1
|
Sun A, Wu Y, Yu L. Quantitative Characterization and Influencing Factors for Electrode-Molecule-Electrode Junction Stability. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28939-28960. [PMID: 40340305 DOI: 10.1021/acsami.4c21560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Molecular electronics has made considerable progress in recent decades. The construction of a stable "electrode-molecule-electrode" junction is critical for the study of molecular electronics, as the stability can promote the exploration of the electrical properties of individual molecules and enable the prolonged observation of physical and chemical phenomena at the single-molecule scale. However, dispersed discussions and conflated concepts hinder our understanding of molecular junction stability. In this review, we systematically discuss the stability of molecular junctions from both thermodynamic and kinetic perspectives, summarize key quantitative parameters and their interrelationships, and provide an overview of the influencing factors at the molecule-electrode interface, as well as the experimental and theoretical analysis methods. We anticipate that this review will contribute to a thorough understanding of the stability of molecular junctions and offer valuable insights for the design of molecular devices based on molecular junctions.
Collapse
Affiliation(s)
- Aoxing Sun
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Yiqun Wu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Lei Yu
- Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
Konishi A, Tokuyama H, Kitamura H, Tsuchida S, Suzuki M, Nakayama KI, Kishi R, Yasuda M. Synthesis and Characterization of Cycloocta[1,2- a:6,5- a']diindene as an Octagon-Containing Nonalternant Isomer of Pentacyclic Benzenoid Aromatic Hydrocarbons with Hidden Diradical Character That Induces Dimerization. J Am Chem Soc 2025; 147:17281-17292. [PMID: 40354667 DOI: 10.1021/jacs.5c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Recently, the interest in nonbenzenoid hydrocarbons has resurged, focusing on the replacement of two benzenoid hexagons with a pentagon/heptagon pair, which has led to abundant azulenoid hydrocarbons. For ortho-fused benzenoid hydrocarbons with three or more rings, replacing the three hexagons with a set of two pentagons and one octagon is also possible. Following this concept, we designed pentacyclic cyclooctadiindenes 4 and 5 with a 5-8-5 tricyclic skeleton. Although the pronounced open-shell nature of 4 hampered its synthesis, five examples of cyclooctadiindenes 5 were synthesized and characterized as stable closed-shell molecules. A thin film of 5a exhibited p-type transistor behavior with a hole mobility of 0.63 × 10-2 cm2/(V·s). Optoelectronic measurements clearly showed the nonalternant character of 5. Heating or photoirradiation of a solution of 5 afforded a formal [6 + 4] cycloadduct. Theoretical calculations and mechanistic investigations revealed the occurrence of a stepwise formation of two C-C bonds, in which the hidden open-shell character of 5 emerges with the two molecules in close contact. Notably, in the dimeric π-complex 5·5, the nonalternant character of 5 is alleviated. The increased spatial overlap of the frontier orbitals and the reduction of the energy gap facilitate the diradical-based bond formations. Our results demonstrate that the open-shell electronic structures of a π-stacked compound can be tuned even for monomer compounds with negligible open-shell character. This study will contribute to establishing design strategies for novel open-shell functional molecular materials based on closed-shell nonalternant hydrocarbons in the condensed state.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruka Tokuyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hinaki Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiya Tsuchida
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mitsuharu Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-Ichi Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Zhuang D, Wang D, Xu J, Tang Z, Ching JJ, Ling TC, Li X, Hong W. Frontiers in Single-Molecule Junction Detection: A Review of Recent Innovations and Breakthroughs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40393706 DOI: 10.1021/acs.langmuir.5c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Single-molecule junction techniques offer powerful tools for studying physical and chemical properties at the single-molecule level, while enabling groundbreaking advances in ultrasensitive sensing. This review encapsulates the latest progress made in tracking chemical reactions and intermolecular interactions by employing single-molecule junction techniques. Additionally, we explore their practical applications in detection and sensing of trace chemical substances and biomolecules. Single-molecule electrical measurements, such as mechanically controllable break junctions (MCBJs), scanning tunneling microscopy break junctions (STM-BJs), and graphene-molecule-graphene single-molecule junctions (GMG-SMJ), exhibit exceptional sensitivity and resolution. These techniques allow for precise control and detection at the molecular scale, providing powerful tools for research across disciplines such as chemistry, biology, and physics while also driving new discoveries and advancements in related fields. Furthermore, we highlight the applications of single-molecule junction-based sensing techniques in identifying small molecules and ions in various media, thus contributing noteworthy insights into the design of ultrasensitive single-molecule sensors.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Ziyun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Juan Joon Ching
- Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Institute of Artificial Intelligence, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Li Y, Yan S, Geng M, Li H. Enhancing π-π stacking by a halogen substituent in a single-molecule junction. Chem Commun (Camb) 2025. [PMID: 40364654 DOI: 10.1039/d5cc02037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Modulating π-π interactions and understanding their impact on charge transport at the molecular scale are critical for advancing supramolecular electronics. Herein, anthracene-based molecular wires (Py-X, X = H, F, Cl, Br) were synthesized and the effect of halogen substituents on π-π stacking was investigated. Experimental results revealed that Py-Br and Py-Cl form both monomer and π-stacked dimer junctions, while Py-H and Py-F only form monomer junctions. The bromine substituent demonstrates a unique ability to promote π-stacked dimer formation. This work provides a design strategy for the formation of π-stacked dimmers in molecular junctions, and advances the development of supramolecular electronics.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Siyu Yan
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Meng Geng
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Hongxiang Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
5
|
Nguyen LH, Truong TN. A Computational Design of Covalently Bonded Mixed Stacking Cocrystals. Chempluschem 2025; 90:e202500028. [PMID: 39927825 DOI: 10.1002/cplu.202500028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
In this study, a computational design of a new type of donor-acceptor mixed stacking cocrystals is introduced. Our approach involves functionalizing trisilasumanene frameworks with electron-donating groups (-CH3, -OH, -NH2) and electron-withdrawing groups (-F, -CN), and then stacking donors and acceptors alternatively while connecting them either by sp3- and sp-carbon chains. Using the B3LYP-D3/6-31+G(d) level of theory, we demonstrate that these covalently bonded cocrystals can overcome the issue of thermal and mechanical instabilities observed in the non-covalently mixed stacking. Furthermore, modifying donor and acceptor groups can vary the bandgaps, approximated by the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) gaps, from 1.50 to 3.50 eV. The results also predict the covalently bonded mixed stacking cocrystals having much larger conductance via Yoshizawa model. In addition, variations in bridge lengths were found to have a small effect on the HOMO-LUMO gaps but allow for a new control parameter regarding the porosity of the materials. These results encourage experimental explorations.
