1
|
Zhang Q, Pei Z, Song AY, Qi M, Khoo RSH, Yang C, Xia T, Zhou C, Mao H, Huang Z, Lai S, Wang Y, Tan LZ, Reimer JA, Zhang J, Coote ML, Liu Y. Manipulating Aromaticity to Redirect Topochemical Polymerization Pathways. J Am Chem Soc 2025; 147:14715-14724. [PMID: 40232681 DOI: 10.1021/jacs.5c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Topochemical polymerization (TCP) represents an essential route to create regio- and stereoregular polymers through solid-state transformations. Herein, we present an innovative strategy for controlling topochemical polymerization pathways by tailoring the terminal group aromaticity in the para-azaquinodimethane (AQM) ring system. Substituting phenyl groups with less aromatic furyl units extends significant spin density delocalization across the conjugated core upon thermal activation, inducing significant diradicaloid characters at furyl positions and enabling unconventional reactivities in both solution and solid states. Thermal treatment in toluene yields a unique cyclophane dimer formed via furyl-methine C-C coupling, confirmed by X-ray crystallography, while solid-state reactions produce polymers formed via both intercolumnar furyl-methine coupling and intracolumnar methine-methine coupling. The spin-center-directed mechanism underlying these transformations is validated through theoretical modeling and isotopic labeling experiments. This study highlights the prowess of aromaticity modulation in functional pro-aromatic systems, which enables the synthesis of polymers with main chain structures that are otherwise difficult to access.
Collapse
Affiliation(s)
- Qingsong Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhipeng Pei
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Ah-Young Song
- College of Chemistry Pines Magnetic Resonance Center, University of California, Berkeley, Berkeley, California 94720, United States
| | - Miao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tao Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zhiyuan Huang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Shiqi Lai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, SA 5042, Australia
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Yang C, Liu J, Khoo RSH, Abdelsamie M, Qi M, Li H, Mao H, Hemenway S, Xu Q, Wang Y, Yu B, Zhang Q, Liu X, Klivansky LM, Gu X, Zhu C, Reimer JA, Cui G, Sutter-Fella CM, Zhang J, Ren G, Liu Y. High-fidelity topochemical polymerization in single crystals, polycrystals, and solution aggregates. Nat Commun 2025; 16:3498. [PMID: 40221394 PMCID: PMC11993752 DOI: 10.1038/s41467-025-58822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Topochemical polymerization (TCP) emerges as a leading approach for synthesizing single crystalline polymers, but is traditionally restricted to transformations in solid-medium. The complexity in achieving single-crystal-to-single-crystal (SCSC) transformations due to lattice disparities and the untapped potential of performing TCP in a liquid medium with solid-state structural fidelity present unsolved challenges. Herein, by using X-rays as the primary means to overcome crystal disintegration, we reveal the details of SCSC transformation during the TCP of chiral azaquinodimethane (AQM) monomers through in situ crystallographic analysis while spotlighting a rare metastable crystalline phase. Complementary in situ investigations of powders and thin films provide critical insights into the side-chain dependent polymerization kinetics of solid-state reactions. Furthermore, we enable TCP of AQM monomers in a liquid medium via an antisolvent-reinforced aggregated state, yielding polymer nanofibers with high crystallinity akin to that of solid-state. This study testifies high structural precision of TCP performed in different states and media, offering critical insights into the synthesis of processable nanostructured polymers with desired structural integrity.
