1
|
Zhang X, Su Z, Jiang L, Wang S, Gai H, Deng Z, Chen Y, Zhang Z, Zhu W, Zhao Z, Li X, Zhang X. Femtosecond laser synthesis of metastable PtRu/graphene electrocatalysts for efficient hydrogen evolution reaction in acidic and alkaline solutions. J Colloid Interface Sci 2025; 690:137265. [PMID: 40080928 DOI: 10.1016/j.jcis.2025.137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Facile synthesis of nanoalloys with atomic dispersity is an effective means to engineer highly efficient electrocatalysts by maximizing the exposure of catalytically active sites. However, such effort faces challenges in practice. One key issue is the thermodynamic-driven phase separation because of differences in redox potentials across different elements. Conventional wet chemistry methods often lack the rapid high-energy input required to non-selectively reduce precursors and mix elements with differing crystallographic parameters or phases, processes hindered by kinetic barriers. Here, we employ a femtosecond (fs) laser liquid ablation technique to synthesize defect-rich PtRu alloys on carbon supports without the application of external reducing agents or capping ligands. The extreme light field generated by fs lasers facilitates the rapid synthesis and stabilization of nanoalloy particles. The synthesized PtRu nanoparticles exhibited remarkable hydrogen evolution reaction (HER) activity in 1 M KOH and 0.5 M H2SO4, with overpotentials of 15.5 mV and 13.6 mV at 10 mA cm-2, respectively. In alkaline and acidic solutions, the mass activity of PtRu/graphene catalyst was 4.7 and 4.3 times that of commercial Pt/C catalysts, respectively. The electrolyte/electrode interfacial properties were investigated using in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). It was found that alloying Pt with Ru activates water molecules and optimizes the interfacial water structure and hydrogen adsorption energy. Populated free water molecules at the electrolyte/electrode (PtRu/graphene) interface facilitate the transport of reaction intermediates. In-situ Raman spectroscopy reveals that Ru directly participates in the Volmer step, serving as the active site for water dissociation. Our study demonstrates the potential of using fs lasers for materials engineering and designing ligand-free metastable nanoalloys for various applications.
Collapse
Affiliation(s)
- Xianze Zhang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zikang Su
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shanshan Wang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China
| | - Haozhe Gai
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ziliang Deng
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanan Chen
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihan Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zipeng Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xianglong Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqiang Zhang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Jin H, Zhang Y, Cao Z, Liu J, Ye S. Atomically Dispersed Sn on Core-Shell MoS 2 Nanoreactors as Mott-Schottky Phase Junctions for Efficient Electrocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502977. [PMID: 40326891 DOI: 10.1002/adma.202502977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) plays a pivotal role in electrochemical energy conversion and storage. However, traditional HER catalysts still face significant challenges, including limited activity, poor acid resistance, and high costs. To address these issues, a hollow core-shell structured 2H@1T-MoS2-Sn1 nanoreactor is designed for acidic HER, where Sn single atoms are anchored on the shell of 2H@1T-MoS2 Mott-Schottky phase junction. The 2H@1T-MoS2-Sn1 catalyst demonstrates exceptional HER performance, achieving an ultralow overpotential of 9 mV at 10 mA cm-2 and a Tafel slope of 16.3 mV dec-1 in acidic media-the best performance reported to date among MoS2-based electrocatalysts. The enhanced performance is attributed to the internal electric field at the Mott-Schottky phase junction, which facilitates efficient electron transfer. Additionally, the Sn single atoms modulate the electronic structure of Mo atoms within the Sn-S2-Mo motif, inducing a significant shift in the d-band center and thereby optimizing the dehydrogenation process. This work presents a novel electrocatalyst design strategy that simultaneously engineers interfacial charge transfer and surface catalysis, offering a promising approach for advancing energy conversion technologies.
Collapse
Affiliation(s)
- Hao Jin
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Zhang
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Zhuwei Cao
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Liu
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- DICP-Surrey Joint Centre for Future Materials, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sheng Ye
- Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Wu J, Zhu Y, Ye S, He B, Zhang S, Pang H, Jin C, Chen L, Sun D, Xu L, Tang Y. Synergistic Strong and Reactive Metal-Support Interactions-Induced Electronic Regulation of Sub-2 nm Ru Nanoclusters for Enhanced Hydrogen Evolution Performance. Chemistry 2025; 31:e202500651. [PMID: 40099369 DOI: 10.1002/chem.202500651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Metal-support interaction represents an effective strategy to boost the electrocatalytic performance of electrocatalysts. Herein, a novel electrocatalyst consisting of Ru nanoclusters anchored on the N-doped carbon nanosheets (abbreviated as Ru@N-CNS hereafter) with synergistic strong metal-support interaction (SMSI) and reactive metal-support interaction (RMSI) is developed. Thanks to the equilibrium of SMSI and RMSI, the obtained Ru@N-CNS electrocatalyst possesses abundant exposed active sites, robust mechanical strength, fast mass transfer, and regulated electronic states, thereby holding outstanding electrochemical hydrogen evolution performance in alkaline medium. To be specific, the Ru@N-CNS only requires a small overpotential of 16 mV at a current density of 10 mA cm-2, low Tafel slope of 67.8 mV dec-1, and highlighted long-term stability, surpassing the commercial Pt/C and Ru/C. More memorably, a water-splitting electrolyzer built by the Ru@N-CNS electrode as cathode and commercial RuO2 as anode needs a low cell voltage of 1.56 V at 10 mA cm-2 and exhibits excellent stability, reflecting a huge prospect for scalable electrochemical H2 generation. This work opens up a novel thought of synergizing metal-support interactions for designing progressive electrocatalysts in energy-related fields.
Collapse
Affiliation(s)
- Jiayi Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
- Nanjing Yuqing Environmental Technology Co., Ltd, Nanjing, People's Republic of China
| | - Yufeng Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shasha Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
- Nanjing Yuqing Environmental Technology Co., Ltd, Nanjing, People's Republic of China
| | - Bin He
- Zhejiang Key Laboratory for Industrial Solid Waste Thermal Hydrolysis Technology and Intelligent Equipment, Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou, People's Republic of China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou, People's Republic of China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, People's Republic of China
| | - Lei Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
- Nanjing Yuqing Environmental Technology Co., Ltd, Nanjing, People's Republic of China
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Tian F, Geng S, Li M, Qiu L, Wu F, He L, Sheng J, Zhou X, Chen Z, Luo M, Liu H, Yu Y, Yang W, Guo S. Synergetic Oxidized Mg and Mo Sites on Amorphous Ru Metallene Boost Hydrogen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501230. [PMID: 40116552 DOI: 10.1002/adma.202501230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Ruthenium (Ru) is considered as a promising catalyst for the alkaline hydrogen evolution reaction (HER), yet its weak water adsorption ability hinders the water splitting efficiency. Herein, a concept of introducing the oxygenophilic MgOx and MoOy species onto amorphous Ru metallene is demonstrated through a simple one-pot salt-templating method for the synergic promotion of water adsorption and splitting to greatly enhance the alkaline HER electrocatalysis. The atomically thin MgOx and MoOy species on Ru metallene (MgOx/MoOy-Ru) show a 15.3-fold increase in mass activity for HER at the potential of 100 mV than that of Ru metallene and an ultralow overpotential of 8.5 mV at a current density of 10 mA cm-2. It is further demonstrated that the MgOx/MoOy-Ru-based anion exchange membrane water electrolyzer can achieve a high current density of 100 mA cm-2 at a remarkably low cell voltage of 1.55 V, and exhibit excellent durability of over 60 h at a current density of 500 mA cm-2. In situ spectroscopy and theoretical simulations reveal that the co-introduction of MgOx and MoOy enhances interfacial water adsorption and splitting by promoting adsorption on oxidized Mg sites and lowering the dissociation energy barrier on oxidized Mo sites.
Collapse
Affiliation(s)
- Fenyang Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shuo Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Menggang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Longyu Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fengyu Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lin He
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Sheng
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhaoyu Chen
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Xiang J, Wang P, Li P, Zhou M, Yu G, Jin Z. Inter-Site Distance Effect in Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202500644. [PMID: 40033984 DOI: 10.1002/anie.202500644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/05/2025]
Abstract
The inter-site distance effect (ISDE) has gained significant attention in heterogeneous catalysis, challenging classical models that treat adjacent nonbonded sites as isolated. Recent studies demonstrate that these sites can exhibit long-range cooperative interactions, enhancing reaction efficiencies. Fully leveraging the ISDE to overcome limitations in site reactivity requires a multidisciplinary approach and advanced techniques. This review provides a comprehensive overview of ISDE in electrocatalysis, starting with strategies for synthesizing materials with tunable inter-site distances. It examines ISDE across various catalyst models, including monometallic and heteronuclear atomic sites, active sites within clusters, and the lattice of nanocatalysts, focusing on their electronic structures, spatial geometries, and synergistic interactions. Advanced characterization and computational methods are highlighted as essential for identifying inter-site structures and distances, providing a systematic framework for understanding ISDE's role in electrocatalysis. The review also proposes best practices for studying ISDE, addressing current challenges and offering future perspectives. These insights aim to inform the design of highly efficient catalysts, enhance the understanding of catalytic mechanisms, and contribute to the development of more efficient energy conversion technologies, providing a foundation for further research into optimizing electrocatalysts.
