optimization of the design of the device and more generally for the integration of computationally driven design approaches.
Collapse
Affiliation(s)
- Aurianne Rainot
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Raphael Rouget
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France
| | | | - Benoit Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Giampaolo Barone
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
13
|
Xu G, Bao Y, Zhang Y, Xiang X, Luo H, Guo X. Applying Machine Learning and SERS for Precise Typing of DNA Secondary Structures. Anal Chem 2024; 96:17109-17117. [PMID: 39413285 DOI: 10.1021/acs.analchem.4c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been demonstrated as an effective method for elucidating secondary structural characteristics of DNA. However, the inherent complexity of the DNA conformation and the lack of SERS samples pose challenges for identifying numerous secondary structures. To address these issues, a synergistic method integrating machine learning with SERS was proposed so as to analyze the SERS spectra of 54 well-defined conformational oligonucleotides, namely, G-quadruplex (G4), i-motif (iM), double-strand (DS), and single-strand (SS) configurations. Principal component analysis (PCA) effectively segregated the oligonucleotides into three distinct conformational groups (G4s, iMs, and others). Furthermore, linear discriminant analysis (LDA), K-nearest neighbor (KNN), and support vector machine (SVM) approaches were utilized to improve the typing accuracy of 54 trained sequences. This enabled the correct classification of the structures of five untrained sequences, as well as the identification of the predominant conformations including G4, iM, and DS formed by two complementary G-rich and C-rich sequences in acidic and neutral pH conditions. The results of this study demonstrated the potential of the proposed methodology for rapid screening and prediction of secondary DNA conformations.
Collapse
Affiliation(s)
- Guantong Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ying Bao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yujing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaoxuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hong Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xinhua Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Zhang Y, Cheng Y, Liu X, Tang H, Wang F, Tang LJ, Jiang JH. Visualization of Mitochondrial DNA G-Quadruplexes with Isaindigotone Derived Near-Infrared Fluorogenic Probe. Anal Chem 2024; 96:17329-17336. [PMID: 39412418 DOI: 10.1021/acs.analchem.4c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mitochondrial DNA G-quadruplexes (mtDNA G4s) play potential regulatory roles in mitochondrial functions. Fluorescent probes for imaging mtDNA G4s may provide useful information to unveil their regulating dynamics and functions. However, the existing probes for mtDNA G4s still exhibit short absorption and emission wavelengths and limited sensitivity. Here, we develop a new isaindigotone-derived near-infrared (NIR) fluorogenic probe for imaging mtDNA G4s in live cells and in vivo. Different fluorescent probes are engineered by conjugating the isaindigotone scaffold with varying electron-donating groups. It is shown that the probe ISAP using dimethylaminophenyl as the electron-donating group exhibits near-infrared absorption/emission and a high fluorescence activation fold in response to G4s. Molecular docking simulations reveal that ISAP binds to c-Myc G4 via multiple π-π stacking and hydrogen-bond interaction. Cellular studies show that ISAP exhibits an excellent mitochondrial targeting ability and allows specific imaging of mtDNA G4s. We further employed ISAP to image the dynamics of mtDNA G4s under glycolysis and oxidative stresses in live cells. Its capability to mtDNA G4s in vivo is showcased using a tumor-bearing mice model. This probe may serve as a useful tool to image mtDNA G4s and interrogate their biological roles in living systems.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yidan Cheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
15
|
Liu J, Sun L, Hong Y, Deng J, Luo Q, Zeng R, Chen W. Near-infrared fluorescent probe for sensitive detection and imaging of DNA G4s in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124489. [PMID: 38788507 DOI: 10.1016/j.saa.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
G-quadruplexs (G4s), four-stranded nucleic acid secondary structures, which formed by guanine-rich sequences play a vital role in human biological systems. Studies have shown that the formation of G4s is closely related to tumor development and apoptosis, which is considered as a new target for the development of anti-tumor drugs. Therefore, it is important to develop novel probes for G4s imaging. In this article, we engineered a near-infrared fluorescent probe (TOH) which can be activated by DNA G4s in living cells and tumor. TOH exhibits high selectivity to the structure of DNA G4s with the limit of detection for DNA G4s (Mito-0.5-2) is calculated to be 0.43 nM. Imaging studies of different cell lines revealed that the brighter fluorescence in cancer cell lines than in normal, indicating that DNA G4s maybe highly express in tumor cell lines. Simultaneously, TOH is also introduced into live tumor tissue imaging and found that the fluorescence intensity of tumor is the brightest relative to normal tissue, further validating the high expression of DNA G4s structures in tumor tissue. These features demonstrate TOH not only have the ability to image DNA G4 structures in real time, but also may have tumor diagnostic capabilities.