Collapse
Affiliation(s)
- Lam H Nguyen
- Faculty of Chemistry, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University, Ho Chi Minh City, 700000, Vietnam
- Institute for Computational Science and Technology, Ho Chi Minh City, 700000, Vietnam
| | - Thanh N Truong
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
6
|
Kress C, Häussinger D, Leigh DA, Mayor M. Synthesis of a Station-Less Molecular Daisy Chain. Chemistry 2025:e202501369. [PMID: 40299723 DOI: 10.1002/chem.202501369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
A daisy chain architecture without a preferred low energy arrangement of the mechanically linked components is presented. The molecular design combines a rigid-rod type oligophenylene ethynylene subunit with an oligoethylene glycol macrocycle that features a bipyridine coordination site. The daisy chain dimer was synthesized via kinetic trapping of the interlocked structure using a Cadiot-Chodkiewicz active metal template reaction. Comparison of the isolated interlocked dimer with its monomeric analogue indicates the presence of a variety of different geometries for the molecular daisy chain. The dynamic sliding motion in the daisy chain is studied by variable temperature UV-vis and nuclear magnetic resonance (NMR) spectroscopy experiments, which point to a highly mobile system even at low temperatures.
Collapse
Affiliation(s)
- Charlotte Kress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel, 4056, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, Karlsruhe, 76021, Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), Guangzhou, 510275, China
| |
Collapse
|
7
|
Ortiz-Mahecha C, Schwob L, Leroux J, Bari S, Meißner RH, Bande A. X-ray absorption spectroscopy reveals charge transfer in π-stacked aromatic amino acids. Phys Chem Chem Phys 2025; 27:8202-8211. [PMID: 40176751 DOI: 10.1039/d4cp04615c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
X-ray absorption spectroscopy (XAS) and quantum mechanical calculations bear great potential to unravel π stacking side-chain interaction properties and structure in, e.g., proteins. However, core-excited state calculations for proteins and their associated interpretation for π-π interactions are challenging due to the complexity of the non-covalent interactions involved. A theoretical analysis is developed to decompose the core-to-valence transitions into their atomic contributions in order to characterize the π stacking of aromatic amino acids as a function of their non-covalent distance change. Three models were studied as a non-covalent mixed dimers of the phenylalanine, tyrosine and tryptophan amino acids. We found that there are carbon 1s → π* charge transfer transitions associated with the non-covalently paired aromatic amino acids through their side chains. The atomic-centered contributions to the electronic transition density quantify the excited state charge transfer of the pairing amino acid models, highlighting the π stacking interactions between their aromatic side chains.
Collapse
Affiliation(s)
- Carlos Ortiz-Mahecha
- Institute for Interface Physics and Engineering, Hamburg University of Technology, Hamburg, Germany.
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
| | - Juliette Leroux
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- CIMAP, CEA/CNRS/ENSICAEN/Université de Caen Normandie, 14050 Caen, France
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Robert H Meißner
- Institute for Interface Physics and Engineering, Hamburg University of Technology, Hamburg, Germany.
- Helmholtz-Zentrum Hereon, Institute of Surface Science, 21502 Geesthacht, Germany
| | - Annika Bande
- Institute of Inorganic Chemistry, Leibniz Hannover University, 30167 Hannover, Germany
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany.
| |
Collapse
|
8
|
Li Y, Yang L, Xiong R, Shang Y, Tian Y, Chi B, Han B, Xia K, Wang H, Wang Q. High Energy Quasi-Solid-State Supercapacitors Totally Derived from Alginate Hydrogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500421. [PMID: 40026122 DOI: 10.1002/smll.202500421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Indexed: 03/04/2025]
Abstract
Utilizing sustainable and low-cost resources to achieve high-energy supercapacitors (SCs) remains a significant challenge. Herein, we propose a strategy to design high-energy quasi-solid-state SCs, where electrode materials, binder, and electrolyte are entirely derived from sodium alginate (SA). N-doped porous carbon (NPC) with well-developed hierarchical pores and high nitrogen content is synthesized via the direct in-situ carbonization of Ca2+-crosslinked alginate hydrogel with urea. The resulting distribution of mesopores and micropores in NPC facilitates ions transport and adsorption and ensures high electric-double-layer capacitance, while its high nitrogen-doping provides substantial pseudo-capacitance. In addition, the use of SA as a binder significantly improves water wettability and lowers charge transfer resistance, further enhancing ion accessibility and capacitance of the carbon electrode. The tough hydrogel electrolyte, combined with the interpenetrating alginate and polyacrylamide networks, exhibits enhanced mechanical strength, water retention, and ionic conductivity. Consequently, the as-fabricated all-in-one alginate-based quasi-solid-state SC delivers an outstanding energy density of 20.2 Wh kg-1 at 112.5 W kg-1 and exceptional cycling stability of 95.9% over 10 000 cycles at 10 A g-1. This innovative design highlights the value-added use of biomass from both a material engineering and device integration perspective, paving the way for the manufacture of high-energy quasi-solid-state SCs.
Collapse
Affiliation(s)
- Yudie Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Lei Yang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Rui Xiong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Yinghui Shang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Yunfeng Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Bo Chi
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Kaisheng Xia
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430078, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Qigang Wang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| |
Collapse
|
9
|
Reyes AL, Ndiaye FN, Artigas A, Coquerel Y, Terrioux C, Prcovic N, Hagebaum‐Reignier D, Carissan Y. Ground and Excited State Aromaticity in Azulene-Based Helicenes. Chemphyschem 2025; 26:e202400833. [PMID: 39831429 PMCID: PMC11963990 DOI: 10.1002/cphc.202400833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems. For azulene-based helicenes larger than a critical size, that is, for more than six fused cycles, unexpected aromatic delocalization circuits appear. This feature is understood via the decomposition of the wavefunction on sets of carefully chosen local electronic structures and fragment orbital diagrams.