Collapse
Affiliation(s)
- Jiongcan Xiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
6
|
Tu M, Zhu Z, He Y, Mathi S, Deng J, Naushad M, Huang Y, Wen Hu Y, Balogun MS. Layered-Hierarchical Dual-Lattice Strain Suppresses Ni xSe Surface Reconstruction for Stable OER in Alkaline Fresh/Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500687. [PMID: 40079069 DOI: 10.1002/smll.202500687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Transition metal selenides (TMSe) are promising oxygen evolution reaction (OER) electrocatalysts but act as precursors rather than the actual active phase, transforming into amorphous oxyhydroxides during OER. This transformation, along with the formation of selenium oxyanions and unstable heterointerfaces, complicates the structure-activity relationship and reduces stability. This work introduces novel "layered-hierarchical dual lattice strain engineering" to inhibit the surface reconstruction of NixSe by modulating both the nickel foam (NF) substrate with Mo2N nanosheets (NM) and the NixSe nanorods-nanosheets catalytic layer (NiSe-Ni0.85Se-NiO, NSN) with ultrafast interfacial bimetallic amorphous NiFeOOH coating, achieving the optimized NM/NSN/NiFeOOH configuration. The NM substrate induces lattice strain, enhancing OER activity by improving electron transport and adhesion, while the NiFeOOH coating induces additional lattice strain, mitigating the surface reconstruction and oxidative degradation, reinforcing structural integrity. The NM/NSN/NiFeOOH catalyst demonstrates exceptional OER performance with low overpotentials of 208 mV@10 mA cm-2 and outstanding stability over 100 h at 100 mA cm-2 in alkaline freshwater and seawater. Theoretical analysis shows that NiFeOOH effectively prevents surface reconstruction and oxidative degradation by preserving Ni sites for optimal OER intermediate interactions while stabilizing the electronic environment. This work provides a novel strategy for enhancing the OER stability of TMSe and beyond.
Collapse
Affiliation(s)
- Meilian Tu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Zhixiao Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Yanxiang He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Selvam Mathi
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Jianqiu Deng
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yu Wen Hu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
- Guangxi Academy of Sciences, Nanning, Guangxi, 530007, P. R. China
| |
Collapse
|
7
|
Wang Y, Yang G, Wang C, Liu H, Wang X, Pang H. Controllable distribution of surface-modified MIL-53 with ruthenium nanoparticles on nickel foam and its high efficiency electrocatalytic hydrogen evolution. Dalton Trans 2025; 54:6840-6846. [PMID: 40166859 DOI: 10.1039/d5dt00287g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Central to the development of electrocatalysts that are cost-effective and highly functional are the synthesis of materials and the meticulous delineation of their morphology. This article introduces a solvent-thermal method for constructing ruthenium-based electrocatalysts (Ru/MIL-53@NF), distinguished by the in situ generation of ruthenium nanoparticles (NPs) on MIL-53 with notable dispersion. The procedure requires precise control over ruthenium integration and results in electrocatalysts with exceptional dispersion properties. Furthermore, the optimally engineered Ru/MIL-53@NF exhibited outstanding electrocatalytic hydrogen evolution performance, registering an overpotential of merely 17 mV at 10 mA cm-2 and a Tafel slope of 53.7 mV dec-1, thus outstripping the standard 20 wt% Pt/C benchmark. This research highlights the careful calibration of synthetic parameters to forge ruthenium-based electrocatalysts with both high efficacy and stability.
Collapse
Affiliation(s)
- Yuhang Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guixin Yang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Chao Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Hongtao Liu
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xinming Wang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Haijun Pang
- The School of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
8
|
Song Y, Zhao W, Wang Z, Shi W, Zhang F, Wei Z, Cui X, Zhu Y, Wang T, Sun L, Zhang B. Sub-4 nm Ru-RuO 2 Schottky Nanojunction as a Catalyst for Durable Acidic Water Oxidation. J Am Chem Soc 2025; 147:13775-13783. [PMID: 40184350 DOI: 10.1021/jacs.5c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
RuO2 with high intrinsic activity for water oxidation is a promising alternative to IrO2 in proton exchange membrane (PEM) electrolyzer, but it suffers from long-term stability issues due to overoxidation. Here, we report a sub-4 nm Ru-RuO2 Schottky nanojunction (Ru-RuO2-SN) prepared by a microwave reaction that exhibits high activity and long-term stability in both three-electrode systems and PEM devices. The lattice strain and charge transfer induced by the metal-oxide SN increase the work function of the Ru-RuO2-SN, optimize the local electronic structure, and reduce the desorption energy of the metal site to the oxygen-containing intermediates; as a result, it leads to the oxide path mechanism (OPM) and inhibits the excessive oxidation of surface ruthenium. The Ru-RuO2-SN requires only 165 mV overpotential to obtain 10 mA·cm-2 with 1400 h stability without obvious activity degradation, achieving a stability number (6.7 × 106) matching iridium-based catalysts. In a PEM electrolyzer with Ru-RuO2-SN as an anode catalyst, only 1.6 V is needed to reach 1.0 A·cm-2 and it shows long-term stability at 100 mA·cm-2 for 1100 h and at 500 mA·cm-2 for 100 h. The reaction mechanism for the high stability of Ru-RuO2-SN was analyzed by density functional theory calculations. This work reports a durable, pure Ru-based water-oxidation catalyst and provides a new perspective for the development of efficient Ru-based catalysts.
Collapse
Affiliation(s)
- Yuxiang Song
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhi Wang
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Weili Shi
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Feiyang Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Zhuoming Wei
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Xin Cui
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Yihan Zhu
- Center for Electron Microscopy, Zhejiang Key Laboratory of Surface and Interface Science and Engineering for Catalysts, China-Saudi Arabia Joint Laboratory on Microscopic Structural Engineering of Advanced Materials and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Biaobiao Zhang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
9
|
Xu J, Zhong M, Qi R, Xu M, Wang C, Lu X. Nanofibrous Ru/SnO 2 heterostructure as robust bifunctional electrocatalyst for high-performance overall hydrazine splitting and Zn-hydrazine battery. J Colloid Interface Sci 2025; 684:43-51. [PMID: 39823730 DOI: 10.1016/j.jcis.2025.01.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Water electrolysis represents a green and efficient strategy for hydrogen (H2) production. However, the four-electron transfer process involved in its anodic oxygen evolution reaction (OER) half-reaction restricts the H2 generation rate. Employing hydrazine oxidation reaction (HzOR) as a substitute for OER in H2 generation can dramatically reduce energy consumption. In this study, we have successfully fabricated a nanofibrous Ru/SnO2 heterostructure that demonstrates exceptional performance in both hydrogen evolution reaction (HER) and HzOR. The obtained catalyst requires only a small overpotential of 39 mV for HER and an incredibly low potential of -0.076 V vs. reversible hydrogen electrode (RHE) for HzOR to generate the current density of 10 mA cm-2. Furthermore, the two-electrode overall hydrazine splitting (OHzS) cell operates at working voltages of 0.026 V and 0.292 V for the current densities of 10 mA cm-1 and 100 mA cm-2, respectively, notably lower than the overall water splitting (OWS) process. Moreover, it delivers a H2 yield rate of 0.40 mmol h-1 at a voltage of 1.6 V, outperforming the OWS by 10 times. This study introduces a groundbreaking concept in the advancement of highly efficient bifunctional catalysts for HER and HzOR, carrying significant implications for tackling energy scarcity issues.
Collapse
Affiliation(s)
- Jiaqi Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Meijiao Xu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| |
Collapse
|
10
|
Chen Q, Yu CY, Zhai YC, Watanabe T, Kawasumi M, Huda M, Matsuo Y. Nitrogen-Containing Carbon-Encapsulated Platinum Electrocatalysts Supported by Single-Walled Carbon Nanotubes for Polymer Electrolyte Fuel Cells. SMALL METHODS 2025:e2500074. [PMID: 40223441 DOI: 10.1002/smtd.202500074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Indexed: 04/15/2025]
Abstract
Platinum (Pt)-based electrocatalysts are widely regarded as the preferred choice for oxygen reduction reaction (ORR) in Polymer Electrolyte Fuel Cell (PEFC). However, their low stability remains a critical challenge. To overcome this problem, high-crystallinity and high-purity single-walled carbon nanotubes (SWCNTs), fabricated by the enhanced direct injection pyrolysis synthesis (e-DIPS) method, are utilized as support with a nitrogen introducing treatment applied to produce nitrogen-containing SWCNT (N-SWCNT). Platinum electrocatalysts encapsulated by amorphous-carbon shell are synthesized on nitrogen-containing single-walled carbon nanotubes (Pt/N-SWCNT) using a facile and industrially favorable solution plasma (SP) method. High-resolution transmission electron microscopy observations indicate that Pt nanoparticles in Pt/N-SWCNT are encapsulated within nitrogen-containing carbon shells. As the cathodic catalyst of membrane electrode assembly (MEA) in a single cell, the Pt/N-SWCNT-MEA shows a decrease of only 20.8% in maximum power density after 16 000 cycles of the accelerated durability test (ADT). After the high-voltage acceleration (1.0-1.5 V), Pt/N-SWCNT-MEA exhibits a lower loss of 39.5%, compared to 48.3% for Pt/SWCNT-MEA and 93.2% for commercial Pt/C in maximum power density. These results indicate that nitrogen-containing carbon shells and SWCNTs as supports contribute to enhancing the stability and activity of the catalyst, thereby leading to the excellent performance of the PEFC.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Chu-Yang Yu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yong-Chang Zhai
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
| | - Takashi Watanabe
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
| | - Masaya Kawasumi
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
| | - Miftakhul Huda
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yutaka Matsuo
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
11
|
Sun J, Wang Z, Wang Y, Song Y, Pei Y, Yan W, Xiong R, Liu Y, Lin B, Wang X, Zhang X, Chen J, Zhang L. Modulation of Hydrogen Desorption Capability of Ruthenium Nanoparticles via Electronic Metal-Support Interactions for Enhanced Hydrogen Production in Alkaline Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411975. [PMID: 40051179 DOI: 10.1002/smll.202411975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Indexed: 04/17/2025]
Abstract
The development of efficient and stable electrocatalysts for the hydrogen evolution reaction (HER) is essential for the realization of effective hydrogen production via seawater electrolysis. Herein, the study has developed a simple method that combines electrospinning with subsequent thermal shock technology to effectively disperse ruthenium nanoparticles onto highly conductive titanium carbide nanofibers (Ru@TiC). The electronic metal-support interactions (EMSI) resulted from charge redistribution at the interface between the Ru nanoparticles and the TiC support can optimize hydrogen desorption kinetics of Ru sites and induce the hydrogen spillover phenomenon, thereby improving hydrogen evolution. As a result, the Ru@TiC catalyst exhibits outstanding HER activity, requiring low overpotentials of only 65 mV in alkaline seawater at the current density of 100 mA cm-2. Meanwhile, Ru@TiC demonstrates excellent stability, maintaining consistent operation at 500 mA cm-2 for at least 250 hours. Additionally, an anion exchange membrane electrolyzer incorporating Ru@TiC operated continuously for over 500 hours at 200 mA cm-2 in alkaline seawater. This study highlights the significant potential of robust TiC supports in the fabrication of efficient and enduring electrocatalysts that enhance hydrogen production in complex seawater environments.