Collapse
Affiliation(s)
- Junjie Liu
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Leying Sun
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Yongxiang Hong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Deng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Qingyun Luo
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China.
| | - Wen Chen
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
16
|
Banjan B, Koshy AJ, Kalath H, John L, Soman S, Raju R, Revikumar A. Potential protein kinase inhibitors that target G-quadruplex DNA structures in the human telomeric regions. Mol Divers 2024; 28:3377-3391. [PMID: 38509417 DOI: 10.1007/s11030-023-10768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 03/22/2024]
Abstract
Telomeric regions contain Guanine-rich sequences arranged in a planar manner and connected by Hoogsteen hydrogen bonds that can fold into G-quadruplex (G4) DNA structures, and can be stabilized by monovalent metal cations. The presence of G4 DNA holds significance in cancer-related processes, especially due to their regulatory potential at transcriptional and translational levels of oncogene and tumor suppressor genes. The objective of this current research is to explore the evolving realm of FDA-approved protein kinase inhibitors, with a specific emphasis on their capacity to stabilize the G4 DNA structures formed at the human telomeric regions. This involves investigating the possibility of repurposing FDA-approved protein kinase inhibitors as a novel approach for targeting multiple cancer types. In this context, we have selected 16 telomeric G4 DNA structures as targets and 71 FDA-approved small-molecule protein kinase inhibitors as ligands. To investigate their binding affinities, molecular docking of human telomeric G4 DNA with nuclear protein kinase inhibitors and their corresponding co-crystalized ligands were performed. We found that Ponatinib and Lapatinib interact with all the selected G4 targets, the binding free energy calculations, and molecular dynamic simulations confirm their binding efficacy and stability. Thus, it is hypothesized that Ponatinib and Lapatinib may stabilize human telomeric G4 DNA in addition to their ability to inhibit BCR-ABL and the other members of the EGFR family. As a result, we also hypothesize that the stabilization of G4 DNA might represent an additional underlying mechanism contributing to their efficacy in exerting anti-cancer effects.
Collapse
Affiliation(s)
- Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Levin John
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
17
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Pirota V, Rey F, Esposito L, Fantini V, Pandini C, Maghraby E, Di Gerlando R, Doria F, Mella M, Pansarasa O, Gandellini P, Freccero M, Carelli S, Cereda C. Effective lowering of α-synuclein expression by targeting G-quadruplex structures within the SNCA gene. Int J Biol Macromol 2024; 277:134417. [PMID: 39098688 DOI: 10.1016/j.ijbiomac.2024.134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Alpha-synuclein, encoded by the SNCA gene, is a pivotal protein implicated in the pathogenesis of synucleinopathies, including Parkinson's disease. Current approaches for modulating alpha-synuclein levels involve antisense nucleotides, siRNAs, and small molecules targeting SNCA's 5'-UTR mRNA. Here, we propose a groundbreaking strategy targeting G-quadruplex structures to effectively modulate SNCA gene expression and lowering alpha-synuclein amount. Novel G-quadruplex sequences, identified on the SNCA gene's transcription starting site and 5'-UTR of SNCA mRNAs, were experimentally confirmed for their stability through biophysical assays and in vitro experiments on human genomic DNA. Biological validation in differentiated SH-SY5Y cells revealed that well-known G-quadruplex ligands remarkably stabilized these structures, inducing the modulation of SNCA mRNAs expression, and the effective decrease in alpha-synuclein amount. Besides, a novel peptide nucleic acid conjugate, designed to selectively disrupt of G-quadruplex within the SNCA gene promoter, caused a promising lowering of both SNCA mRNA and alpha-synuclein protein. Altogether our findings highlight G-quadruplexes' key role as intriguing biological targets in achieving a notable and successful reduction in alpha-synuclein expression, pointing to a novel approach against synucleinopathies.