Collapse
Affiliation(s)
| | | | - Albert Artigas
- Facultat de CiènciesUniversitat de Girona, Campus Montilivi, Carrer de Maria Aurèlia Capmany i Farnès 6917003Girona, CatalunyaSpain
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, iSm2MarseilleFrance
| | | | | | | | | |
Collapse
|
10
|
Lee CH, Kim SH, Lee H, Seol TH, Lee JH, Yi Y, Lee GD. In Situ Substrate Temperature Control for High-Performance Blue-Emitting OLEDs with Extended Operational Lifetime. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15755-15763. [PMID: 40016619 DOI: 10.1021/acsami.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Organic light-emitting diodes (OLEDs) are currently a leading technology in display applications, providing superior optoelectrical performance and image quality compared to other sources. A challenge in OLEDs is prolonging the operational lifetime of blue pixels to achieve nearly 100% internal quantum efficiency, comparable to red and green pixels. Recently, there has been growing interest in controlling the molecular orientation in the emitting layer (EML) to enhance the optoelectrical performance of OLEDs and address this issue. A low driving current at a specific luminance allows OLEDs to significantly enhance their operational lifetime under constant current and efficiency. In this study, the investigation focused on whether substrate temperature (Tsub) predominantly influences the orientation of the host molecules in the EML. A low Tsub significantly enhances the hole mobility of the EML, enabling recombination inside the EML. As a result, it was observed that blue-emitting OLEDs using this technique significantly increase the operational lifetime by approximately 6.6 times when Tsub is -4 °C compared to 40 °C of Tsub, eliminating the material deformation of a weak organic layer.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Electronics Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Shin-Han Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Hanbeen Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Semiconductor Convergence, Inha University, Incheon 22212, Republic of Korea
| | - Tae Ho Seol
- Department of Electronics Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Jeong-Hwan Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Program in Semiconductor Convergence, Inha University, Incheon 22212, Republic of Korea
| | - Yeonjin Yi
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Dong Lee
- Department of Electronics Engineering, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
11
|
Wang J, Wang X, Yao C, Xu J, Wang D, Zhao X, Li X, Liu J, Hong W. Interface Phenomena in Molecular Junctions through Noncovalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5705-5735. [PMID: 40009872 DOI: 10.1021/acs.langmuir.4c04865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Noncovalent interactions, both between molecules and at the molecule-electrode interfaces, play essential roles in enabling dynamic and reversible molecular behaviors, including self-assembly, recognition, and various functional properties. In macroscopic ensemble systems, these interfacial phenomena often exhibit emergent properties that arise from the synergistic interplay of multiple noncovalent interactions. However, at the single-molecule scale, precisely distinguishing, characterizing, and controlling individual noncovalent interactions remains a significant challenge. Molecular electronics offers a unique platform for constructing and characterizing both intermolecular and molecule-electrode interfaces governed by noncovalent interactions, enabling the isolated study of these fundamental interactions. Furthermore, precise control over these interfaces through noncovalent interactions facilitates the development of enhanced molecular devices. This review examines the characterization of interfacial phenomena arising from noncovalent interactions through single-molecule electrical measurements and explores their applications in molecular devices. We begin by discussing the construction of stable molecular junctions through intermolecular and molecule-electrode interfaces, followed by an analysis of electron tunneling mechanisms mediated by key noncovalent interactions and their modulation methods. We then investigate how noncovalent interactions enhance device sensitivity, stability, and functionality, establishing design principles for next-generation molecular electronics. We have also explored the potential of noncovalent interactions for bottom-up self-assembled molecular devices. The review concludes by addressing the opportunities and challenges in scaling up molecular electronics through noncovalent interactions.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chengpeng Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jizhe Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Dongdong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Li X, Gao ZW, Chen C, Wang XN, Han YF. Isomeric Azulene-Based Carbon-Centered Radicals Derived from N-Heterocyclic Carbenes. J Am Chem Soc 2025; 147:6367-6372. [PMID: 39937177 DOI: 10.1021/jacs.4c18599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Azulene (isomer with naphthalene), a representative nonalternant hydrocarbon, has attracted significant attention as a building block for π-extended molecules owing to its distinctive electronic structure and physicochemical properties that differ from those of conventional alternant hydrocarbons. Nevertheless, the development of stable carbon-centered radicals utilizing an azulene moiety remains relatively scarce. Herein, we report the electronic structures and optical properties of azulene-based carbon-centered radical isomers, 1 and 2, which were designed and synthesized by attaching N-heterocyclic carbenes (NHCs) to the 6-position of the seven-membered ring or 2-position of the five-membered ring of azulene, respectively. Density functional theory calculations reveal that the spin density in 1 is primarily localized on the five-membered ring of the azulene, indicating it as π-extended cyclopentadienyl radicals, whereas the spin density is predominantly distributed in the seven-membered ring of azulene for 2, serving as an example of π-extended cycloheptatrienyl radicals. Furthermore, although both radicals 1 and 2 exhibit anti-Kasha emission, the emission wavelength of 2 (λem ∼ 495 nm) is significantly red-shifted compared to that of 1 (λem ∼ 396 nm).
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Zhao-Wang Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Can Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xu-Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
13
|
Jiang Z, Chen M, Zhang SF, Wang L, Liu X. Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2873-2879. [PMID: 39854618 DOI: 10.1021/acs.langmuir.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics. In this work, we report a series of molecular wires that are organized in donor-acceptor-donor configurations, with distinct chalcogen substitutions, including oxygen (BOD), sulfur (BTD), and selenium (BSD). We investigated the electron transport properties using the scanning tunneling microscope break junction (STM-BJ) technique. Our results revealed that both the single-molecule conductance and the junction evolution feature are impacted by the heteroatoms in the benzo(chalcogen)diazole cores. Furthermore, current-voltage (I-V) experiments, combined with theoretical analyses, suggest that MEC plays a dominant role in modulating electron transport behaviors. Overall, our findings provide important insights into the interface-mediated charge transport exerted by chalcogen atoms within molecular devices, thereby enhancing the fundamental comprehension of these critical interactions.
Collapse
Affiliation(s)
- Zitai Jiang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Ming Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China
| | - Shou-Feng Zhang
- Department of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Lin Wang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xunshan Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China
| |
Collapse
|
14
|
Zhang C, Kong Y, Xiang J, Chen S, Kornyshev AA, Ulstrup J, Gao X, Zhang G, Li Y, Li J. Switchable modes of azulene-based single molecule-electrode coupling controlled by interfacial charge distribution. Chem Sci 2025; 16:1353-1363. [PMID: 39703415 PMCID: PMC11653075 DOI: 10.1039/d4sc06614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Molecule-electrode interactions are critical for determining transport mechanisms and device functionalities in both single-molecule electrochemistry and electronics. Crucial factors such as anchoring groups and local fields have been studied, but the role of electrolytes and interfacial charge distribution remains largely underexplored. The present research focuses on how the interfacial charge distribution in the electric double layer (EDL) controls single-molecule junctions anchored by azulene. This probe molecule is chosen for its distinct charge properties in its 5- and 7-membered condensed ring structures that impose unique sensitivity to the surrounding electric field. Using scanning tunneling microscopy break junction (STM-BJ) techniques, we systematically investigate the conductance, anchoring sites, and coupling strength of these junctions in organic liquid but non-electrolytic environments, in aqueous solution under varying ionic strengths, and across different electrode systems and potential profiles. Our results demonstrate that the conductance and molecule-electrode coupling modes can be effectively tuned through control of interfacial charge distribution, particularly by altering the ion distribution around the electrodes. Mechanical modulation experiments substantiate these trends, and theoretical calculations pinpoint ion distribution as a key driver of molecule-electrode interaction. This research introduces a novel approach to dynamic control of the azulene-electrode coupling through electrolyte manipulation, offering entirely new insight for the design of electrolyte-responsive, switchable single-molecule devices.