Collapse
Affiliation(s)
- Junwei Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhichao Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yue Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanyan Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yi Pei
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rui Xiong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Bin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xin Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaoyan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Junfeng Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
12
|
Wei X, Huang L, Yu Y, Sun D, Qu Y, Yuan X, Wen J, Su Q, Meng F, Du G, Xu B, Wang K. Crystalline CoP@ Amorphous WP 2 Coaxial Nanowire Arrays as Bifunctional Electrocatalyst for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412689. [PMID: 40079101 DOI: 10.1002/smll.202412689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The crystalline CoP@ amorphous WP2 core-shell nanowire arrays are oriented grown on the Ni foam (CoP@WP2/NF). The amorphous WP2 shell provides more active sites, and the interface charge coupling accelerates the kinetic of the catalytic reaction, making the CoP@WP2/NF catalysts excellent activity. In acidic, only 13 and 97 mV overpotentials are needed to reach 10 mA cm-2 and 100 mA cm-2, respectively, which are the lowest overpotentials among all reported Transition metal phosphide (TMP) catalysts, of course, much lower than that of the Pt/C catalyst (31 mV at 10 mA cm-2, 120 mV at 100 mA cm-2). In alkaline, the Hydrogen evolution reaction (HER) overpotentials at 10 mA cm-2 and 100 mA cm-2 are 68 and 136 mV, respectively, which are also lower than that of most reported TMPs catalysts. The CoP@WP2/NF catalysts also show excellent Oxygen evolution reaction (OER) performance in alkaline, and its OER overpotential at 10 mA cm-2 is only 254 mV. The voltage of the CoP@WP2/NF-2h‖CoP@WP2/NF-2 h cell is only 1.37 V at 10 mA cm-2, which is even lower than that of Pt/C‖Ru2O cell (1.52 V). Specially, when the current density is greater than 150 mA cm-2, the energy consumption advantage of the CoP@WP2/NF-2 h‖CoP@WP2/NF-2 h cell is more obvious.
Collapse
Affiliation(s)
- Xinyue Wei
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Linyin Huang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuan Yu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
| | - Dongfeng Sun
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
| | - Yanning Qu
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- School of Chemistry & Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xiaoya Yuan
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianlong Wen
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fangyou Meng
- School of Chemistry and Chemical Engineering, Qiannan Normal college for Nationalities, Duyun, 558000, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, China
| | - Kai Wang
- Xi'an Engineering Research Center of Environmental Nanocomposites, Shaanxi University of Science and Technology & Xi'an Frontier Materials Technology Co., LTD, Xi'an, 710116, China
- Xi'an Jingbao Nano Technology Co., LTD, Xi'an, 710038, China
| |
Collapse
|
13
|
Das G, Singha Roy S, Abou Ibrahim F, Merhi A, Dirawi HN, Benyettou F, Kumar Das A, Prakasam T, Varghese S, Kumar Sharma S, Kirmizialtin S, Jagannathan R, Gándara F, Aouad S, Olson MA, Kundu S, Kaafarani BR, Trabolsi A. Electrocatalytic Water Splitting in Isoindigo-Based Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202419836. [PMID: 39591451 DOI: 10.1002/anie.202419836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Developing a low-cost, robust, and high-performance electrocatalyst capable of efficiently performing both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) under both basic and acidic conditions is a major challenge. This area of research has attracted much attention in recent decades due to its importance in energy storage and conversion. Herein, we report the synthesis of two imine-linked isoindigo-based covalent organic networks I-TTA and I-TG (I=Isoindigo, TTA=4,4',4''-(1,3,5-triazine-2,4,6-triyl)-trianiline, TG=triamino-guanidinium hydrochloride salt). By introducing two amine core units with different planarity, such as triazine and ionic guanidinium units, we control the morphology, crystallinity, and corresponding electrocatalytic properties of the materials. The combination of isoindigo dialdehyde with a planar triazine core, leads to the formation of thin, highly crystalline, planar two dimensional (2D) nanosheets covalent organic framework (COF), I-TTA whereas its combination with ionic non-planar guanidinium core leads to an amorphous covalent organic polymer (COP), I-TG with a fibrous morphology. The sheet-like crystalline I-TTA COF shows better electrocatalytic activity compared to the amorphous fibrous I-TG COP. I-TTA exhibits a current density of 10 mA cm-2 at an overpotential of ~134 mV for HER (in 0.5 M H2SO4) and ~283 mV for OER (in 1 M KOH). The electrocatalytic activity of the I-TTA COF in the OER exceeds that of other metal-free COFs. The catalytic activity is maintained even after 24 hours of chronoamperometry and 500 cycles of cyclic voltammetry (CV) at high scan rates.
Collapse
Affiliation(s)
- Gobinda Das
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Suprobhat Singha Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India, CSIR-Central Electrochemical Research Institute (CECRI)
| | - Fayrouz Abou Ibrahim
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Areej Merhi
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Huda N Dirawi
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Farah Benyettou
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Akshaya Kumar Das
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Thirumurugan Prakasam
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Sabu Varghese
- CTP, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering Division, New York University Abu Dhabi (NYUAD), United Arab Emirates
| | - Serdal Kirmizialtin
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| | - Ramesh Jagannathan
- Engineering Division, New York University Abu Dhabi (NYUAD), United Arab Emirates
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Samer Aouad
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
- Department of Chemistry, Faculty of Arts and Sciences, University of Balamand, P.O.Box 100, Tripoli, Lebanon
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India, CSIR-Central Electrochemical Research Institute (CECRI)
| | - Bilal R Kaafarani
- Department of Chemistry, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Ali Trabolsi
- Science Division, New York University Abu Dhabi, Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
- Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, PO Box, 129188, Abu Dhabi, UAE
| |
Collapse
|
14
|
Shi L, Zhang F, Wang X, Li J, Liu Y, Fu W, Yao S, Wang S, Ji K, Ji Y, Yang Z, Xie J, Yan YM. Overcoming Interfacial Hydrogen Site-Blocking during Alkaline Formate Oxidation: Insights from Lattice-Compressed PdZr/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15413-15422. [PMID: 40014854 DOI: 10.1021/acsami.4c21195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Improving the electrocatalytic conversion of formate in alkaline solutions is crucial for the commercial application of formate fuel cells. However, palladium-based catalysts used for formate oxidation reactions (FOR) face challenges due to the strong adsorption of hydrogen intermediates, resulting in lower catalytic efficiency in alkaline environments. Herein, we prepared a PdZr/C catalyst aimed at employing a doping-induced strain strategy to reduce the hydrogen binding energy of palladium and release more active sites for the oxidation of formate. Through density functional theory calculations and experimental investigations, we find that the lattice compression induced by Zr doping regulates the electronic structure of Pd. Specifically, the incorporation of Zr dopant shifts the d-band center of Pd downward, weakening the binding energy of hydrogen at the Pd sites. This adjustment promotes the desorption of hydrogen intermediates, thus accelerating the FOR kinetics by alleviating the site-blocking effect. As a result, the PdZr/C catalyst exhibited a 2.4-fold increase in activity compared to the conventional Pd/C catalyst. It also achieved a lower peak potential and delivered a significantly higher peak current of 1917 mA mg-1. These findings highlight the critical role of lattice strain in tuning the catalytic properties of Pd and offer valuable insights into the design of high-performance electrocatalysts for energy conversion technologies.
Collapse
Affiliation(s)
- Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jingxian Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shuyun Yao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kang Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingjie Ji
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
15
|
Zhao S, Hung SF, Wang Y, Li S, Yang J, Zeng WJ, Zhang Y, Chang HH, Chen HY, Hu F, Li L, Peng S. Dynamic Deprotonation Enhancement Triggered by Accelerated Electrochemical Delithiation Reconstruction during Acidic Water Oxidation. J Am Chem Soc 2025; 147:7993-8003. [PMID: 39967426 DOI: 10.1021/jacs.5c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The structure-dependent transition in reaction pathways during acidic oxygen evolution (OER) is pivotal due to the active site oxidation accompanied by the coordination environment changes. In this work, charge-polarized Ir-O-Co units are constructed in alkali metal cobalt oxides (LiCoO2, and Na0.74CoO2) to modify the lower Hubbard band. Benefiting from the accelerated delithiation reconstruction induced by the altered band structure, typical Ir-LiCoO2 produces high-valent Ir sites with unsaturated coordination through the charge compensation during OER. Oxygen atoms shared by trimetallic sites exhibit strong Bro̷nsted acidity, promoting proton migration for unsaturated Ir sites and dynamically enhancing deprotonation. Furthermore, the stable coordination environment, along with electron donation from Co sites, significantly improves the stability of Ir sites. The unique electrochemical activation results in a low overpotential of 190 mV at 10 mA cm-2 during acidic OER and delivers exceptional stability at 1 A cm-2 for 150 h with a slight voltage degradation in a proton exchange membrane electrolyzer. This work provides in-depth insights into the relationship between catalyst reconstruction and reaction mechanisms.