Collapse
Affiliation(s)
- Valentina Pirota
- Department of Chemistry, University of Pavia, Pavia, Italy; G4-INTERACT, USERN, Pavia, Italy.
| | - Federica Rey
- G4-INTERACT, USERN, Pavia, Italy; Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Letizia Esposito
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetic, Golgi-Cenci Foundation, Abbiategrasso, Italy
| | - Cecilia Pandini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Erika Maghraby
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy; Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Mariella Mella
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Mauro Freccero
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Stephana Carelli
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy.
| | - Cristina Cereda
- Center of Functional Genomics and Rare diseases, Buzzi Children's Hospital, Milan, Italy
| |
Collapse
|
19
|
Neidle S. A Phenotypic Approach to the Discovery of Potent G-Quadruplex Targeted Drugs. Molecules 2024; 29:3653. [PMID: 39125057 PMCID: PMC11314571 DOI: 10.3390/molecules29153653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant in the human genome and are over-represented in the promoter regions of many genes involved in human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of these genes. However, structural information is currently available on only a very small number of G4s and their ligand complexes. This limitation, coupled with the currently restricted information on the G4-containing genes involved in most complex human cancers, has led to the development of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a pan-G4 drug of potential utility beyond pancreatic cancer.
Collapse
Affiliation(s)
- Stephen Neidle
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
20
|
Ooga M, Sahayasheela VJ, Hirose Y, Sasaki D, Hashiya K, Bando T, Sugiyama H. A dual DNA-binding conjugate that selectively recognizes G-quadruplex structures. Chem Commun (Camb) 2024. [PMID: 39072583 DOI: 10.1039/d4cc01572j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
G-quadruplex (G4) structures play roles in various biological processes, but the challenge lies in specific targeting. To address this, we synthesized a conjugate capable of recognizing the G4 structure and its proximal duplex. Our conjugate can enable recognition of specific G4s in the human genome to understand and target those structures.
Collapse
Affiliation(s)
- Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Qin G, Liu Z, Yang J, Liao X, Zhao C, Ren J, Qu X. Targeting specific DNA G-quadruplexes with CRISPR-guided G-quadruplex-binding proteins and ligands. Nat Cell Biol 2024; 26:1212-1224. [PMID: 38961283 DOI: 10.1038/s41556-024-01448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaofeng Liao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.
- University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
22
|
Ma TZ, Liu LY, Zeng YL, Ding K, Zhang H, Liu W, Cao Q, Xia W, Xiong X, Wu C, Mao ZW. G-quadruplex-guided cisplatin triggers multiple pathways in targeted chemotherapy and immunotherapy. Chem Sci 2024; 15:9756-9774. [PMID: 38939132 PMCID: PMC11206235 DOI: 10.1039/d4sc00643g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.
Collapse
Affiliation(s)
- Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Ke Ding
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine Hangzhou 311121 P. R. China
| | - Chao Wu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University Guangzhou 510080 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
23
|
Laigre E, Bonnet H, Beauvineau C, Lavergne T, Verga D, Defrancq E, Dejeu J, Teulade-Fichou MP. Systematic Evaluation of Benchmark G4 Probes and G4 Clinical Drugs using three Biophysical Methods: A Guideline to Evaluate Rapidly G4-Binding Affinity. Chembiochem 2024; 25:e202400210. [PMID: 38619969 DOI: 10.1002/cbic.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
G-quadruplex DNA structures (G4) are proven to interfere with most genetic and epigenetic processes. Small molecules binding these structures (G4 ligands) are invaluable tools to probe G4-biology and address G4-druggability in various diseases (cancer, viral infections). However, the large number of reported G4 ligands (>1000) could lead to confusion while selecting one for a given application. Herein we conducted a systematic affinity ranking of 11 popular G4 ligands vs 5 classical G4 sequences using FRET-melting, G4-FID assays and SPR. Interestingly SPR data globally align with the rankings obtained from the two semi-quantitative assays despite discrepancies due to limits and characteristics of each assay. In the whole, PhenDC3 emerges as the most potent binder irrespective of the G4 sequence. Immediately below PDS, PDC-360A, BRACO19, TMPyP4 and RHPS4 feature strong to medium binding again with poor G4 topology discrimination. More strikingly, the G4 drugs Quarfloxin, CX5461 and c-PDS exhibit weak affinity with all G4s studied. Finally, NMM and Cu-ttpy showed heterogeneous behaviors due, in part, to their physicochemical particularities poorly compatible with screening conditions. The remarkable properties of PhenDC3 led us to propose its use for benchmarking FRET-melting and G4-FID assays for rapid G4-affinity evaluation of newly developed ligands.