Collapse
Affiliation(s)
- Chengyang Zhang
- Center for Bioanalytical Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Yaqi Kong
- School of Physics and Electronics, Shandong Normal University Jinan 250358 China
| | - Junjun Xiang
- State Key Laboratory of Orgnometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Sikang Chen
- Center for Bioanalytical Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Alexei A Kornyshev
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Xike Gao
- State Key Laboratory of Orgnometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Guangping Zhang
- School of Physics and Electronics, Shandong Normal University Jinan 250358 China
| | - Yueqi Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China Hefei 230026 China
| | - Jinghong Li
- Center for Bioanalytical Chemistry, University of Science and Technology of China Hefei 230026 China
- Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Rashid U, Medrano Sandonas L, Chatir E, Ziani Z, Sreelakshmi PA, Cobo S, Gutierrez R, Cuniberti G, Kaliginedi V. Mapping the Extended Ground State Reactivity Landscape of a Photoswitchable Molecule at a Single Molecular Level. J Am Chem Soc 2025; 147:830-840. [PMID: 39680608 DOI: 10.1021/jacs.4c13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Photoswitchable molecules with structural flexibility can exhibit a complex ground state potential energy landscape due to the accessibility of multiple metastable states at merely low energy barriers. However, conventional bulk analytical techniques are limited in their ability to probe these metastable ground states and their relative energies. This is partially due to the difficulty of inducing changes in small molecules in their ground state, as they do not respond to external stimuli, such as mechanical force, unless they are incorporated into larger polymer networks. This hinders the understanding of ground-state reactivity and the associated dynamics. In this study, we leverage the "perturb-probe" capability of the single molecular break junction technique to explore the ground state 6π electrocyclization of a dithienylethene (DTE) derivative, a process traditionally achieved through electro- or photochromism. Our findings reveal that this reaction can also be triggered by mechanical force and an oriented electric field at the single-molecule level via ground state dynamics. We demonstrated that external perturbations could control the ground state reaction dynamics and steer the reaction trajectories away from constraints imposed by typical excited state dynamics. This strategy will thus offer access to a whole new dimension of single molecular electromechanical conversions and extend our knowledge of the ground state potential energy surface available to molecules under external force fields.
Collapse
Affiliation(s)
- Umar Rashid
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Leonardo Medrano Sandonas
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Elarbi Chatir
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France
| | - Zakaria Ziani
- LCC, CNRS, UPS, and INP Université de Toulouse, 31077 Toulouse, France
| | - P A Sreelakshmi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Saioa Cobo
- Université Grenoble Alpes, CNRS, DCM, UMR 5250, 38000 Grenoble, France
- LCC, CNRS, UPS, and INP Université de Toulouse, 31077 Toulouse, France
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Xu X, Qi Q, Hu Q, Ma L, Emusani R, Zhang S, Zhao X, Tan M, Adijiang A, Zhang W, Ma Z, Tian G, Scheer E, Xiang D. Manipulating π-π Interactions between Single Molecules by Using Antenna Electrodes as Optical Tweezers. PHYSICAL REVIEW LETTERS 2024; 133:233001. [PMID: 39714654 DOI: 10.1103/physrevlett.133.233001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Via conductance measurements of thousands of single-molecule junctions, we report that the π-π coupling between neighboring aromatic molecules can be manipulated by laser illumination. We reveal that this optical manipulation originates from the optical plasmonic gradient force generated inside the nanogaps, in which the gapped antenna electrodes act as optical tweezers pushing the neighboring molecules closer together. These findings offer a nondestructive approach to regulate the interaction of the molecules, deepening the understanding of the mechanism of π-π interaction, and open an avenue to manipulate the relative position of extremely small objects down to the scale of single molecules.
Collapse
Affiliation(s)
- Xiaona Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Qiang Qi
- State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Qihong Hu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Liang Ma
- State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Ramya Emusani
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xueyan Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Min Tan
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Ziwei Ma
- State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | | | - Dong Xiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| |
Collapse
|
17
|
Wang M, Zhou Q, Xu Z, Zhang GP. Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation. J Phys Chem A 2024; 128:9861-9868. [PMID: 39540284 DOI: 10.1021/acs.jpca.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qi Zhou
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zirui Xu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
18
|
Feng J, Bâldea I, Gao J, Jeong G, Frisbie CD, Xie Z. Investigating Molecular Junctions Based on Mixed Self-Assembled Monolayers to Understand the Impact of Intermolecular Interactions on Transport. ACS NANO 2024; 18:32016-32022. [PMID: 39503712 DOI: 10.1021/acsnano.4c09956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
To interrogate the importance of intermolecular interactions on charge transport at the nanoscale, we investigate molecular tunnel junctions based on mixed self-assembled monolayers (SAMs) of 1-alkyl (CnT) thiols and their fluorinated counterparts (F-CnT) that have substantially different tunneling conductances. Experiments on mixed CnT1-x:F-CnTx SAMs between Au contacts reveal a strongly nonlinear (exponential) dependence of the tunneling conductance G on composition x, a behavior that is tempting to assign to the strong impact of intra-SAM intermolecular interactions. However, analysis suggests that the exponential dependence of G on x does not arise from intra-SAM intermolecular interactions, but instead emerges from the work function modification of the Au electrode which varies linearly with x.
Collapse
Affiliation(s)
- Jiajun Feng
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ioan Bâldea
- Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Jiajie Gao
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| | - Gookyeong Jeong
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science and Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zuoti Xie
- Department of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen-Hong Kong International Science and Technology Park, NO.3 Binglang Road, Futian District, Shenzhen, Guangdong 518000, China
| |
Collapse
|
19
|
Tu ZL, Hu LY, Wang JY, Wang C, Xiao X, Luo XF. Ring-extended carbazole modification to activate efficient phosphorescent OLED performance of traditional host materials. Chem Commun (Camb) 2024; 60:12421-12424. [PMID: 39373978 DOI: 10.1039/d4cc04537h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A novel "Ring-expansion" strategy is proposed to optimize traditional host molecular structures, featuring a rigid molecular skeleton and excellent transport of carriers. Consequently, the two novel host materials facilitate the fabrication of efficient phosphorescent OLEDs with suppressed efficiency roll-off compared to OLEDs based on the conventional host material (mCP).