Collapse
Affiliation(s)
- Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yue Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shaoxiong Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Juan Yang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao-Hsiang Chang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
16
|
Chan JX, Wu S, Lee JK, Ma M, Zhang Z. Effect of Strain on the Photocatalytic Reaction of Graphitic Carbon Nitride: Insight from Single-Molecule Localization Microscopy. J Am Chem Soc 2025; 147:851-861. [PMID: 39692592 DOI: 10.1021/jacs.4c13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Strain engineering in two-dimensional nanomaterials holds significant potential for modulating the lattice and band structure, particularly through localized strain, which enables modulation at specific regions. Despite the remarkable effects of local strain, the relationships among local strain, spatial correlation of photogenerated charge carriers, and photocatalytic performance remain elusive. The current study coupled single-molecule localization microscopy with coordinate-based colocalization (CBC) analysis to explain these relationships. The methodology involved mapping the spatial distributions of photoinduced oxidation and reduction reaction sites across graphitic carbon nitride (g-C3N4) nanosheets, quantifying and spatially resolving their spatial correlation, and also evaluating their photocatalytic activity. The study examined 65 individual g-C3N4 nanosheets, revealing interparticle and intraparticle heterogeneity, which was classified based on their CBC score distributions. Among the 65 g-C3N4 nanosheets, type A nanosheets predominated (45 out of 65) and demonstrated both correlated and noncorrelated subregions along some wrinkles. In contrast, type B nanosheets (20 out of 65) were primarily characterized by noncorrelated subregions with minimal correlated localizations. The coexistence of both noncorrelated and correlated subregions inferred the structure of the wrinkles as folding wrinkles, which have larger tensile-strained areas than rippling wrinkles. Folding wrinkles promote colocalization through the formation of type I band alignment at tensile-strained subregions. This band alignment also enhances photocatalytic activity through a funneling effect and improved light absorption, leading to higher specific activity in correlated subregions compared to noncorrelated ones. The role of strain-induced band alignment in modulating the spatial correlation of the photoredox reaction and the photocatalytic performance at the subregion level is highlighted.
Collapse
Affiliation(s)
- Jia Xin Chan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Shuyang Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jinn-Kye Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Mingyu Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhengyang Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
17
|
Ma S, Yu X, Li W, Kong J, Long D, Bai X. Bismuth-based photocatalysts for pollutant degradation and bacterial disinfection in sewage system: Classification, modification and mechanism. ENVIRONMENTAL RESEARCH 2025; 264:120297. [PMID: 39515555 DOI: 10.1016/j.envres.2024.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The discharge of polluted water poses a great threat to human health. Therefore, the development of effective sewage treatment technology is a key to achieve sustainable health development of society. Recent research showed that light-driven bismuth-based nanomaterials provided a promising chance for treating sewage system owing to their adjustable electronic features, excellent physical and chemical properties, abundant storage and environmental safety. However, the detailed overview and systematic understanding of the development of highly efficient bismuth-based photocatalysts is still unsatisfactory. In this review, we summarized the classification of bismuth-based photocatalysts, and the relationship between the structural design and the change of optical performance is illustrated. Importantly, the reliable modification strategies for improving photocatalytic capability are emphasized. Finally, the challenges and future development directions of light-driven bismuth-based nanoplatforms in wastewater treatment applications are discussed, hoping to provide an effective guidance for exploring the photocatalytic wastewater treatment process.
Collapse
Affiliation(s)
- Sihan Ma
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinglin Yu
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Wentao Li
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Deng Long
- College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China.
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Tian J, Song Y, Hao X, Wang X, Shen Y, Liu P, Wei Z, Liao T, Jiang L, Guo J, Xu B, Sun Z. Greatly Enhanced Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cell and Zn-Air Battery via Hole Inner Edge Reconstruction of 2D Pd Nanomesh. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412051. [PMID: 39529551 DOI: 10.1002/adma.202412051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Platinum group metals (PGM) have yet to be the most active catalysts in various sustainable energy reactions. Their high cost, however, has made maximizing the activity and minimizing the dosage become an urgent priority for the practical applications of emerging technologies. Herein, a novel 2D Pd nanomesh structure possessing hole inner reconstructed edges (HIER) with exposed high energy facets and overstretched lattice parameters is fabricated through a facile room-temperature reduction method at gram-scale yields. The HIER enhances the catalytic performance of Pd in electrochemical oxygen reduction reaction (ORR), achieving superior mass activity (MA) of 2.672 A mgPd -1, which is 27.8 fold and 23.6 fold higher, respectively, than those of the commercial Pt/C (0.096 A mgPt -1) and Pd/C (0.113 A mgPd -1) at 0.9 VRHE. Most significantly, in H2-air anion exchange membrane fuel cell (AEMFC) and Zn-air battery (ZAB) applications, this unique Pd catalyst delivers a much-outperformed peak power density of 0.86 and 0.22 W cm-2, respectively, compared with 0.54 and 0.13 W cm-2 of the commercial Pt/C catalyst, indicating a novel pathway in electrocatalyst designs through HIER engineering.
Collapse
Affiliation(s)
- Jiakang Tian
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yanhui Song
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Instrumental Analysis Center Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Xudong Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Yongqing Shen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Zebin Wei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
| | - Ting Liao
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Lei Jiang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Instrumental Analysis Center Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan, 030024, P. R. China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| |
Collapse
|
19
|
Qiao S, Chen Y, Shen J, Tao P, Tang Y, Shi H, Zhang H, Yuan J, Liu C. Oxygen-bridged Schottky junction in ZnO-Ni 3ZnC 0.7 promotes photocatalytic reduction of CO 2 to CO: Steering charge flow and modulating electron density of active sites. J Colloid Interface Sci 2024; 676:207-216. [PMID: 39024821 DOI: 10.1016/j.jcis.2024.07.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Developing carbon dioxide (CO2) photocatalysts from transition metal carbides (TMCs) with abundant active sites, modulable electron cloud density, as well as low cost and high stability is of great significance for artificial photosynthesis. Building an efficient electron transfer channel between the photo-excitation site and the reaction-active site to extract and steer photo-induced electron flow is necessary but challenging for the highly selective conversion of CO2. In this study, we achieved an oxygen-bridged Schottky junction between ZnO and Ni3ZnC0.7 (denoted as Znoxide-O-ZnTMC) through a ligand-vacancy strategy of MOF. The ZnO-Ni3ZnC0.7 heterostructure integrates the photo-exciter (ZnO), high-speed electron transport channel (Znoxide-O-ZnTMC), and reaction-active species (Ni3ZnC0.7), where Znoxide-O-ZnTMC facilitates the transfer of excited electrons in ZnO to Ni3ZnC0.7. The Zn atoms in Ni3ZnC0.7 serve as electron-rich active sites, regulating the CO2 adsorption energy, promoting the transformation of *COOH to CO, and inhibiting H2 production. The ZnO-Ni3ZnC0.7 shows a high CO yield of 2674.80 μmol g-1h-1 with a selectivity of 93.40 % and an apparent quantum yield of 18.30 % (λ = 420 nm) with triethanolamine as a sacrificial agent. The CO production rate remains at 96.40 % after 18 h. Notably, ZnO-Ni3ZnC0.7 exhibits a high CO yield of 873.60 μmol g-1h-1 with a selectivity of 90.20 % in seawater.
Collapse
Affiliation(s)
- Shanshan Qiao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yuqing Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China
| | - Jiachao Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Pei Tao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Haokun Shi
- Marine Engineering College, Dalian Maritime University, Dalian 116026, PR China
| | - Hao Zhang
- Soochow University, Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, PR China.
| | - Jili Yuan
- Department of Polymer Materials and Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
20
|
Deng SQ, Pei MJ, Zhao ZH, Wang K, Zheng H, Zheng SR, Yan W, Zhang J. Metal-organic framework derived heterostructured phosphide bifunctional electrocatalyst for efficient overall water splitting. J Colloid Interface Sci 2024; 676:884-895. [PMID: 39067223 DOI: 10.1016/j.jcis.2024.07.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Developing high active and stable cost-effective bifunctional electrocatalysts for overall water splitting to produce hydrogen is of vital significance in clean and sustainable energy development. This work has prepared a novel porous unreported MOF (Ni-DPT) as a precursor to successfully synthesize a non-noble bifunctional NiCoP/Ni12P5@NF electrocatalyst through doping strategy and interface engineering. This catalyst is constructed by layered self-supporting arrays with heterojunction interface and rich nitrogen-phosphorus doping. Structural characterizations and the density function theory (DFT) calculations confirm that the interface effect of NiCoP/Ni12P5 heterojunction can regulate the electronic structure of the catalyst to optimize the Gibbs free energy of hydrogen (ΔGH*); simultaneously, the defect-rich layered nanoarrays can expose more active sites, shorten mass transfer distance, and generate a self-supporting structure for in-situ reinforcing the structural stability. As a result, this NiCoP/Ni12P5@NF catalyst exhibits favorable electrocatalytic performance, which simply needs overpotentials of 100 mV for HER and 310 mV for OER, respectively, at a current density of 10 mA·cm-2. The anion exchange membrane electrolyzer assembled with this NiCoP/Ni12P5@NF as both anode and cathode catalysts can operate stably for 200 h at a current density of 100 mA·cm-2 with an insignificant voltage decrease. This work may provide some inspiration for the further rational design of inexpensive non-noble multifunctional electrocatalysts and electrode materials for water splitting to generate hydrogen.
Collapse
Affiliation(s)
- Shu-Qi Deng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Mao-Jun Pei
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Zi-Han Zhao
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Kaili Wang
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China
| | - Hui Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Sheng-Run Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Wei Yan
- School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| | - Jiujun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
21
|
Zhou G, Liu X, Xu Y, Feng S, Lu Z, Liu ZQ. Enhancing d/p-2π* Orbitals Hybridization via Strain Engineering for Efficient CO 2 Photoreduction. Angew Chem Int Ed Engl 2024; 63:e202411794. [PMID: 39135198 DOI: 10.1002/anie.202411794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
The photoconversion of CO2 into valuable chemical products using solar energy is a promising strategy to address both energy and environmental challenges. However, the strongly adsorbed CO2 frequently impedes the seamless advancement of the subsequent reaction by significantly increasing the reaction activation energy. Here, we present a BiFeO3 material with lattice strain that collaboratively regulates the d/p-2π* orbitals hybridization between metal sites and *CO2 as well as *COOH intermediates to achieve rapid conversion of solidly adsorbed CO2 to critical *COOH intermediates, accelerating the overall CO2 reduction kinetics. Quasi in situ X-ray photoelectron spectroscopy and in situ Fourier Transform infrared spectroscopy combined with theoretical calculation reveals that the optimized Fe sites enhance the adsorption and activation effect of CO2, and continuous internal electrons are rapidly transferred to the reaction sites and injected into the surface *CO2 and *COOH under the condition of illumination, which promotes the rapid formation and stability of *COOH. Certainly, the performance of CO2 photoreduction to CO is improved by 12.81-fold compared with the base material. This work offers a new perspective for the rapid photoreduction process of strongly adsorbed CO2.