Collapse
Affiliation(s)
- E Laigre
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - H Bonnet
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - C Beauvineau
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - T Lavergne
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - D Verga
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| | - E Defrancq
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - J Dejeu
- DCM, UMR 5250, Univ. Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
- SUPMICROTECH, Université Franche-Comté, CNRS, Institut FEMTO-ST, 25000, Besançon, France
| | - M-P Teulade-Fichou
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405, Orsay, France
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|
24
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Vianney YM, Dierks D, Weisz K. Structural Differences at Quadruplex-Duplex Interfaces Enable Ligand-Induced Topological Transitions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309891. [PMID: 38477454 PMCID: PMC11200018 DOI: 10.1002/advs.202309891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Quadruplex-duplex (QD) junctions, which represent unique structural motifs of both biological and technological significance, have been shown to constitute high-affinity binding sites for various ligands. A QD hybrid construct based on a human telomeric sequence, which harbors a duplex stem-loop in place of a short lateral loop, is structurally characterized by NMR. It folds into two major species with a (3+1) hybrid and a chair-type (2+2) antiparallel quadruplex domain coexisting in a K+ buffer solution. The antiparallel species is stabilized by an unusual capping structure involving a thymine and protonated adenine base AH+ of the lateral loop facing the hairpin duplex to form a T·AH+·G·C quartet with the interfacial G·C base pair at neutral pH. Addition and binding of Phen-DC3 to the QD hybrid mixture by its partial intercalation at corresponding QD junctions leads to a topological transition with exclusive formation of the (3+1) hybrid fold. In agreement with the available experimental data, such an unprecedented discrimination of QD junctions by a ligand can be rationalized following an induced fit mechanism.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Dorothea Dierks
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| | - Klaus Weisz
- Institut für BiochemieUniversität GreifswaldFelix‐Hausdorff‐Str. 4D‐17489GreifswaldGermany
| |
Collapse
|
26
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
27
|
Donato L, Scimone C, Alibrandi S, Mordà D, Anchesi I, Scalinci SZ, Rinaldi C, D'Angelo R, Sidoti A. Investigating G-quadruplex structures in RPGR gene: Implications for understanding X-linked retinal degeneration. Heliyon 2024; 10:e29828. [PMID: 38699732 PMCID: PMC11063440 DOI: 10.1016/j.heliyon.2024.e29828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Aims This pilot study investigates the potential pathogenic role of G-quadruplex (G4) structures in RPGR-associated retinal degeneration, starting from a case of suspected X-linked form affected family. We hypothesize that the stabilization of these structures might alter DNA replication and transcription, inducing genetic instability and influencing gene expression. Main methods We conducted whole genome amplification experiments and next-generation sequencing to detect the blockade of polymerase activity by G4 structures. Our specific focus was the RPGR gene, which hosts a high concentration of predicted G4-forming motifs and is implicated in most X-linked retinal degeneration cases. To understand the potential interference of G4 structures, we applied computational and 3D molecular modeling to visualize interferences in DNA replication and transcription regulation. Key findings Our data confirmed the obstruction of DNA polymerase enzymes by G4 structures, particularly when stabilized by the compound pyridostatin. This obstruction was evident in the reduced amplification of RPGR gene regions and a shift in the start/end sites of putative G4 motifs. Moreover, the modeling indicated a potential disruption of critical promoter elements and RNA polymerase binding, which could drastically alter gene expression. Significance Our findings suggest that G4 formation in the RPGR gene could lead to genetic instability and affect the expression of RPGR, contributing to retinal dystrophy. Moreover, this study underscores the broader implications of G4 structures in other genetic disorders. Improved understanding of G4 structures could reveal novel therapeutic targets to combat genetic disorders, promoting the advancement of personalized medicine and precision health.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
| | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., Palermo, 90139, Italy
- Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy
| | - Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | | | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, 98125, Italy
| |
Collapse
|
28
|
Palma E, Içhedef C, Fernandes C, Belchior A, Raposinho P, Gano L, Miranda A, Moreira D, Lourenço P, Cruz C, Pires AS, Botelho MF, Paulo A. Targeting of G-quadruplex DNA with 99mTc(I)/Re(I) Tricarbonyl Complexes Carrying Pyridostatin Derivatives. Chemistry 2024; 30:e202400285. [PMID: 38386665 DOI: 10.1002/chem.202400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