Collapse
Affiliation(s)
- Chongqing Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Maged Abdelsamie
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Miao Qi
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - He Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Sydney Hemenway
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qiang Xu
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yunfei Wang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Beihang Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Qingsong Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xinxin Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P.R. China
| | - Liana M Klivansky
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Xiaodan Gu
- School of Polymer Science and Engineering Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing, 100875, P.R. China
| | | | - Jian Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
Chu WD, Dan SY, Zhan J, Chen B, Xian J, Wang CM, Liu QZ, Wu J, Fan CA. Facile synthesis of recyclable polythioimidocarbonates via aromatization-driven alternating copolymerization of para-quinone methide and isothiocyanates. Chem Sci 2025; 16:5493-5502. [PMID: 40028625 PMCID: PMC11866116 DOI: 10.1039/d5sc00050e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
The efficient and controllable alternating copolymerization of para-Quinone Methide (p-QM) is rare and challenging. The aromatization-driven alternating copolymerization of p-QM with isothiocyanates is explored for the first time under mild conditions. In the presence of the key catalyst m-phthalic acid and the initiator TBD, the reaction can efficiently produce completely alternating polythioimidocarbonates with narrow molecular weight distributions and high molar mass (up to 103.6 kg mol-1). Experimental studies and DFT calculations suggest that m-phthalic acid plays a synergistic catalytic role. Remarkably, copolymers can be recycled back into monomers with excellent yields under vacuum at a temperature of 190 °C in just a few minutes without solvents or catalysts.
Collapse
Affiliation(s)
- Wen-Dao Chu
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Si-Yu Dan
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Jie Zhan
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Bo Chen
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Ji Xian
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Chun-Mei Wang
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Quan-Zhong Liu
- Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University No. 1 Shida Road Nanchong Sichuan 637002 China
| | - Jincai Wu
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| | - Chun-An Fan
- State Key Laboratory of Natural Product Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui Nanlu Lanzhou 730000 China
| |
Collapse
|
4
|
Wu P, Hu Q, Ogunfowora LA, Li Z, Marquardt AV, Savoie BM, Dou L. Toward Sustainable Polydienes. J Am Chem Soc 2025; 147:2960-2977. [PMID: 39824748 DOI: 10.1021/jacs.4c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies. Our investigation reveals the primary technical challenges associated with polydiene recycling, notably the energy-intensive nature of modification processes and the environmental detriments of prevailing disposal techniques. Furthermore, we critically evaluate existing recycling methodologies─including mechanical recycling, energy recovery, and chemical recycling─highlighting their respective merits, constraints, and environmental implications. Pioneering advancements in recycling technology, such as topochemical polymerization and computational prediction models, are spotlighted for their potential to revolutionize polydiene recycling. Looking forward, we delineate an optimistic trajectory for polydiene waste management, advocating for innovative polymerization methods, the exploration of milder recycling conditions, and the adoption of interdisciplinary approaches to bolster recycling efficiency. The Perspective culminates in a discussion on the pivotal role of policy frameworks, life cycle assessments, and economic analyses in shaping the future of polydiene recycling. Through this scholarly examination, we aim to catalyze further research and development efforts aimed at mitigating the environmental impact of polydiene waste, thereby contributing to the broader objective of sustainable chemistry.
Collapse
Affiliation(s)
- Pengfei Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qixuan Hu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lawal A Ogunfowora
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhixu Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew V Marquardt
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemical and Biomolecular Engineering, The University of Notre Dame, South Bend, Indiana 46556, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Deng S, Cao R, Wang X, Zhou Y, Liang J, Tang H, Feng X, Yang S, Shangguan Y, Li Y, Chen H. Upconversion Phosphor-Driven Photodegradation of Plastics. NANO LETTERS 2024; 24:14082-14090. [PMID: 39437159 DOI: 10.1021/acs.nanolett.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li2CaGeO4 (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C-C and C-O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.