Collapse
Affiliation(s)
- Guosheng Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang, 212013, P. R. China
| | - Xinlin Liu
- School of Energy and Power Engineering, Jiangsu University, Jiangsu, Zhenjiang, 212013, P. R. China
| | - Yangrui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang, 212013, P. R. China
| | - Sheng Feng
- School of Environmental Science and Engineering, Changzhou University, Jiangsu, Changzhou, 213164, P. R. China
| | - Ziyang Lu
- School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang, 212013, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu, Suzhou, 215009, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
22
|
Wang Y, Luo T, Wei Y, Liu Q, Qi Y, Wang D, Zhao J, Zhang J, Li X, Ma Q, Huang J, Kong X, Chen G, Feng Y. Phase Engineering-Mediated D-Band Center of Ru Sites Promote the Hydrogen Evolution Reaction Under Universal pH Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407495. [PMID: 39350444 DOI: 10.1002/smll.202407495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 12/13/2024]
Abstract
The rational design of pH-universal electrocatalyst with high-efficiency, low-cost and large current output suitable for industrial hydrogen evolution reaction (HER) is crucial for hydrogen production via water splitting. Herein, phase engineering of ruthenium (Ru) electrocatalyst comprised of metastable unconventional face-centered cubic (fcc) and conventional hexagonal close-packed (hcp) crystalline phase supported on nitrogen-doped carbon matrix (fcc/hcp-Ru/NC) is successfully synthesized through a facile pyrolysis approach. Fascinatingly, the fcc/hcp-Ru/NC displayed excellent electrocatalytic HER performance under a universal pH range. To deliver a current density of 10 mA cm-2, the fcc/hcp-Ru/NC required overpotentials of 16.8, 23.8 and 22.3 mV in 1 M KOH, 0.5 M H2SO4 and 1 M phosphate buffered solution (PBS), respectively. Even to drive an industrial-level current density of 500 and 1000 mA cm-2, the corresponding overpotentials are 189.8 and 284 mV in alkaline, 202 and 287 mV in acidic media, respectively. Experimental and theoretical calculation result unveiled that the charge migration from fcc-Ru to hcp-Ru induced by work function discrepancy within fcc/hcp-Ru/NC regulate the d-band center of Ru sites, which facilitated the water adsorption and dissociation, thus boosting the electrocatalytic HER performance. The present work paves the way for construction of novel and efficient electrocatalysts for energy conversion and storage.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Tianmi Luo
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Ying Wei
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qingqing Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yirong Qi
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Dongping Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jiayi Zhao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jun Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xu Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qunzhi Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Guanjun Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
23
|
Song S, Wu S, He Y, Zhang Y, Fan G, Long Y, Song S. Boron/nitrogen-trapping and regulative electronic states around Ru nanoparticles towards bifunctional hydrogen production. J Colloid Interface Sci 2024; 672:675-687. [PMID: 38865881 DOI: 10.1016/j.jcis.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.
Collapse
Affiliation(s)
- Shaoxian Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yiwen Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
24
|
Liang H, Tong X, Min Y, Wang Y, Wu X, Zheng Y. Improving Catalytic Performance via the Synergy of Tensile Lattice Strain and Plasmonic Enhancement in Defective AuPd@Pd Short Nanowires. Inorg Chem 2024; 63:19489-19498. [PMID: 39361895 DOI: 10.1021/acs.inorgchem.4c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The synthesis of bimetallic nanocatalysts with strained crystal lattices has attracted considerable interest. This is because, beyond the electronic structure modifications realized through elemental doping, the strain effect offers an extra mechanism to fine-tune the electronic structures, thereby possibly improving the catalytic performances. We present a method for constructing defective AuPd@Pd short nanowires, achieved through a controlled galvanic replacement reaction between short AuCu nanowires and Pd precursors. Advanced structural analyses using spherical aberration-corrected transmission electron microscopy (AC-TEM) validated the expanded crystal lattice on the nanowire surface and also demonstrated pronounced plasmonic absorption in the UV-vis region. Leveraging both plasmonic absorption and strain effects, the AuPd@Pd short nanowires displayed a higher apparent rate constant compared to Pd nanoparticles. Integrating molecular dynamic simulations with density functional theory calculations revealed that the tensile strain on AuPd@Pd short nanowires benefited the catalytic activity by elevating the d-band center, thereby intensifying the adsorption of p-nitrophenol. The current research introduces a unique method for synthesizing noble metal nanocrystals with specific dimensions and elucidates the rational development of high-performance plasmonic nanocatalysts through synergistic exploitation of the beneficial strain effect.
Collapse
Affiliation(s)
- Haosheng Liang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
| | - Xiangyu Tong
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China
| | - Yuanyuan Min
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| | - Yingying Wang
- Health Management Department, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Xiaohu Wu
- Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan, Shandong 250100, China
| | - Yiqun Zheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, China
| |
Collapse
|
25
|
Sun Z, Guo Z, Tian S, Bi J, Li G, Sha Y, Wang J, Zhao L, Qian L. Interfacial and Defective Construction from Diverse Cu xS y Quantum Dots toward Broadband Carbon-Based Microwave Absorber. ACS NANO 2024; 18:27694-27706. [PMID: 39311683 DOI: 10.1021/acsnano.4c09900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In this study, highly monodisperse copper sulfide (CuxSy) quantum dots (QDs) have been successfully obtained using a ligand-chemistry strategy, and then a variety of S-deficient CuxSy/nitrogen-doped carbon (NC) heterointerfaces are constructed by compositional fine-tuning (Cu9S5 → Cu1.96S → Cu). First-principles calculations show that the S-deficient domains of CuxSy QDs and N-doped domains of carbon synergistically enhance the electron transfer from CuxSy to NC. In addition, the finite element simulations demonstrate that the diverse CuxSy QDs exhibit their intrinsic size and dielectric confinement effects to precisely manipulate the electric field distortion and improve the relaxation polarization. Consequently, CuxSy@NC achieves excellent impedance matching and a strong loss mode dominated by dielectric polarization. Among them, CuxSy@NC-650 has a maximum effective absorption bandwidth of 7.7 GHz at 2.5 mm, while CuxSy@NC-700 features a minimum reflection loss of -66.7 dB at 13.7 GHz, respectively. Furthermore, the simulations of radar cross-sections have confirmed that the CuxSy@NC series is promising in the field of radar stealth.
Collapse
Affiliation(s)
- Zhihao Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Zihao Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Shaoyao Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Jingyu Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Guangshen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Ying Sha
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Jianshu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan 250100, China
| | - Lei Qian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China
| |
Collapse
|
26
|
Guo J, Ding R, Li Y, Xie J, Fang Q, Yan M, Zhang Y, Yan Z, Chen Z, He Y, Sun X, Liu E. Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403151. [PMID: 38934338 DOI: 10.1002/smll.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
27
|
Pang M, Fang Y, Chen L, Sun R, Li X, Pang H, Zhang S, Xu L, Sun D, Tang Y. Highly dispersed ultrafine Ru nanoparticles on a honeycomb-like N-doped carbon matrix with modified rectifying contact for enhanced electrochemical hydrogen evolution. NANOSCALE 2024; 16:17519-17526. [PMID: 39225065 DOI: 10.1039/d4nr02404d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The manipulation of rectifying contact between metal and semiconductor represents a powerful strategy to modify the electronic configuration of active sites for improved electrocatalytic performance. Herein, we present an NaCl template-assisted approach to rationally construct a Schottky electrocatalyst consisting of a honeycomb-like N-doped carbon matrix decorated with uniformly ultrasmall Ru nanoparticles with an average diameter of 2.5 nm (hereafter abbreviated as Ru NPs@HNC). It is found that the Fermi level difference between Ru and HNC can cause self-driven migration of electrons from Ru NPs to the HNC substrate, which leads to the generation of a built-in electric field and directional flow of electrons, thereby enhancing the intrinsic activity. In addition, the immobilization of ultrafine Ru NPs on the honeycomb-like carbon skeleton can effectively inhibit the undesired migration, agglomeration and detachment of the active sites, thus ensuring remarkable structural stability. As a result, the Ru NPs@HNC with optimal rectifying contact delivers superior electrochemical activity with a small overpotential of 28 mV at 10 mA cm-2 and outstanding long-term stability in an alkaline solution. The design philosophy of grain-size modulation and Schottky contact may widen up insight into the preparation of high-performance electrocatalysts in sustainable energy conversion systems.
Collapse
Affiliation(s)
- Mingxin Pang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yu Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lizhang Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Ruoxu Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xinyu Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
28
|
Luo Q, Wang H, Xiang Q, Lv Y, Yang J, Song L, Cao X, Wang L, Xiao FS. Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation. J Am Chem Soc 2024; 146:26379-26386. [PMID: 39267584 DOI: 10.1021/jacs.4c09241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Breaking the trade-off between activity and stability of supported metal catalysts has been a long-standing challenge in catalysis, especially for metal nanoparticles (NPs) with high hydrogenation activity but poor stability. Herein, we report a porous poly(divinylbenzene) polymer-supported Pd NP catalyst (Pd/PDVB) with both high activity and excellent stability for the solvent-free hydrogenation of nitrobenzene, even at ambient temperature (25 °C) and H2 pressure (0.1 MPa). Pd/PDVB gave a turnover frequency as high as 22,632 h-1 at 70 °C and 0.4 MPa, exceeding 5556 h-1 of the classical Pd/C catalyst under equivalent conditions. Mechanistic studies reveal that the polymer support benefits the desorption of the aniline product from the Pd surface, which is crucial for rapid hydrogenation under solvent-free conditions. In addition, the polymer support in Pd/PDVB efficiently hindered Pd leaching, resulting in good stability.