The main goal of this work was to elucidate the potential relevance of (radio)metal chelates of 99mTc and Re targeting G-quadruplex structures for the design of new tools for cancer theranostics. 99mTc provides the complexes with the ability to perform single-photon-emission computed tomography imaging studies, while the Re complexes should act as anticancer agents upon interaction with specific G4 DNA or RNA structures present in tumor tissues. Towards this goal, we have developed isostructural 99mTc(I) and Re(I) tricarbonyl complexes anchored by a pyrazolyl-diamine (Pz) chelator carrying a pendant pyridostatin (PDS) fragment as the G4-binding motif. The interaction of the PDF-Pz-Re (8) complex with different G4-forming oligonucleotides was studied by circular dichroism, fluorescence spectroscopy and FRET-melting assays. The results showed that the Re complex retained the ability to bind and stabilize G4-structures from different DNA or RNA sequences, namely those present on the SRC proto-oncogene and telomeric RNA (TERRA sequence). PDF-Pz-Re (8) showed low to moderate cytotoxicity in PC3 and MCF-7 cancer cell lines, as typically observed for G4-binders. Biodistribution studies of the congener PDF-Pz-99mTc (12) in normal mice showed that the complex undergoes a fast blood clearance with a predominant hepatobiliary excretion, pointing also for a high in vitro stability.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Cigdem Içhedef
- Ege University, Institute of Nuclear Sciences, 35100, Izmir, Turkey
| | - Célia Fernandes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Ana Belchior
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Paula Raposinho
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Lurdes Gano
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - André Miranda
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - David Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Pedro Lourenço
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Carla Cruz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-061, Coimbra, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| |
Collapse
|
29
|
Wang Z, Xie X, Jin K, Xia D, Zhu J, Zhang J. Amplified and Specific Staining of Protein Dimerization on Cell Membrane Catalyzed by Responsively Installed DNA Nanomachines for Cancer Diagnosis. Adv Healthc Mater 2024; 13:e2303398. [PMID: 38183379 DOI: 10.1002/adhm.202303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Indexed: 01/08/2024]
Abstract
In situ staining of protein dimerization on cell membrane has an important significance in accurate diagnosis during perioperative period, yet facile integration of specific recognition function and local signal conversion/amplification abilities on membrane surface remains a great challenge. Herein, a two-stage catalytic strategy is developed by installing DNA nanomachines and employing. Specifically, dual-aptamer-assisted DNA scaffold perform a "bispecific recognition-then-computing" operation and the output signal initiate a membrane-anchored biocatalysis for self-assembly of DNA catalytic converters, that is, G-quadruplex nanowire/hemin DNAzyme. Then, localized-deposition of chromogenic polydopamine is chemically catalyzed by horseradish peroxidase-mimicking DNAzyme and guided by supramolecular interactions between conjugate rigid plane of G-tetrad and polydopamine oligomer. The catalytic products exhibit nanofiber morphology with a diameter of 80-120 nm and a length of 1-10 µm, and one-to-one localize on DNA scaffold for amplified and specific staining of protein dimers. The bispecific staining leads to a higher (≈3.4-fold) signal intensity than traditional immunohistochemistry, which is beneficial for direct visualization. Moreover, an efficient discrimination ability of the bispecific staining strategy is observed in co-culture model staining. This study provides a novel catalytic method for controlling deposition of chromogens and paves a new avenue to sensitively stain of protein-protein interactions in disease diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
30
|
Johnson S, Paul T, Sanford S, Schnable BL, Detwiler A, Thosar S, Van Houten B, Myong S, Opresko P. BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Res 2024; 52:1763-1778. [PMID: 38153143 PMCID: PMC10939409 DOI: 10.1093/nar/gkad1209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.
Collapse
Affiliation(s)
- Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| |
Collapse
|
31
|
Wang W, Li D, Xu Q, Cheng J, Yu Z, Li G, Qiao S, Pan J, Wang H, Shi J, Zheng T, Sui G. G-quadruplexes promote the motility in MAZ phase-separated condensates to activate CCND1 expression and contribute to hepatocarcinogenesis. Nat Commun 2024; 15:1045. [PMID: 38316778 PMCID: PMC10844655 DOI: 10.1038/s41467-024-45353-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
G-quadruplexes (G4s) can recruit transcription factors to activate gene expression, but detailed mechanisms remain enigmatic. Here, we demonstrate that G4s in the CCND1 promoter propel the motility in MAZ phase-separated condensates and subsequently activate CCND1 transcription. Zinc finger (ZF) 2 of MAZ is a responsible for G4 binding, while ZF3-5, but not a highly disordered region, is critical for MAZ condensation. MAZ nuclear puncta overlaps with signals of G4s and various coactivators including BRD4, MED1, CDK9 and active RNA polymerase II, as well as gene activation histone markers. MAZ mutants lacking either G4 binding or phase separation ability did not form nuclear puncta, and showed deficiencies in promoting hepatocellular carcinoma cell proliferation and xenograft tumor formation. Overall, we unveiled that G4s recruit MAZ to the CCND1 promoter and facilitate the motility in MAZ condensates that compartmentalize coactivators to activate CCND1 expression and subsequently exacerbate hepatocarcinogenesis.