Collapse
Affiliation(s)
- Zhen-Long Tu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Li-Yuan Hu
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| | - Jun-Yi Wang
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| | - Cong Wang
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| | - Xunwen Xiao
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| | - Xu-Feng Luo
- College of Material Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China.
| |
Collapse
|
20
|
Zhou L, Qiu F, Ding Y, Liang J, Zhou B, Zhou Z, Zhang L, Chi C, Wang Q. Perylene with Split-Azulene Embedding. Angew Chem Int Ed Engl 2024; 63:e202409750. [PMID: 38982974 DOI: 10.1002/anie.202409750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Splitting the five and seven-membered rings of azulene and embedding them separately into a conjugated backbone provides azulene-like polycyclic aromatic hydrocarbons (PAHs), which are of great interest in quantum and material chemistry. However, the synthetic accessibility poses a significant challenge. In this study, we present the synthesis of a novel azulene-like PAH, Pery-57, which can be viewed as the integration of a perylene framework into the split azulene. The compact structure of Pery-57 displays several intriguing characteristics, including NIR II absorption at 1200 nm, a substantial dipole moment of 3.5 D, and head-to-tail alternating columnar packing. Furthermore, Pery-57 exhibits remarkable redox properties. The cationic radical Pery-57⋅+ readily captures a hydrogen atom. Variable-temperature NMR (VT NMR ) and variable-temperature EPR (VT-EPR) studies reveal that the dianion Pery-572- possesses an open-shell singlet ground state and demonstrates significant global anti-aromaticity. The dication Pery-572+ is also predicted to exhibit diradical character. Despite bearing three bulky substituents, Pery-57 displays p-type transport characteristics with a mobility of 0.03 cm2 V-1 s-1, attributed to its unique azulene-like structure. Overall, this work directs interest in azulene-like PAHs, a unique member of nonalternant PAHs showcasing exceptional properties and applications.
Collapse
Affiliation(s)
- Laiyun Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yeda Ding
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Jianwei Liang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Bingdi Zhou
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Zheng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyan Chi
- Department of Chemistry, National University of Singapore, Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| |
Collapse
|
21
|
Ju H, Wang B, Li M, Hao J, Si W, Song S, Mei K, Sue ACH, Wang J, Jia C, Guo X. Tracking Noncovalent Interactions of π, π-Hole, and Ion in Molecular Complexes at the Single-Molecule Level. J Am Chem Soc 2024; 146:25290-25298. [PMID: 39196992 DOI: 10.1021/jacs.4c09504] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Noncovalent interactions involving aromatic rings, such as π-stacking and π-ion interactions, play an essential role in molecular recognition, assembly, catalysis, and electronics. However, the inherently weak and complex nature of these interactions has made it challenging to study them experimentally, especially with regard to elucidating their properties in solution. Herein, the noncovalent interactions between π and π-hole, π and cation, and π-hole and anion in molecular complexes in nonpolar solution are investigated in situ through single-molecule electrical measurements in combination with theoretical calculations. Specifically, phenyl and pentafluorobenzyl groups serve as π and π-hole sites, respectively, while Li+ and Cl- are employed as the cation and anion. Our findings reveal that, in comparison with homogeneous π···π interactions, heterogeneous π···π-hole and π···cation interactions exhibit greater binding energies, resulting in a longer binding lifetime of the molecular junctions. Meanwhile, π···Li+ and π-hole···Cl- interactions present significantly distinct binding characteristics, with the former being stronger but more flexible than the latter. Furthermore, by changing the molecular components, similar conductivity can be achieved in both molecular dimers or sandwich complexes. These results provide new insights into π- and π-hole-involved noncovalent interactions, offering novel strategies for precise manipulation of molecular assembly, recognition, and molecular device.
Collapse
Affiliation(s)
- Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Boyu Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shuxin Song
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jinying Wang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Microscale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
22
|
Gorenskaia E, Low PJ. Methods for the analysis, interpretation, and prediction of single-molecule junction conductance behaviour. Chem Sci 2024; 15:9510-9556. [PMID: 38939131 PMCID: PMC11206205 DOI: 10.1039/d4sc00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024] Open
Abstract
This article offers a broad overview of measurement methods in the field of molecular electronics, with a particular focus on the most common single-molecule junction fabrication techniques, the challenges in data analysis and interpretation of single-molecule junction current-distance traces, and a summary of simulations and predictive models aimed at establishing robust structure-property relationships of use in the further development of molecular electronics.
Collapse
Affiliation(s)
- Elena Gorenskaia
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia 35 Stirling Highway Crawley Western Australia 6026 Australia
| |
Collapse
|
23
|
Zhang Z, Xu C, Sun Q, Zhu Y, Yan W, Cai G, Li Y, Si W, Lu X, Xu W, Yang Y, Lin Y. Delocalizing Excitation for Highly-Active Organic Photovoltaic Catalysts. Angew Chem Int Ed Engl 2024; 63:e202402343. [PMID: 38639055 DOI: 10.1002/anie.202402343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
Localized excitation in traditional organic photocatalysts typically prevents the generation and extraction of photo-induced free charge carriers, limiting their activity enhancement under illumination. Here, we enhance delocalized photoexcitation of small molecular photovoltaic catalysts by weakening their electron-phonon coupling via rational fluoro-substitution. The optimized 2FBP-4F catalyst we develop here exhibits a minimized Huang-Rhys factor of 0.35 in solution, high dielectric constant and strong crystallization in the solid state. As a result, the energy barrier for exciton dissociation is decreased, and more importantly, polarons are unusually observed in 2FBP-4F nanoparticles (NPs). With the increased hole transfer efficiency and prolonged charge carrier lifetime highly related to enhanced exciton delocalization, the PM6 : 2FBP-4F heterojunction NPs at varied concentration exhibit much higher optimized photocatalytic activity (207.6-561.8 mmol h-1 g-1) for hydrogen evolution than the control PM6 : BP-4F and PM6 : 2FBP-6F NPs, as well as other reported photocatalysts under simulated solar light (AM 1.5G, 100 mW cm-2).
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qianlu Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufan Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenlong Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
25
|
Xu X, Jia K, Qi Q, Tian G, Xiang D. Regulation of π-π interactions between single aromatic molecules by bias voltage. Phys Chem Chem Phys 2024; 26:14607-14612. [PMID: 38738917 DOI: 10.1039/d4cp01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
π-stacking interaction, as a fundamental type of intermolecular interaction, plays a crucial role in generating new functional molecules, altering the optoelectronic properties of materials, and maintaining protein structural stability. However, regulating intermolecular π-π interactions at the single-molecule level without altering the molecular conformation as well as the chemical properties remains a significant challenge. To this end, via conductance measurement with thousands of single molecular junctions employing a series of aromatic molecules, we demonstrate that the π-π coupling between neighboring aromatic molecules with rigid structures in a circuit can be greatly enhanced by increasing the bias voltage. We further reveal that this universal regulating effect of bias voltage without molecular conformational variation originates from the increases of the molecular dipole upon an applied electric field. These findings not only supply a non-destructive method to regulate the intermolecular interactions offering an approach to modulate the electron transport through a single molecular junction, but also deepen the understanding of the mechanism of π-π interactions.