Collapse
Affiliation(s)
- Qingsong Luo
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hai Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yating Lv
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiabao Yang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Lijuan Song
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Zhao Z, Sun J, Li X, Qin S, Li C, Zhang Z, Li Z, Meng X. Engineering active and robust alloy-based electrocatalyst by rapid Joule-heating toward ampere-level hydrogen evolution. Nat Commun 2024; 15:7475. [PMID: 39209881 PMCID: PMC11362148 DOI: 10.1038/s41467-024-51976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Rational design of bimetallic alloy is an effective way to improve the electrocatalytic activity and stability of Mo-based cathode for ampere-level hydrogen evolution. However, it is still critical to realise desirable syntheses due to the wide reduction potentials between different metal elements and uncontrollable nucleation processes. Herein, we propose a rapid Joule heating method to effectively load RuMo alloy onto MoOx matrix. As-prepared catalyst exhibits excellent stability (2000 h @ 1000 mA cm-2) and ultralow overpotential (9 mV, 18 mV and 15 mV in 1 M KOH, 1 M PBS, 0.5 M H2SO4 solution, respectively) at 10 mA cm-2. Based on first-principle simulations and operando measurements, the impressive electrocatalytic stability and activity are investigated. And the role of rapid Joule heating method is highlighted and discussed in details. This study showcases rapid Joule heating as a feasible strategy to construct highly efficient alloy-based electrocatalysts.
Collapse
Affiliation(s)
- Zhan Zhao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jianpeng Sun
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiang Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Shiyu Qin
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zisheng Zhang
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong, China.
| |
Collapse
|
30
|
Liu D, Xu L, Li S, Xu A, Sun Y, Liu T, Liu M, Wang H, Liu X, Yao T, Ding T. Atomically precise Ru-O-Ru clusters for enhanced water dissociation in alkaline hydrogen evolution. NANO RESEARCH 2024; 17:6993-7000. [DOI: 10.1007/s12274-024-6726-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 01/16/2025]
|
31
|
Lu J, Jiang W, Deng R, Feng B, Yin S, Tsiakaras P. Tailoring competitive adsorption sites of hydroxide ion to enhance urea oxidation-assisted hydrogen production. J Colloid Interface Sci 2024; 667:249-258. [PMID: 38636226 DOI: 10.1016/j.jcis.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Alloys with bimetallic electron modulation effect are promising catalysts for the electrooxidation of urea. However, the side reaction oxygen evolution reaction (OER) originating from the competitive adsorption of OH- and urea severely limited the urea oxidation reaction (UOR) activity on the alloy catalysts. This work successfully constructs the defect-rich NiCo alloy with lattice strain (PMo-NiCo/NF) by rapid pyrolysis and co-doping. By taking advantage of the compressive strain, the d-band center of NiCo is shifted downward, inhibiting OH- from adsorbing on the NiCo site and avoiding the detrimental OER. Meanwhile, the oxygenophilic P/Mo tailored specific adsorption sites to adsorb OH- preferentially, which further released the NiCo sites to ensure the enriched adsorption of urea, thus improving the UOR efficiency. As a result, PMo-NiCo/NF only requires 1.27 V and -57 mV to drive a current density of ±10 mA cm-2 for UOR and hydrogen evolution reaction (HER), respectively. With the guidance of this work, reactant competing adsorption sites could be tailored for effective electrocatalytic performance.
Collapse
Affiliation(s)
- Jiali Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Rui Deng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Boyao Feng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Panagiotis Tsiakaras
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
32
|
Wang RX, Yang L, Chen HY, Wang N, Zhang WJ, Li R, Chen YQ, You CY, Ramakrishna S, Long YZ. Rationally designing of Co-WS 2 catalysts with optimized electronic structure to enhance hydrogen evolution reaction. J Colloid Interface Sci 2024; 667:192-198. [PMID: 38636221 DOI: 10.1016/j.jcis.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.
Collapse
Affiliation(s)
- Rong-Xu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Han-Yang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Jie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - You-Qiang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chao-Yu You
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao, 266071, China.
| |
Collapse
|
33
|
Zhao J, Urrego-Ortiz R, Liao N, Calle-Vallejo F, Luo J. Rationally designed Ru catalysts supported on TiN for highly efficient and stable hydrogen evolution in alkaline conditions. Nat Commun 2024; 15:6391. [PMID: 39079996 PMCID: PMC11289485 DOI: 10.1038/s41467-024-50691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Electrocatalysis holds the key to enhancing the efficiency and cost-effectiveness of water splitting devices, thereby contributing to the advancement of hydrogen as a clean, sustainable energy carrier. This study focuses on the rational design of Ru nanoparticle catalysts supported on TiN (Ru NPs/TiN) for the hydrogen evolution reaction in alkaline conditions. The as designed catalysts exhibit a high mass activity of 20 A mg-1Ru at an overpotential of 63 mV and long-term stability, surpassing the present benchmarks for commercial electrolyzers. Structural analysis highlights the effective modification of the Ru nanoparticle properties by the TiN substrate, while density functional theory calculations indicate strong adhesion of Ru particles to TiN substrates and advantageous modulation of hydrogen adsorption energies via particle-support interactions. Finally, we assemble an anion exchange membrane electrolyzer using the Ru NPs/TiN as the hydrogen evolution reaction catalyst, which operates at 5 A cm-2 for more than 1000 h with negligible degradation, exceeding the performance requirements for commercial electrolyzers. Our findings contribute to the design of efficient catalysts for water splitting by exploiting particle-support interactions.
Collapse
Affiliation(s)
- Jia Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Ricardo Urrego-Ortiz
- Department of Materials Science and Chemical Physics & Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, Barcelona, Spain
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain
| | - Nan Liao
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, Spain.
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, Tianjin, China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
34
|
Li M, Li H, Fan H, Liu Q, Yan Z, Wang A, Yang B, Wang E. Engineering interfacial sulfur migration in transition-metal sulfide enables low overpotential for durable hydrogen evolution in seawater. Nat Commun 2024; 15:6154. [PMID: 39039058 PMCID: PMC11263604 DOI: 10.1038/s41467-024-50535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Hydrogen production from seawater remains challenging due to the deactivation of the hydrogen evolution reaction (HER) electrode under high current density. To overcome the activity-stability trade-offs in transition-metal sulfides, we propose a strategy to engineer sulfur migration by constructing a nickel-cobalt sulfides heterostructure with nitrogen-doped carbon shell encapsulation (CN@NiCoS) electrocatalyst. State-of-the-art ex situ/in situ characterizations and density functional theory calculations reveal the restructuring of the CN@NiCoS interface, clearly identifying dynamic sulfur migration. The NiCoS heterostructure stimulates sulfur migration by creating sulfur vacancies at the Ni3S2-Co9S8 heterointerface, while the migrated sulfur atoms are subsequently captured by the CN shell via strong C-S bond, preventing sulfide dissolution into alkaline electrolyte. Remarkably, the dynamically formed sulfur-doped CN shell and sulfur vacancies pairing sites significantly enhances HER activity by altering the d-band center near Fermi level, resulting in a low overpotential of 4.6 and 8 mV at 10 mA cm-2 in alkaline freshwater and seawater media, and long-term stability up to 1000 h. This work thus provides a guidance for the design of high-performance HER electrocatalyst by engineering interfacial atomic migration.
Collapse
Affiliation(s)
- Min Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hong Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hefei Fan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Qianfeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Zhao Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Bing Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Erdong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
35
|
Tang Z, Shi L, Dai N, Zhang F, Wang X, Wang S, Sun Y, Zhang H, Li S, Wang J, Gao X, Hou Z, Xie J, Yang Z, Yan YM. Interfacial Push-Pull Dynamics Enable Rapid H ad Desorption for Enhanced Formate Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35074-35083. [PMID: 38919051 DOI: 10.1021/acsami.4c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The electrocatalytic conversion of formate in alkaline solutions is of paramount significance in the realm of fuel cell applications. Nonetheless, the adsorptive affinity of adsorbed hydrogen (Had) on the catalyst surface has traditionally impeded the catalytic efficiency of formate in such alkaline environments. To circumvent this challenge, our approach introduces an interfacial push-pull effect on the catalyst surface. This mechanism involves two primary actions: First, the anchoring of palladium (Pd) nanoparticles on a phosphorus-doped TiO2 substrate (Pd/TiO2-P) promotes the formation of electron-rich Pd with a downshifted d band center, thereby "pushing" the desorption of Had from the Pd active sites. Second, the TiO2-P support diminishes the energy barrier for Had transfer from the Pd sites to the support itself, "pulling" Had to effectively relocate from the Pd active sites to the support. The resultant Pd/TiO2-P catalyst showcases a remarkable mass activity of 4.38 A mgPd-1 and outperforms the Pd/TiO2 catalyst (2.39 A mgPd-1) by a factor of 1.83. This advancement not only surmounts a critical barrier in catalysis but also delineates a scalable pathway to bolster the efficacy of Pd-based catalysts in alkaline media.
Collapse
Affiliation(s)
- Zheng Tang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lanlan Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ningning Dai
- Dongying Industrial Product Inspection & Metrology Veriffcation Center, Dongying 257000, People's Republic of China
| | - Feike Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Huiying Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shuyuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinrui Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueying Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishan Hou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
36
|
Zhu Y, Chen Y, Feng Y, Meng X, Xia J, Zhang G. Constructing Ru-O-TM Bridge in NiFe-LDH Enables High Current Hydrazine-assisted H 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401694. [PMID: 38721895 DOI: 10.1002/adma.202401694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Hydrazine oxidation-assisted water splitting is a critical technology to tackle the high energy consumption in large-scale H2 production. Ru-based electrocatalysts hold promise for synergetic hydrogen reduction (HER) and hydrazine oxidation (HzOR) catalysis but are hindered by excessive superficial adsorption of reactant intermediate. Herein, this work designs Ru cluster anchoring on NiFe-LDH (denoted as Ruc/NiFe-LDH), which effectively enhances the intermediate adsorption capacity of Ru by constructing Ru─O─Ni/Fe bridges. Notably, it achieves an industrial current density of 1 A cm-2 at an unprecedentedly low voltage of 0.43 V, saving 3.94 kWh m-3 H2 in energy, and exhibits remarkable stability over 120 h at a high current density of 5 A cm-2. Advanced characterizations and theoretical calculation reveal that the presence of Ru─O─Ni/Fe bridges widens the d-band width (Wd) of the Ru cluster, leading to a lower d-band center and higher electron occupation on antibonding orbitals, thereby facilitating moderate adsorption energy and enhanced catalytic activity of Ru.