Collapse
Affiliation(s)
- Wenmeng Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Qingqing Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jiahui Cheng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhiwei Yu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shiyao Qiao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jiasong Pan
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Key Laboratory of Molecular Oncology of Heilongjiang Province, Harbin, China
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
32
|
Huang R, Feng Y, Gao Z, Ahmed A, Zhang W. The Epigenomic Features and Potential Functions of PEG- and PDS-Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2024; 25:634. [PMID: 38203805 PMCID: PMC10779103 DOI: 10.3390/ijms25010634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (R.H.); (Y.F.); (Z.G.); (A.A.)
| |
Collapse
|
33
|
Muraoka Y, Muramoto J, Yasuhara Y, Kawatake M, Sakamoto T. Near-Infrared Fluorescent Switch-On Probe for Guanine-Quadruplex Imaging with Extremely Large Stokes Shift. Anal Chem 2023; 95:17162-17165. [PMID: 37955574 DOI: 10.1021/acs.analchem.3c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
To visualize the guanine-quadruplex (G4) nucleic acids in cells or in biological tissues, near-infrared (NIR) fluorescent probes that can respond specifically to G4 nucleic acids are required. Herein, an NIR fluorescence switch-on probe for G4 imaging having higher selectivity and extremely large Stokes shift (ca. 220 nm) was successfully developed by the modification of our original tripodal quinone-cyanine fluorescent dye. The target binding-induced intramolecular stacking interaction of the probe might cause red shifting of the fluorescence emission. The NIR fluorescence switch-on probe developed here might contribute largely to revealing the behaviors of G4 nucleic acids not only in cells but also in biological tissues.
Collapse
Affiliation(s)
- Yuka Muraoka
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Junya Muramoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Yu Yasuhara
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Mayuko Kawatake
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Takashi Sakamoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| |
Collapse
|
34
|
D'Anna L, Miclot T, Bignon E, Perricone U, Barone G, Monari A, Terenzi A. Resolving a guanine-quadruplex structure in the SARS-CoV-2 genome through circular dichroism and multiscale molecular modeling. Chem Sci 2023; 14:11332-11339. [PMID: 37886086 PMCID: PMC10599604 DOI: 10.1039/d3sc04004f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023] Open
Abstract
The genome of SARS-CoV-2 coronavirus is made up of a single-stranded RNA fragment that can assume a specific secondary structure, whose stability can influence the virus's ability to reproduce. Recent studies have identified putative guanine quadruplex sequences in SARS-CoV-2 genome fragments that are involved in coding for both structural and non-structural proteins. In this contribution, we focus on a specific G-rich sequence referred to as RG-2, which codes for the non-structural protein 10 (Nsp10) and assumes a guanine-quadruplex (G4) arrangement. We provide the secondary structure of RG-2 G4 at atomistic resolution by molecular modeling and simulation, validated by the superposition of experimental and calculated electronic circular dichroism spectra. Through both experimental and simulation approaches, we have demonstrated that pyridostatin (PDS), a widely recognized G4 binder, can bind to and stabilize RG-2 G4 more strongly than RG-1, another G4 forming sequence that was previously proposed as a potential target for antiviral drug candidates. Overall, this study highlights RG-2 as a valuable target to inhibit the translation and replication of SARS-CoV-2, paving the way towards original therapeutic approaches against emerging RNA viruses.