Collapse
Affiliation(s)
- Shimao Deng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Runzi Cao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuanhao Zhou
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Jiaxin Liang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songhe Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hong Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
7
|
Usuba J, Sun Z, Nguyen HPQ, Raju C, Schmidt-Rohr K, Han GGD. Mechanoactivated amorphization and photopolymerization of styryldipyryliums. COMMUNICATIONS MATERIALS 2024; 5:98. [PMID: 38859933 PMCID: PMC11162349 DOI: 10.1038/s43246-024-00539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
Conventional topochemical photopolymerization reactions occur exclusively in precisely-engineered photoactive crystalline states, which often produces high-insoluble polymers. To mitigate this, here, we report the mechanoactivation of photostable styryldipyrylium-based monomers, which results in their amorphization-enabled solid-state photopolymerization and produces soluble and processable amorphous polymers. A combination of solid-state nuclear magnetic resonance, X-ray diffraction, and absorption/fluorescence spectroscopy reveals the crucial role of a mechanically-disordered monomer phase in yielding polymers via photo-induced [2 + 2] cycloaddition reaction. Hence, mechanoactivation and amorphization can expand the scope of topochemical polymerization conditions to open up opportunities for generating polymers that are otherwise difficult to synthesize and analyze.
Collapse
Affiliation(s)
- Junichi Usuba
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| | - Zhenhuan Sun
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| | - Han P. Q. Nguyen
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| | - Cijil Raju
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| | - Grace G. D. Han
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453 USA
| |
Collapse
|
8
|
Yang T, Lu X, Wang X, Wei X, An N, Li Y, Wang W, Li X, Fang X, Sun J. Upcycling of Carbon Fiber/Thermoset Composites into High-Performance Elastomers and Repurposed Carbon Fibers. Angew Chem Int Ed Engl 2024; 63:e202403972. [PMID: 38491769 DOI: 10.1002/anie.202403972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Recycling of carbon fiber-reinforced polymer composites (CFRCs) based on thermosetting plastics is difficult. In the present study, high-performance CFRCs are fabricated through complexation of aromatic pinacol-cross-linked polyurethane (PU-AP) thermosets with carbon fiber (CF) cloths. PU-AP thermosets exhibit a breaking strength of 95.5 MPa and toughness of 473.6 MJ m-3 and contain abundant hydrogen-bonding groups, which can have strong adhesion with CFs. Because of the high interfacial adhesion between CF cloths and PU-AP thermosets and high toughness of PU-AP thermosets, CF/PU-AP composites possess a high tensile strength of >870 MPa. Upon heating in N,N-dimethylacetamide (DMAc) at 100 °C, the aromatic pinacols in the CF/PU-AP composites can be cleaved, generating non-destructive CF cloths and linear polymers that can be converted to high-performance elastomers. The elastomers are mechanically robust, healable, reprocessable, and damage-resistant with an extremely high tensile strength of 74.2 MPa and fracture energy of 149.6 kJ m-2. As a result, dissociation of CF/PU-AP composites enables the recovery of reusable CF cloths and high-performance elastomers, thus realizing the upcycling of CF/PU-AP composites.
Collapse
Affiliation(s)
- Tiantian Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ni An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Khazeber R, Kana GS, Sureshan KM. Massive Molecular Motion in Crystal Leads to an Unexpected Helical Covalent Polymer in a Solid-state Polymerization. Angew Chem Int Ed Engl 2024; 63:e202316513. [PMID: 38224551 DOI: 10.1002/anie.202316513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
We designed a proline-derived monomer with azide and alkene functional groups to enable topochemical ene-azide cycloaddition (TEAC) polymerization. In its crystal, the monomer forms supramolecular helices along the 'a' axis through various non-covalent interactions. Along the 'c' axis, the molecules arrange themselves head-to-tail in a wave-like pattern, positioning the azide and alkene groups of adjacent molecules in close proximity and anti-parallel orientation, complying with Schmidt's criteria for topochemical reaction. This prearranged configuration was expected to facilitate smooth topochemical polymerization, resulting in a 1,4-triazoline-linked polymer. Upon heating, the monomer underwent TEAC polymerization in a remarkable single-crystal-to-single-crystal fashion, but, to our surprise, it yielded an unexpected covalent helical polymer linked by 1,5-disubstituted triazoline units. Remarkably, the crystal avoids the ready-to-react arrangement for polymerization, but connects monomer molecules within the supramolecular helix through the cycloaddition of azide and alkene groups, even though they are not in close proximity nor in the expected orientation. This unexpected path, involving a substantial 134° rotation of the alkene group, yields hitherto unknown 1,5-disubstituted triazoline product regiospecifically. This study serves as a cautionary reminder that relying solely on topochemical postulates for predicting reactivity can sometimes be misleading.