Collapse
Affiliation(s)
- Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanxu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
37
|
Tian W, Xie X, Zhang X, Li J, Waterhouse GIN, Ding J, Liu Y, Lu S. Synergistic Interfacial Effect of Ru/Co 3O 4 Heterojunctions for Boosting Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309633. [PMID: 38282381 DOI: 10.1002/smll.202309633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Low-cost bifunctional electrocatalysts capable of efficiently driving the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are needed for the growth of a green hydrogen economy. Herein, a Ru/Co3O4 heterojunction catalyst rich in oxygen vacancies (VO) and supported on carbon cloth (RCO-VO@CC) is prepared via a solid phase reaction (SPR) strategy. A RuO2/Co9S8@CC precursor (ROC@CC) is first prepared by loading Co9S8 nanosheets onto CC, following the addition of RuO2 nanoparticles (NPs). After the SPR process in an Ar atmosphere, Ru/Co3O4 heterojunctions with abundant VO are formed on the CC. The compositionally optimized RCO-VO@CC electrocatalyst with a Ru content of 0.55 wt.% exhibits very low overpotential values of 11 and 253 mV at 10 mA cm-2 for HER and OER, respectively, in 1 m KOH. Further, a low cell voltage of only 1.49 V is required to achieve a current density of 10 mA cm-2. Density functional theoretical calculations verify that the outstanding bifunctional electrocatalytic performance originates from synergistic charge transfer between Ru metal and VO-rich Co3O4. This work reports a novel approach toward a high-efficiency HER/OER electrocatalyst for energy storage and conversion.
Collapse
Affiliation(s)
- Wanyu Tian
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xin Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Xingang Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Jinhong Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | | | - Jie Ding
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Yushan Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450001, China
| |
Collapse
|
38
|
Guo W, Chai DF, Li J, Yang X, Fu S, Sui G, Zhuang Y, Guo D. Strain Engineering for Electrocatalytic Overall Water Splitting. Chempluschem 2024; 89:e202300605. [PMID: 38459914 DOI: 10.1002/cplu.202300605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
Strain engineering is a novel method that can achieve superior performance for different applications. The lattice strain can affect the performance of electrochemical catalysts by changing the binding energy between the surface-active sites and intermediates and can be affected by the thickness, surface defects and composition of the materials. In this review, we summarized the basic principle, characterization method, introduction strategy and application direction of lattice strain. The reactions on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are focused. Finally, the present challenges are summarized, and suggestions for the future development of lattice strain in electrocatalytic overall water splitting are put forward.
Collapse
Affiliation(s)
- Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| | - Yan Zhuang
- Mat Sci & Engn, Jiamusi, 154007, Heilongjiang, Peoples R China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
39
|
Yang R, Gao D, Li W, Lu F, Yi D, Yang Y, Wang X. Iron Monomers or Trimers on Nitrogen-Doped Carbon: Which Is Better for the Electrocatalytic Nitrogen Reduction Reaction? ACS APPLIED MATERIALS & INTERFACES 2024; 16:28452-28460. [PMID: 38775640 DOI: 10.1021/acsami.4c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) presents an alternative method for the Haber-Bosch process, and single-atom catalysts (SACs) to achieve efficient NRR have attracted considerable attention in the past decades. However, whether SACs are more suitable for NRR compared to atomic-cluster catalysts (ACCs) remains to be studied. Herein, we have successfully synthesized both the Fe monomers (Fe1) and trimers (Fe3) on nitrogen-doped carbon catalysts. Both the experiments and DFT calculations indicate that compared to the end-on adsorption of N2 on Fe1 catalysts, N2 activation is enhanced via the side-on adsorption on Fe3 catalysts, and the reaction follows the enzymatic pathway with a reduced free energy barrier for NRR. As a result, the Fe3 catalysts achieved better NRR performance (NH3 yield rate of 27.89 μg h-1 mg-1cat. and Faradaic efficiency of 45.13%) than Fe1 catalysts (10.98 μg h-1 mg-1cat. and 20.98%). Therefore, our research presents guidance to prepare more efficient NRR catalysts.
Collapse
Affiliation(s)
- Rui Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
| | - Denglei Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
| | - Wei Li
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ding Yi
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yongan Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, P. R. China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Wang
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
40
|
Qin R, Chen G, Feng X, Weng J, Han Y. Ru/Ir-Based Electrocatalysts for Oxygen Evolution Reaction in Acidic Conditions: From Mechanisms, Optimizations to Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309364. [PMID: 38501896 DOI: 10.1002/advs.202309364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Indexed: 03/20/2024]
Abstract
The generation of green hydrogen by water splitting is identified as a key strategic energy technology, and proton exchange membrane water electrolysis (PEMWE) is one of the desirable technologies for converting renewable energy sources into hydrogen. However, the harsh anode environment of PEMWE and the oxygen evolution reaction (OER) involving four-electron transfer result in a large overpotential, which limits the overall efficiency of hydrogen production, and thus efficient electrocatalysts are needed to overcome the high overpotential and slow kinetic process. In recent years, noble metal-based electrocatalysts (e.g., Ru/Ir-based metal/oxide electrocatalysts) have received much attention due to their unique catalytic properties, and have already become the dominant electrocatalysts for the acidic OER process and are applied in commercial PEMWE devices. However, these noble metal-based electrocatalysts still face the thorny problem of conflicting performance and cost. In this review, first, noble metal Ru/Ir-based OER electrocatalysts are briefly classified according to their forms of existence, and the OER catalytic mechanisms are outlined. Then, the focus is on summarizing the improvement strategies of Ru/Ir-based OER electrocatalysts with respect to their activity and stability over recent years. Finally, the challenges and development prospects of noble metal-based OER electrocatalysts are discussed.
Collapse
Affiliation(s)
- Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Jiena Weng
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
41
|
Li Y, Peng Y, Dong W, Jiang X, Lu L, Yang D, Hsu LC, Li W, Su B, Lei A. Multiscale Anion-Hybrid in Atomic Ni Sites for High-Rate Water Electrolysis: Insights into the Charge Accumulation Mechanism. J Am Chem Soc 2024; 146:14194-14202. [PMID: 38717949 DOI: 10.1021/jacs.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Single-atom catalysts, characterized by transition metal-(N/O)4 units on nanocarbon (M-(N/O)4-C), have emerged as efficient performers in water electrolysis. However, there are few guiding principles for accurately controlling the ligand fields of single atoms to further stimulate the catalyst activities. Herein, using the Ni-(N/O)4-C unit as a model, we develop a further modification of the P anion on the outer shells to modulate the morphology of the ligand. The catalyst thus prepared possesses high activity and excellent long-term durability, surpassing commercial Pt/C, RuO2, and currently reported single-atom catalysts. Notably, mechanistic studies demonstrated that the pseudocapacitive feature of multiscale anion-hybrid nanocarbon is considerable at accumulating enough positive charge [Q], contributing to the high oxygen evolution reaction (OER) order (β) through the rate formula. DFT calculations also indicate that the catalytic activity is decided by the suitable barrier energy of the intermediates due to charge accumulation. This work reveals the activity origin of single atoms on multihybrid nanocarbon, providing a clear experiential formula for designing the electronic configuration of single-atom catalysts to boost electrocatalytic performance.
Collapse
Affiliation(s)
- Yan Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yanan Peng
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wenda Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Xueyu Jiang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | | | - Wu Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Baolian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
42
|
Sun Z, Li C, Lin J, Guo T, Song S, Hu Y, Zhang Z, Yan W, Wang Y, Wei Z, Zhang F, Zheng K, Wang D, Li Z, Wang S, Chen W. Lattice Strain and Mott-Schottky Effect of the Charge-Asymmetry Pd 1Fe Single-Atom Alloy Catalyst for Semi-Hydrogenation of Alkynes with High Efficiency. ACS NANO 2024; 18:13286-13297. [PMID: 38728215 DOI: 10.1021/acsnano.4c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.
Collapse
Affiliation(s)
- Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chen Li
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo 315201, China
| | - Tianqi Guo
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - Shaojia Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Yaning Hu
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, Beijing 102249, China
| | - Shuo Wang
- College of Textile and Garments, Textile and Garment Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
43
|
Zheng F, Cao Z, Lin T, Tu B, Shao S, Yang C, An P, Chen W, Fang Q, Wang Y, Tang Z, Li G. Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds. SCIENCE ADVANCES 2024; 10:eadn9896. [PMID: 38758785 PMCID: PMC11100558 DOI: 10.1126/sciadv.adn9896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Hydrodeoxygenation of oxygen-rich molecules toward hydrocarbons is attractive yet challenging in the sustainable biomass upgrading. The typical supported metal catalysts often display unstable catalytic performances owing to the migration and aggregation of metal nanoparticles (NPs) into large sizes under harsh conditions. Here, we develop a crystal growth and post-synthetic etching method to construct hollow chromium terephthalate MIL-101 (named as HoMIL-101) with one layer of sandwiched Ru NPs as robust catalysts. Impressively, HoMIL-101@Ru@MIL-101 exhibits the excellent activity and stability for hydrodeoxygenation of biomass-derived levulinic acid to gamma-valerolactone under 50°C and 1-megapascal H2, and its activity is about six times of solid sandwich counterparts, outperforming the state-of-the-art heterogeneous catalysts. Control experiments and theoretical simulation clearly indicate that the enrichment of levulinic acid and H2 by nanocavity as substrate regulator enables self-regulating the backwash of both substrates toward Ru NPs sandwiched in MIL-101 shells for promoting reaction with respect to solid counterparts, thus leading to the substantially enhanced performance.