Collapse
Affiliation(s)
- Luisa D'Anna
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
- Université de Lorraine and CNRS UMR 7019 LPCT F-54000 Nancy France
| | | | - Ugo Perricone
- Fondazione Ri.MED Via Filippo Marini 14 90128 Palermo Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS F-75006 Paris France
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
35
|
Liu LY, Ma TZ, Zeng YL, Liu W, Zhang H, Mao ZW. Organic-Platinum Hybrids for Covalent Binding of G-Quadruplexes: Structural Basis and Application to Cancer Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202305645. [PMID: 37464955 DOI: 10.1002/anie.202305645] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
G-quadruplexes (G4s) have been revived as promising therapeutic targets with the development of immunotherapy, but the G4-mediated immune response remains unclear. We designed a novel class of G4-binding organic-platinum hybrids, L1 -cispt and L1 -transpt, with spatial matching for G4 binding and G4 DNA reactivity for binding site locking. The solution structure of L1 -transpt-MYT1L G4 demonstrated the effectiveness of the covalent binding and revealed the covalent binding-guided dynamic balance, accompanied by the destruction of the A5-T17 base pairs to achieve the covalent binding of the platinum unit to N7 of the G6 residue. Furthermore, L1 -cispt- and L1 -transpt-mediated genomic dysfunction could activate the retinoic acid-induced gene I (RIG-I) pathway and induce immunogenic cell death (ICD). The use of L1 -cispt/L1 -transpt-treated dying cells as therapeutic vaccines stimulated a robust immune response and effectively inhibited tumor growth in vivo. Our findings highlight the importance of the rational combination of specific spatial recognition and covalent locking in G4-trageting drug design and their potential in immunotherapy.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
36
|
Pandey A, Roy S, Srivatsan SG. Probing the Competition between Duplex, G-Quadruplex and i-Motif Structures of the Oncogenic c-Myc DNA Promoter Region. Chem Asian J 2023; 18:e202300510. [PMID: 37541298 DOI: 10.1002/asia.202300510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Indexed: 08/06/2023]
Abstract
Development of probe systems that provide unique spectral signatures for duplex, G-quadruplex (GQ) and i-motif (iM) structures is very important to understand the relative propensity of a G-rich-C-rich promoter region to form these structures. Here, we devise a platform using a combination of two environment-sensitive nucleoside analogs namely, 5-fluorobenzofuran-modified 2'-deoxyuridine (FBF-dU) and 5-fluoro-2'-deoxyuridine (F-dU) to study the structures adopted by a promoter region of the c-Myc oncogene. FBF-dU serves as a dual-purpose probe containing a fluorescent and 19 F NMR label. When incorporated into the C-rich sequence, it reports the formation of different iMs via changes in its fluorescence properties and 19 F signal. F-dU incorporated into the G-rich ON reports the formation of a GQ structure whose 19 F signal is clearly different from the signals obtained for iMs. Rewardingly, the labeled ONs when mixed with respective complementary strands allows us to determine the relative population of different structures formed by the c-Myc promoter by the virtue of the probe's ability to produce distinct and resolved 19 F signatures for different structures. Our results indicate that at physiological pH and temperature the c-Myc promoter forms duplex, random coil and GQ structures, and does not form an iM. Whereas at acidic pH, the mixture largely forms iM and GQ structures. Taken together, our system will complement existing tools and provide unprecedented insights on the population equilibrium and dynamics of nucleic acid structures under different conditions.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sarupa Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
37
|
Wang J, Huang H, Zhao K, Teng Y, Zhao L, Xu Z, Zheng Y, Zhang L, Li C, Duan Y, Liang K, Zhou X, Cheng X, Xia Y. G-quadruplex in hepatitis B virus pregenomic RNA promotes its translation. J Biol Chem 2023; 299:105151. [PMID: 37567479 PMCID: PMC10485161 DOI: 10.1016/j.jbc.2023.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Haiyan Huang
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Kaitao Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yan Teng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Li Zhao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Zaichao Xu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Conghui Li
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Yurong Duan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Kaiwei Liang
- Department of Pathophysiology, TaiKang Medical School, Wuhan University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Xiaoming Cheng
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Department of Pathology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China.