Collapse
Affiliation(s)
- Xiaona Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| | - Keqiang Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| | - Qiang Qi
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Dong Xiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China.
| |
Collapse
|
26
|
Zhang Q, Wu D, Fu Y, Li J, Chen Y, Zhang B. Molecular-Potential and Redox Coregulated Cathodic Electrosynthesis toward Ionic Azulene-Based Thin Films for Organic Memristors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22217-22228. [PMID: 38639367 DOI: 10.1021/acsami.3c19527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Organic memristors as promising electronic units are attracting significant attention owing to their simplicity of molecular structure design. However, fabricating high-quality organic films via novel synthetic technologies and exploring unprecedented chemical structures to achieve excellent memory performance in organic memristor devices are highly challenging. In this work, we report a cathodic electropolymerization to synthesize an ionic azulene-based memristive film (PPMAz-Py+Br-) under the molecular-potential and redox coregulation. During the cathodic electropolymerization process, electropositive pyridinium salts migrate to the cathode under an electric field, undergo a reduction-coupling deprotonation reaction, and polymerize into a uniform film with a controllable thickness on the electrode surface. The prepared Al/PPMAz-Py+Br-/ITO devices not only exhibit a high ON/OFF ratio of 1.8 × 103, high stability, long memory retention, and endurance under a wide range of voltage scans, but also achieve excellent multilevel storage and history-dependent memristive performance. In addition, the devices can mimic important biosynaptic functions, such as learning/forgetting function, synaptic enhancement/inhibition, paired-pulse facilitation/depression, and spiking-rate-dependent plasticity. The tunable memristive performances are attributed to the capture of free electrons on pyridinium cations, the migration of the aluminum ions (Al3+), and the form of Al conductive filaments under voltage scans.
Collapse
Affiliation(s)
- Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongchuang Wu
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Jinyong Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Liu Y, Guo J, Zhou H, Li C, Guo X. Correlating π-π Stacking of Aromatic Diammoniums with Stability and Dimensional Reduction of Dion-Jacobson 2D Perovskites. J Am Chem Soc 2024; 146:8198-8205. [PMID: 38478884 DOI: 10.1021/jacs.3c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Dion-Jacobson (DJ) phase 2D perovskites with various aromatic diammonium cations, potentially possessing high stability, have been developed for optoelectronics. However, their stability does not meet initial expectations, and some of them even easily degrade into lower-dimensional structures. Underlying the stability mechanism and dimensional reduction of these DJ 2D perovskites remains elusive. Herein, we report that π-π stacking intensity between aromatic cations determines structural stability and dimensional variation of DJ 2D perovskites by investigating nine benzene diammoniums (BDAs)-derived low-dimensional perovskites. The BDAs without intermolecular π-π stacking form stable DJ 2D perovskites, while those showing strong π-π stacking tend to generate 1D and 0D architectures. Furthermore, the π-π stacking intensity highly relies on molecular symmetry and electrostatic potential of BDAs; namely, asymmetry and small dipole moment facilitate alleviating the π-π stacking, leading to the formation of DJ 2D perovskites and vice versa. Our findings establish the relationship of aromatic diammonium structure-π-π stacking interaction-perovskite dimensionality, which can guide the design of stable DJ 2D perovskites and the manipulation of perovskite dimensionality for various optoelectronic applications.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Junxue Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Hongpeng Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Wang M, Zhang GP. Tuning the polarity of charge carriers in N-heterocyclic carbene-based single-molecule junctions via atomic manipulation. Phys Chem Chem Phys 2024; 26:9051-9059. [PMID: 38441317 DOI: 10.1039/d3cp04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
29
|
Zhou J, Yang S, Zhang Y, Ren JC, Liu W. Effective Descriptor for Screening Single-Molecule Conductance Switches. J Am Chem Soc 2024; 146:6962-6973. [PMID: 38426449 DOI: 10.1021/jacs.3c14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The adsorption-type molecular switch exhibits bistable states with an equivalently long lifetime at the organic/inorganic interface, promising reliable switching behavior and superior assembly ability in the electronic circuits at the molecular scale. However, the number of reported adsorption-type molecular switches is currently less than 10, and exploring these molecular switches poses a formidable challenge due to the intricate interplay occurring at the interface. To address this challenge, we have developed a model enabling the identification of diverse molecular switches on metal surfaces based on easily accessible physical characteristics. These characteristics primarily include the metal valency electron concentration, the work function of metal surfaces, and the electronegativity difference of molecules. Using this model, we identified 56 new molecular switches. Employing the gradient descent algorithm and statistical linear discriminant analysis, we constructed an explicit descriptor that establishes a relationship between the interfacial structure and chemical environment and the stability of molecular switches. The model's accuracy was validated through density functional theory calculations, achieving a 90% accuracy for aromatic molecular switches. The conductive switching behaviors were further confirmed by nonequilibrium Green's function transport calculations.
Collapse
Affiliation(s)
- Junjun Zhou
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yirong Zhang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Ji-Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| |
Collapse
|
30
|
Kim EY, Mohammadiroudbari M, Chen F, Yang Z, Luo C. A Carbonyl and Azo-Based Polymer Cathode for Low-Temperature Na-Ion Batteries. ACS NANO 2024; 18:4159-4169. [PMID: 38264981 DOI: 10.1021/acsnano.3c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Due to flexible structure tunability and abundant structure diversity, redox-active polymers are promising cathode materials for developing affordable and sustainable Na-ion batteries (NIBs). However, polymer cathodes still suffer from low capacity, poor cycle life, and sluggish reaction kinetics. Herein, we designed and synthesized a polymer cathode material bearing carbonyl and azo groups as well as extended conjugation structures in the repeating units. The polymer cathode exhibited exceptional electrochemical performance in NIBs in terms of high capacity, long lifetime, and fast kinetics. When coupled with a low-concentration electrolyte, it shows superior performance at low temperatures down to -50 °C, demonstrating great promise for low-temperature battery applications. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were employed to study the reaction mechanism, interphase structure, and morphological evolution, confirming reversible redox reactions between azo/carbonyl groups in the polymer and Na+/electrons, a NaF-rich interphase, and high structure stability upon cycling. This work provides an effective approach to developing high-performance polymer cathodes for affordable, sustainable, and low-temperature NIBs.