Collapse
Affiliation(s)
- Fengbin Zheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian Lin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengxian Shao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenxing Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100181, P.R. China
| | - Qiaojun Fang
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
44
|
Wang L, Mao Z, Mao X, Sun H, Guo P, Huang R, Han C, Hu X, Du A, Wang X. Engineering Interfacial Pt─O─Ti Site at Atomic Step Defect for Efficient Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309791. [PMID: 38095488 DOI: 10.1002/smll.202309791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
The hydrogen evolution reaction (HER) activity of defect-stabilized low-Pt-loading catalysts is closely related with defect type in support materials, while the knowledge about the effect of higher-dimensional defects on the property and activity of trapped Pt atomic species is scarce. Herein, small size (5-10 nm) TiO2 nanoparticles with abundant surface step defects (one kind of line defect) are used to direct the uniform anchoring of Pt atomic clusters (Pt-ACs) via Pt─O─Ti linkage. The as-made low-Pt catalysts (Pt-ACs/S-TiO2-NP) exhibit exceptional HER intrinsic activity due to the unique step-site Pi-O-Ti species, in which the mass activity and turnover frequency are as high as 21.46 A mg Pt -1 and 21.69 s-1 at the overpotential of 50 mV, both far beyond those of benchmark Pt/C catalysts and other Pt-ACs/TiO2 samples with less step sites. Spectroscopic measurements and theoretical calculations reveal that the step-defect-located Pt─O─Ti sites can simultaneously induce the charge transfer from TiO2 substrate to the trapped Pt-ACs and the downshift of d-band center, which helps the proton reduction to H* intermediates and the following hydrogen desorption process, thus improving the HER. The work provides a deep insight on the interactions between high-dimensional defect and well-dispersed atomic metal motifs for superior HER catalysis.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Zhelin Mao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Xin Mao
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Hai Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Panjie Guo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Run Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Ximiao Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Xin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| |
Collapse
|
45
|
Ge M, Yin H, Tian W, Zhang H, Li S, Wang S, Chen Z. Electrostatically induced Furfural-Derived carbon Dots-CdS hybrid for solar Light-Driven hydrogen production. J Colloid Interface Sci 2024; 660:147-156. [PMID: 38241863 DOI: 10.1016/j.jcis.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Carbon dots (CDs) exhibit distinctive optical, electronic, and physicochemical properties, rendering them effective cocatalysts to enhance the photocatalytic performance of light-absorbing materials. The interplay between CDs and substrates is pivotal in manipulating photogenerated charge separation, transfer, and redistribution, significantly influencing overall photocatalytic efficiency. This study introduces a novel electrostatic interaction strategy to interface positively charged CdS nanorods (CdS NRs) with negatively charged furfural-derived CDs. The resulting optimized composite (25-CDs@CdS NRs), showcases photocatalytic hydrogen production at a rate of 1076 μmol g-1h-1. Experimental analyses and theoretical simulations offer insights into the structure-activity relationship, underscoring the crucial role of enhanced electrostatic interaction between CDs and CdS NRs in facilitating efficient charge transfer, activating reaction sites, and improving reaction kinetics. This research establishes an adaptable strategy for integrating CDs with metal-based semiconductors, opening new avenues for developing photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Min Ge
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Hanqing Yin
- School of Chemistry and Physics and QUT, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
46
|
Zhang W, Yang L, Li Z, Nie G, Cao X, Fang Z, Wang X, Ramakrishna S, Long Y, Jiao L. Regulating Hydrogen/Oxygen Species Adsorption via Built-in Electric Field -Driven Electron Transfer Behavior at the Heterointerface for Efficient Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202400888. [PMID: 38419146 DOI: 10.1002/anie.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Alkaline water electrolysis (AWE) plays a crucial role in the realization of a hydrogen economy. The design and development of efficient and stable bifunctional catalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are pivotal to achieving high-efficiency AWE. Herein, WC1-x/Mo2C nanoparticle-embedded carbon nanofiber (WC1-x/Mo2C@CNF) with abundant interfaces is successfully designed and synthesized. Benefiting from the electron transfer behavior from Mo2C to WC1-x, the electrocatalysts of WC1-x/Mo2C@CNF exhibit superior HER and OER performance. Furthermore, when employed as anode and cathode in membrane electrode assembly devices, the WC1-x/Mo2C@CNF catalyst exhibits enhanced catalytic activity and remarkable stability for 100 hours at a high current density of 200 mA cm-2 towards overall water splitting. The experimental characterizations and theoretical simulation reveal that modulation of the d-band center for WC1-x/Mo2C@CNF, achieved through the asymmetric charge distribution resulting from the built-in electric field induced by work function, enables optimization of adsorption strength for hydrogen/oxygen intermediates, thereby promoting the catalytic kinetics for overall water splitting. This work provides promising strategies for designing highly active catalysts in energy conversion fields.
Collapse
Affiliation(s)
- Wenjie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Guangzhi Nie
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zizheng Fang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Xiaojun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao, 266061, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576
| | - Yunze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao, 266071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
47
|
Chen W, Che Y, Xia J, Zheng L, Lv H, Zhang J, Liang HW, Meng X, Ma D, Song W, Wu X, Cao C. Metal-Sulfur Interfaces as the Primary Active Sites for Catalytic Hydrogenations. J Am Chem Soc 2024. [PMID: 38592685 DOI: 10.1021/jacs.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The determination of catalytically active sites is crucial for understanding the catalytic mechanism and providing guidelines for the design of more efficient catalysts. However, the complex structure of supported metal nanocatalysts (e.g., support, metal surface, and metal-support interface) still presents a big challenge. In particular, many studies have demonstrated that metal-support interfaces could also act as the primary active sites in catalytic reactions, which is well elucidated in oxide-supported metal nanocatalysts but is rarely reported in carbon-supported metal nanocatalysts. Here, we fill the above gap and demonstrate that metal-sulfur interfaces in sulfur-doped carbon-supported metal nanocatalysts are the primary active sites for several catalytic hydrogenation reactions. A series of metal nanocatalysts with similar sizes but different amounts of metal-sulfur interfaces were first constructed and characterized. Taking Ir for quinoline hydrogenation as an example, it was found that their catalytic activities were proportional to the amount of the Ir-S interface. Further experiments and density functional theory (DFT) calculations suggested that the adsorption and activation of quinoline occurred on the Ir atoms at the Ir-S interface. Similar phenomena were found in p-chloronitrobenzene hydrogenation over the Pt-S interface and benzoic acid hydrogenation over the Ru-S interface. All of these findings verify the predominant activity of metal-sulfur interfaces for catalytic hydrogenation reactions and contribute to the comprehensive understanding of metal-support interfaces in supported nanocatalysts.
Collapse
Affiliation(s)
- Weiming Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yixuan Che
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haifeng Lv
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hai-Wei Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei ,Anhui 230026, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, CAS Key Laboratory of Materials for Energy Conversion, CAS Center for Excellence in Nanoscience, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
48
|
Qiao M, Li B, Fei T, Xue M, Yao T, Tang Q, Zhu D. Design Strategies towards Advanced Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities. Chemistry 2024; 30:e202303826. [PMID: 38221628 DOI: 10.1002/chem.202303826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/16/2024]
Abstract
Hydrogen (H2), produced by water electrolysis with the electricity from renewable sources, is an ideal energy carrier for achieving a carbon-neutral and sustainable society. Hydrogen evolution reaction (HER) is the cathodic half-reaction of water electrolysis, which requires active and robust electrocatalysts to reduce the energy consumption for H2 generation. Despite numerous electrocatalysts have been reported by the academia for HER, most of them were only tested under relatively small current densities for a short period, which cannot meet the requirements for industrial water electrolysis. To bridge the gap between academia and industry, it is crucial to develop highly active HER electrocatalysts which can operate at large current densities for a long time. In this review, the mechanisms of HER in acidic and alkaline electrolytes are firstly introduced. Then, design strategies towards high-performance large-current-density HER electrocatalysts from five aspects including number of active sites, intrinsic activity of each site, charge transfer, mass transfer, and stability are discussed via featured examples. Finally, our own insights about the challenges and future opportunities in this emerging field are presented.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bo Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Teng Fei
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mingren Xue
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Tianxin Yao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qin Tang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Anhui Key Laboratory of low temperature Co-fired Materials, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
49
|
Liu Y, Li L, Wang L, Li N, Zhao X, Chen Y, Sakthivel T, Dai Z. Janus electronic state of supported iridium nanoclusters for sustainable alkaline water electrolysis. Nat Commun 2024; 15:2851. [PMID: 38565546 PMCID: PMC10987502 DOI: 10.1038/s41467-024-47045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Metal-support electronic interactions play crucial roles in triggering the hydrogen spillover (HSo) to boost hydrogen evolution reaction (HER). It requires the supported metal of electron-rich state to facilitate the proton adsorption/spillover. However, this electron-rich metal state contradicts the traditional metal→support electron transfer protocol and is not compatible with the electron-donating oxygen evolution reaction (OER), especially in proton-poor alkaline conditions. Here we profile an Ir/NiPS3 support structure to study the Ir electronic states and performances in HSo/OER-integrated alkaline water electrolysis. The supported Ir is evidenced with Janus electron-rich and electron-poor states at the tip and interface regions to respectively facilitate the HSo and OER processes. Resultantly, the water electrolysis (WE) is efficiently implemented with 1.51 V at 10 mA cm-2 for 1000 h in 1 M KOH and 1.44 V in urea-KOH electrolyte. This research clarifies the Janus electronic state as fundamental in rationalizing efficient metal-support WE catalysts.
Collapse
Affiliation(s)
- Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Li Wang
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Na Li
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, 410083, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Thangavel Sakthivel
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gyeongbuk, 39177, South Korea
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
50
|
He S, Tu Y, Zhang J, Zhang L, Ke J, Wang L, Du L, Cui Z, Song H. Ammonia-Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308053. [PMID: 38009478 DOI: 10.1002/smll.202308053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.
Collapse
Affiliation(s)
- Shunyi He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Ke
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|