| |
Collapse
|
38
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
39
|
Liu Y, Li J, Zhang Y, Wang Y, Chen J, Bian Y, Xia Y, Yang MH, Zheng K, Wang KB, Kong LY. Structure of the Major G-Quadruplex in the Human EGFR Oncogene Promoter Adopts a Unique Folding Topology with a Distinctive Snap-Back Loop. J Am Chem Soc 2023; 145:16228-16237. [PMID: 37460135 DOI: 10.1021/jacs.3c05214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Collapse
Affiliation(s)
- Yushuang Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Jinzhu Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yongqiang Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Juannan Chen
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yuting Bian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Kewei Zheng
- School of Biomedical Sciences, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Kai-Bo Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
40
|
Khatik SY, Sudhakar S, Mishra S, Kalia J, Pradeepkumar PI, Srivatsan SG. Probing juxtaposed G-quadruplex and hairpin motifs using a responsive nucleoside probe: a unique scaffold for chemotherapy. Chem Sci 2023; 14:5627-5637. [PMID: 37265741 PMCID: PMC10231310 DOI: 10.1039/d3sc00519d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023] Open
Abstract
Paucity of efficient probes and small molecule ligands that can distinguish different G-quadruplex (GQ) topologies poses challenges not only in understanding their basic structure but also in targeting an individual GQ form from others. Alternatively, G-rich sequences that harbour unique chimeric structural motifs (e.g., GQ-duplex or GQ-hairpin junctions) are perceived as new therapeutic hotspots. In this context, the epidermal growth factor receptor (EGFR) gene, implicated in many cancers, contains a 30 nucleotide G-rich segment in the promoter region, which adopts in vitro two unique architectures each composed of a GQ topology (parallel and hybrid-type) juxtaposed with a hairpin domain. Here, we report the use of a novel dual-app probe, C5-trifluoromethyl benzofuran-modified 2'-deoxyuridine (TFBF-dU), in the systematic analysis of EGFR GQs and their interaction with small molecules by fluorescence and 19F NMR techniques. Notably, distinct fluorescence and 19F NMR signals exhibited by the probe enabled the quantification of the relative population of random, parallel and hybrid-type GQ structures under different conditions, which could not be obtained by conventional CD and 1H NMR techniques. Using the fluorescence component, we quantified ligand binding properties of GQs, whereas the 19F label enabled the assessment of ligand-induced changes in GQ dynamics. Studies also revealed that mutations in the hairpin domain affected GQ formation and stability, which was further functionally verified in polymerase stop assay. We anticipate that these findings and useful properties of the nucleoside probe could be utilized in designing and evaluating binders that jointly target both GQ and hairpin domains for enhanced selectivity and druggability.
Collapse
Affiliation(s)
- Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| | - Sruthi Sudhakar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Satyajit Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road, Bhauri Bhopal 462066 India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay Mumbai 400076 India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road Pune 411008 India
| |
Collapse
|
41
|
Chen W, Zhang Y, Yi HB, Wang F, Chu X, Jiang JH. Type Ι Photosensitizer Targeting G-Quadruplex RNA Elicits Augmented Immunity for Cancer Ablation. Angew Chem Int Ed Engl 2023; 62:e202300162. [PMID: 36856160 DOI: 10.1002/anie.202300162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/02/2023]
Abstract
Type Ι photodynamic therapy (PDT) represents a promising treatment modality for tumors with intrinsic hypoxia. However, type Ι photosensitizers (PSs), especially ones with near infrared (NIR) absorption, are limited and their efficacy needs improvement via new targeting tactics. We develop a NIR type Ι PS by engineering acridinium derived donor-π-acceptor systems. The PS exhibits an exclusive type Ι PDT mechanism due to effective intersystem crossing and disfavored energy transfer to O2 , and shows selective binding to G-quadruplexes (G4s) via hydrogen bonds identified by a molecular docking study. Moreover, it enables fluorogenic detection of G4s and efficient O2 ⋅- production in hypoxic conditions, leading to immunogenic cell death and substantial variations of gene expression in RNA sequencing. Our strategy demonstrates augmented antitumor immunity for effective ablation of immunogenic cold tumor, highlighting its potential of RNA-targeted type Ι PDT in precision cancer therapy.
Collapse
Affiliation(s)
- Wen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hai-Bo Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
42
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
43
|
Qin G, Zhao C, Yang J, Wang Z, Ren J, Qu X. Unlocking G-Quadruplexes as Targets and Tools against COVID-19. CHINESE J CHEM 2022; 41:CJOC202200486. [PMID: 36711116 PMCID: PMC9874442 DOI: 10.1002/cjoc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 02/01/2023]
Abstract
The applicability of G-quadruplexes (G4s) as antiviral targets, therapeutic agents and diagnostic tools for coronavirus disease 2019 (COVID-19) is currently being evaluated, which has drawn the extensive attention of the scientific community. During the COVID-19 pandemic, research in this field is rapidly accumulating. In this review, we summarize the latest achievements and breakthroughs in the use of G4s as antiviral targets, therapeutic agents and diagnostic tools for COVID-19, particularly using G4 ligands. Finally, strength and weakness regarding G4s in anti-SARS-CoV-2 field are highlighted for prospective future projects.
Collapse
Affiliation(s)
- Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry Chinese Academy of ScienceChangchun, Jilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
44
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|