Collapse
Affiliation(s)
- Eric Youngsam Kim
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | | | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
- Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, United States
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
31
|
Czernek J, Brus J. Reliable Dimerization Energies for Modeling of Supramolecular Junctions. Int J Mol Sci 2024; 25:602. [PMID: 38203773 PMCID: PMC10778993 DOI: 10.3390/ijms25010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate estimates of intermolecular interaction energy, ΔE, are crucial for modeling the properties of organic electronic materials and many other systems. For a diverse set of 50 dimers comprising up to 50 atoms (Set50-50, with 7 of its members being models of single-stacking junctions), benchmark ΔE data were compiled. They were obtained by the focal-point strategy, which involves computations using the canonical variant of the coupled cluster theory with singles, doubles, and perturbative triples [CCSD(T)] performed while applying a large basis set, along with extrapolations of the respective energy components to the complete basis set (CBS) limit. The resulting ΔE data were used to gauge the performance for the Set50-50 of several density-functional theory (DFT)-based approaches, and of one of the localized variants of the CCSD(T) method. This evaluation revealed that (1) the proposed "silver standard" approach, which employs the localized CCSD(T) method and CBS extrapolations, can be expected to provide accuracy better than two kJ/mol for absolute values of ΔE, and (2) from among the DFT techniques, computationally by far the cheapest approach (termed "ωB97X-3c/vDZP" by its authors) performed remarkably well. These findings are directly applicable in cost-effective yet reliable searches of the potential energy surfaces of noncovalent complexes.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic;
| | | |
Collapse
|
32
|
Lai J, Zhu R, Tan J, Yang Z, Ye S. Stacking Arrangement and Orientation of Aromatic Cations Tune Bandgap and Charge Transport of 2D Organic-Inorganic Hybrid Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303449. [PMID: 37495901 DOI: 10.1002/smll.202303449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Chemical modifications on aromatic spacers of 2D perovskites have been demonstrated to be an effective strategy to simultaneously improve optoelectronic properties and stability. However, its underlying mechanism is poorly understood. By using 2D phenyl-based perovskites ([C6 H5 (CH2 )m NH3 ]2 PbI4 ) as models, the authors have revealed how the chemical nature of aromatic cations tunes the bandgap and charge transport of 2D perovskites by utilizing sum-frequency generation vibrational spectroscopy to determine the stacking arrangement and orientation of aromatic cations. It is found that the antiparallel slip-stack arrangement of phenyl rings between adjacent layers induces an indirect band gap, resulting in anomalous carrier dynamics. Incorporation of the CH2 moiety causes stacking rearrangement of the phenyl ring and thus promotes an indirect to direct bandgap transition. In direct-bandgap perovskites, higher carrier mobility correlates with a larger orientation angle of the phenyl ring. Further optimizing the orientation angle by introducing a para-substituted element in a phenyl ring, higher carrier mobility is obtained. This work highlights the importance of leveraging stacking arrangement and orientation of the aromatic cations to tune the photophysical properties, which opens up an avenue for advancing high-performance 2D perovskites optoelectronics via molecular engineering.
Collapse
Affiliation(s)
- Jing Lai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Zhe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
33
|
Huang H, Li N, Fu S, Mo X, Cao X, Yin X, Yang C. Pure Polycyclic Aromatic Hydrocarbon Isomerides with Delayed Fluorescence and Anti-Kasha Emission: High-Efficiency Non-Doped Fluorescence OLEDs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304204. [PMID: 37718390 PMCID: PMC10625133 DOI: 10.1002/advs.202304204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Indexed: 09/19/2023]
Abstract
Pure polycyclic aromatic hydrocarbons (PAHs) consisting solely of carbon-hydrogen or carbon-carbon bonds offer great potential for constructing durable and cost-effective emitters in organic electroluminescence devices. However, achieving versatile fluorescence characteristics in pure PAHs remains a considerable challenge, particularly without the inclusion of heteroatoms. Herein, an efficient approach is presented that involves incorporating non-six-membered rings into classical pyrene isomerides, enabling simultaneous achievement of full-color emission, delayed fluorescence, and anti-Kasha emission. Theoretical calculations reveal that the intensity and distribution of aromaticity/anti-aromaticity in both ground and excited states play a crucial role in determining the excited levels and fluorescence yields. Transient fluorescence measurements confirm the existence of thermally activated delayed fluorescence in pure PAHs. By utilizing these PAHs as emitting layers, electroluminescent spectra covering the entire visible region along with a maximum external quantum efficiency of 9.1% can be achieved, leading to the most exceptional results among non-doped pure hydrocarbon-based devices.
Collapse
Affiliation(s)
- Haoxin Huang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Shuguang Fu
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xuechao Mo
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage MaterialsCollege of Materials Science and EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
34
|
Gao T, Lei J, Zou S, Wang C, Xu X, Gou Q. Conformational equilibria and interaction preference in the complex of isoprene-maleic anhydride. Phys Chem Chem Phys 2023; 25:27798-27804. [PMID: 37814807 DOI: 10.1039/d3cp03712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The rotational spectrum of the isoprene-maleic anhydride complex has been investigated by pulsed jet Fourier transform microwave spectroscopy and interpreted with complementary quantum chemical calculations. Theoretical predictions have yielded four plausible isomers, all residing within an energy window of 12 kJ mol-1. However, two distinct isomers characterized by a π-π stacked configuration have been experimentally observed in pulsed jets, which have differed in the orientation of isoprene over maleic anhydride. The relative population ratio of the two detected isomers has been estimated to be NI/NII ≈ 3/1 from rigorous measurements of the relative intensity on a set of μc-type transitions. Remarkably, this study underscores the pivotal role played by the interaction between the CC bonding orbital (π) of isoprene and the CC antibonding orbital (π*) of maleic anhydride in stabilizing the target complex.
Collapse
Affiliation(s)
- Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Chenxu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
35
|
Fu L, Liu P, Xue R, Tang XY, Cao J, Yao ZF, Liu Y, Yan S, Wang XY. Unravelling the Superiority of Nonbenzenoid Acepleiadylene as a Building Block for Organic Semiconducting Materials. Angew Chem Int Ed Engl 2023; 62:e202306509. [PMID: 37417837 DOI: 10.1002/anie.202306509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
Acepleiadylene (APD), a nonbenzenoid isomer of pyrene, exhibits a unique charge-separated character with a large molecular dipole and a small optical gap. However, APD has never been explored in optoelectronic materials to take advantage of these appealing properties. Here, we employ APD as a building block in organic semiconducting materials for the first time, and unravel the superiority of nonbenzenoid APD in electronic applications. We have synthesized an APD derivative (APD-IID) with APD as the terminal donor moieties and isoindigo (IID) as the acceptor core. Theoretical and experimental investigations reveal that APD-IID has an obvious charge-separated structure and enhanced intermolecular interactions as compared with its pyrene-based isomers. As a result, APD-IID displays significantly higher hole mobilities than those of the pyrene-based counterparts. These results imply the advantages of employing APD in semiconducting materials and great potential of nonbenzenoid polycyclic arenes for optoelectronic applications.