Collapse
Affiliation(s)
- Ravichandran Khazeber
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Gautham S Kana
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
10
|
Lohmann V, Jones GR, Truong NP, Anastasaki A. The thermodynamics and kinetics of depolymerization: what makes vinyl monomer regeneration feasible? Chem Sci 2024; 15:832-853. [PMID: 38239674 PMCID: PMC10793647 DOI: 10.1039/d3sc05143a] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Depolymerization is potentially a highly advantageous method of recycling plastic waste which could move the world closer towards a truly circular polymer economy. However, depolymerization remains challenging for many polymers with all-carbon backbones. Fundamental understanding and consideration of both the kinetics and thermodynamics are essential in order to develop effective new depolymerization systems that could overcome this problem, as the feasibility of monomer generation can be drastically altered by tuning the reaction conditions. This perspective explores the underlying thermodynamics and kinetics governing radical depolymerization of addition polymers by revisiting pioneering work started in the mid-20th century and demonstrates its connection to exciting recent advances which report depolymerization reaching near-quantitative monomer regeneration at much lower temperatures than seen previously. Recent catalytic approaches to monomer regeneration are also explored, highlighting that this nascent chemistry could potentially revolutionize depolymerization-based polymer recycling in the future.
Collapse
Affiliation(s)
- Victoria Lohmann
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Glen R Jones
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Nghia P Truong
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
- Monash Institute of Pharmaceutical Sciences, Monash University 399 Royal Parade Parkville VIC 3152 Australia
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
11
|
Mineo AM, Katsumata R. A Versatile Comonomer Additive for Radically Recyclable Vinyl-derived Polymers. Angew Chem Int Ed Engl 2024; 63:e202316248. [PMID: 38029360 DOI: 10.1002/anie.202316248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Radically-formed, vinyl-derived polymers account for over 30 % of polymer production. Connected through stable carbon-carbon bonds, these materials are notoriously challenging to chemically recycle. Herein, we report universal copolymerization of a cyclic allyl sulfide (CAS) additive with multiple monomers under free-radical conditions, to introduce main-chain dynamic motifs. Backbone allyl sulfides undergo post-polymerization radical rearrangement via addition-fragmentation-transfer (AFT) that fosters both chain scission and extension. Scission is selectively induced through allyl sulfide exchange with small molecule thiyl radicals, resulting in oligomers as low as 14 % of the initial molar mass. Crucially, oligomers retain allyl sulfide end groups, enabling their extension with monomer under radical conditions. Extended, i.e., recycled, product molar mass is tunable through the ratio of monomer to oligomer, and can surpass that of the initial copolymer. Two scission-extension cycles are demonstrated in copolymers with methyl methacrylate and styrene without escalation in dispersity. In illustration of forming higher-value products, i.e., upcycling, we synthesized block copolymers through the extension of oligomers with a different vinyl monomer. Collectively, our approach to chemical recycling is unparalleled in its ability to 1) function in a variety of vinyl-derived polymers, 2) complete radical closed-loop cycling, and 3) upcycle waste material.
Collapse
Affiliation(s)
- Autumn M Mineo
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Reika Katsumata
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Feng X, Cen K, Yu X, Huang C, Yang W, Yang Y, Tang X. Quinoa protein Pickering emulsion improves the freeze-thaw stability of myofibrillar protein gel: Maintaining protein composition, structure, conformation and digestibility and slowing down protein oxidation. Int J Biol Macromol 2023; 253:126682. [PMID: 37666398 DOI: 10.1016/j.ijbiomac.2023.126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
In this work, the effects of quinoa protein Pickering emulsion (QPPE) on protein oxidation, structure and gastrointestinal digestion property of myofibrillar protein gels (MPGs) after freeze-thaw (F-T) cycles are revealed. SDS-PAGE results indicated that 5.0 %-10.0 % QPPE addition slowed down the protein degradation. Meanwhile, 5.0 %-7.5 % QPPE maintained the stability of the protein secondary and tertiary structure of MPGs after F-T cycles. The sulfhydryl group, disulfide bond and dityrosine content increased with QPPE supplementation. The conformations of disulfide bond changed from g-g-t and t-g-t to g-g-g after F-T cycles, and 5.0 %-7.5 % QPPE stabilized the changes of t-g-t conformation. Furthermore, the increase of dityrosine content after F-T cycles was significantly reduced with 7.5 % QPPE addition, indicating its effect to slow down protein oxidation of MPGs. In addition, MPGs with 5.0 % and 7.5 % QPPE showed noticeably higher zeta potential values than other groups, indicating the enhanced electrostatic repulsion and weakened aggregation caused by F-T damage. This work showed that 7.5 % QPPE improved the F-T stability of MPGs and reduced the protein denaturation and oxidation caused by F-T treatments, exerting no side effect on the digestion property of MPGs. QPPE can be used as a green and effective antifreeze in meat industry.
Collapse
Affiliation(s)
- Xiao Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Kaiyue Cen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Yang
- Quality and Technology Center, Hainan Xiangtai Fishery Co., Ltd., Chengmai 571924, China
| | - Yuling Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
13
|
Long L, Medina Rivero S, Sun F, Wang D, Chekulaev D, Tonnelé C, Casanova D, Casado J, Zheng Y. A Single-Crystal Monomer to Single-Crystal Polymer Reaction Activated by a Triplet Excimer in a Zipper Mechanism. Angew Chem Int Ed Engl 2023; 62:e202308780. [PMID: 37533303 DOI: 10.1002/anie.202308780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
A combined experimental and theoretical study focused on the elucidation of the polymerization mechanism of the crystal monomer to crystal polymer reaction of a bisindenedione compound in the solid state. The experimental description and characterization of the polymer product have been reported elsewhere and, in this article, we address the first detailed description of the polymerization process. This reaction pathway consists of the initial formation of a triplet excimer state that relaxes to an intermolecularly bonded triplet state that is the starting point of the propagation step of the polymerization. The overall process can be visualized in the monomer starting state as an open zipper in which a cursor or slider is formed by light absorption and the whole zipper is then closed by propagation of the cursor. To this end, variable-temperature electron spin resonance (ESR), femtosecond transient absorption spectroscopy, and vibrational Raman spectroscopic data have been implemented in combination with quantum chemical calculations. The presented mechanistic insight is of great value to understand the intricacies of such an important reaction and to envisage and diversify the products produced thereof.
Collapse
Affiliation(s)
- Lanxin Long
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Samara Medina Rivero
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
- Department of Physics & Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Fanxi Sun
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Dongsheng Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| | - Dimitri Chekulaev
- Department of Physics & Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
- Ikerbasque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Yonghao Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610072, Chengdu, P. R. China
| |
Collapse
|
14
|
Su YL, Yue L, Tran H, Xu M, Engler A, Ramprasad R, Qi HJ, Gutekunst WR. Chemically Recyclable Polymer System Based on Nucleophilic Aromatic Ring-Opening Polymerization. J Am Chem Soc 2023. [PMID: 37307298 DOI: 10.1021/jacs.3c03455] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of chemically recyclable polymers with desirable properties is a long-standing but challenging goal in polymer science. Central to this challenge is the need for reversible chemical reactions that can equilibrate at rapid rates and provide efficient polymerization and depolymerization cycles. Based on the dynamic chemistry of nucleophilic aromatic substitution (SNAr), we report a chemically recyclable polythioether system derived from readily accessible benzothiocane (BT) monomers. This system represents the first example of a well-defined monomer platform capable of chain-growth ring-opening polymerization through an SNAr manifold. The polymerizations reach completion in minutes, and the pendant functionalities are easily customized to tune material properties or render the polymers amenable to further functionalization. The resulting polythioether materials exhibit comparable performance to commercial thermoplastics and can be depolymerized to the original monomers in high yields.
Collapse
Affiliation(s)
- Yong-Liang Su
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Liang Yue
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huan Tran
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mizhi Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony Engler
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rampi Ramprasad
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Die J, Ma J, Li H, Zhang Y, Li F, Cao Y, Hao W, Tu J, Zhang K, Yu R. Effects of Maleic Anhydride-Grafted Polyethylene on the Properties of Artificial Marble Waste Powder/Linear Low-Density Polyethylene Composites with Ultra-High Filling Content. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114036. [PMID: 37297170 DOI: 10.3390/ma16114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
The need to reach carbon neutrality as soon as possible has made the use of recycled materials widespread. However, the treatment of artificial marble waste powder (AMWP) containing unsaturated polyester is a very challenging task. This task can be accomplished by converting AMWP into new plastic composites. Such conversion is a cost-effective and eco-friendly way to recycle industrial waste. However, the lack of mechanical strength in composites and the low filling content of AMWP have been major obstacles to its practical application in structural and technical buildings. In this study, a composite of AMWP/linear low-density polyethylene (LLDPE) filled with a 70 wt% AMWP content was fabricated using maleic anhydride-grafted polyethylene as a compatibilizer (MAPE). The mechanical strength of the prepared composites is excellent (tensile strength ~18.45 MPa, impact strength ~51.6 kJ/m2), making them appropriate as useful building materials. Additionally, laser particle size analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and thermogravimetric analysis were used to examine the effects of maleic anhydride-grafted polyethylene on the mechanical properties of AMWP/LLDPE composites and its mechanism of action. Overall, this study offers a practical method for the low-cost recycling of industrial waste into high-performance composites.
Collapse
Affiliation(s)
- Juncheng Die
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianting Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Hai Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yafeng Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Fei Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yang Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Wanjun Hao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Kexi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Rentong Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
16
|
Zhang Z, Lei D, Zhang C, Wang Z, Jin Y, Zhang W, Liu X, Sun J. Strong and Tough Supramolecular Covalent Adaptable Networks with Room-Temperature Closed-Loop Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208619. [PMID: 36367361 DOI: 10.1002/adma.202208619] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Development of closed-loop chemically recyclable plastics (CCRPs) that can be widely used in daily life can be a fundamental solution to the global plastic waste crisis. Hence, it is of great significance to develop easy-to-recycle CCRPs that possess superior or comparable material properties to the commodity plastics. Here, a novel dual crosslinked CCRP, namely, supramolecular covalent adaptable networks (supra-CANs), is reported, which not only displays mechanical properties higher than the strong and tough commodity polycarbonate, but also exhibits excellent solvent resistance as thermosets. The supra-CANs are constructed by introducing reversible noncovalent crosslinks into the dynamic covalent polymer networks, resulting in highly stiff and strong thermosets that also exhibit thermoplastic-like ductile and tough behaviors as well as reprocessability and rehealability. In great contrast, the analogs that do not have noncovalent crosslinks (CANs) show elastomeric properties with significantly decreased mechanical strength. Importantly, the developed supra-CANs and CANs can be converted back into the initial monomers in high yields and purity at room temperature, even with additives, which enables the sustainable polymer-monomer-polymer circulation. This work provides new design principles for high-performance chemically recyclable polymers as sustainable substitutes for the conventional plastics.
Collapse
Affiliation(s)
- Zhuoqiang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Lei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenxuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhenyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|