Collapse
Affiliation(s)
- Lin Fu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Rui Xue
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Xiao-Yu Tang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Jiawen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA, 92697, USA
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics (Ministry of Education), Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, China
| |
Collapse
|
36
|
Zhou P, Fu Y, Wang M, Qiu R, Wang Y, Stoddart JF, Wang Y, Chen H. Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interactions. J Am Chem Soc 2023; 145:18800-18811. [PMID: 37590178 DOI: 10.1021/jacs.3c03282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Supramolecular electronics provide an opportunity to introduce molecular assemblies into electronic devices through a combination of noncovalent interactions such as [π···π] and hydrogen-bonding interactions. The fidelity and dynamics of noncovalent interactions hold considerable promise when it comes to building devices with controllable and reproducible switching functions. Here, we demonstrate a strategy for building electronically robust switches by harnessing two different noncovalent interactions between a couple of pyridine derivatives. The single-supermolecule switch is turned ON when compressing the junction enabling [π···π] interactions to dominate the transport, while the switch is turned OFF by stretching the junction to form hydrogen-bonded dimers, leading to a dramatic decrease in conductance. The robustness and reproducibility of these single-supermolecule switches were achieved by modulating the junction with Ångström precision at frequencies of up to 190 Hz while obtaining high ON/OFF ratios of ∼600. The research presented herein opens up an avenue for designing robust bistable mechanoresponsive devices which will find applications in the building of integrated circuits for microelectromechanical systems.
Collapse
Affiliation(s)
- Ping Zhou
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yanjun Fu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Renhui Qiu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuwei Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Hongliang Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
37
|
Czernek J, Brus J. On the Intermolecular Interactions in Thiophene-Cored Single-Stacking Junctions. Int J Mol Sci 2023; 24:13349. [PMID: 37686156 PMCID: PMC10487960 DOI: 10.3390/ijms241713349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
There have been attempts, both experimental and based on density-functional theory (DFT) modeling, at understanding the factors that govern the electronic conductance behavior of single-stacking junctions formed by pi-conjugated materials in nanogaps. Here, a reliable description of relevant stacked configurations of some thiophene-cored systems is provided by means of high-level quantum chemical approaches. The minimal structures of these configurations, which are found using the dispersion-corrected DFT approach, are employed in calculations that apply the coupled cluster method with singles, doubles and perturbative triples [CCSD(T)] and extrapolations to the complete basis set (CBS) limit in order to reliably quantify the strength of intermolecular binding, while their physical origin is investigated using the DFT-based symmetry-adapted perturbation theory (SAPT) of intermolecular interactions. In particular, for symmetrized S-Tn dimers (where "S" and "T" denote a thiomethyl-containing anchor group and a thiophene segment comprising "n" units, respectively), the CCSD(T)/CBS interaction energies are found to increase linearly with n ≤ 6, and significant conformational differences between the flanking 2-thiophene group in S-T1 and S-T2 are described by the CCSD(T)/CBS and SAPT/CBS computations. These results are put into the context of previous work on charge transport properties of S-Tn and other types of supramolecular junctions.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square 2, 16200 Prague, Czech Republic;
| | | |
Collapse
|
38
|
Singh A, Baruah JB. π-Stacking among the Anthracenyl Groups of a Copper Complex Resulted in Doubling of Unit Cell Volume To Provide New Polymorphs. ACS OMEGA 2023; 8:30776-30787. [PMID: 37636968 PMCID: PMC10448684 DOI: 10.1021/acsomega.3c05132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Two polymorphs of the 9-N-(3-imidazolylpropylamino)methylanthracene (Hanthraimmida) containing hydrated copper(II)-2,6-pyridinedicarboxylate complex are reported. The two polymorphs have either lamellar or Herringbone arrangements of π-stacks among the anthracenyl groups of organocation. The difference between the two polymorphs originated from having face-to-face stacking arrangements between the two anthracenyl groups of the symmetry independent cations within the unit cell in one of the polymorphs. The π-stacked anthracenyl groups in consecutive layers of the polymorphs are oriented in one direction in the polymorph designated as P1, whereas the polymorph designated as P2 has such orientations in opposite directions. The unit cell volume of the polymorph P2 (Z = 4) has approximately twice the volume of the polymorph P1 (Z = 2); it happend due to coalescence of two unit cells of P1 in the ab-crystallographic plane. A mixed methanol/water solvate of the copper complex is also reported. It has a channel-like arrangement of the cations; has the anions and the solvents within the cation embraced channel-like enclosures. This complex is unstable, once taken out from the methanol solvent, it transforms in real time to P2 by replacements of the methanol molecules by water molecules.
Collapse
Affiliation(s)
- Abhay
Pratap Singh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Jubaraj B. Baruah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| |
Collapse
|
39
|
Pan X, Montes E, Rojas WY, Lawson B, Vázquez H, Kamenetska M. Cooperative Self-Assembly of Dimer Junctions Driven by π Stacking Leads to Conductance Enhancement. NANO LETTERS 2023; 23:6937-6943. [PMID: 37486358 DOI: 10.1021/acs.nanolett.3c01540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We demonstrate enhanced electronic transport through dimer molecular junctions, which self-assemble between two gold electrodes in π-π stabilized binding configurations. Single molecule junction conductance measurements show that benzimidazole molecules assemble into dimer junctions with a per-molecule conductance that is higher than that in monomer junctions. Density functional theory calculations reveal that parallel stacking of two benzimidazoles between electrodes is the most energetically favorable due to the large π system. Imidazole is smaller and has greater conformational freedom to access different stacking angles. Transport calculations confirm that the conductance enhancement of benzimidazole dimers results from the changed binding geometry of dimers on gold, which is stabilized and made energetically accessible by intermolecular π stacking. We engineer imidazole derivatives with higher monomer conductance than benzimidazole and large intermolecular interaction that promote cooperative in situ assembly of more transparent dimer junctions and suggest at the potential of molecular devices based on self-assembled molecular layers.
Collapse
Affiliation(s)
- Xiaoyun Pan
- Department of Chemistry, Boston University, Boston, Massachusetts 02155, United States
| | - Enrique Montes
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Wudmir Y Rojas
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Brent Lawson
- Department of Physics, Boston University, Boston, Massachusetts 02155, United States
| | - Héctor Vázquez
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague CZ-162 00, Czech Republic
| | - Maria Kamenetska
- Department of Chemistry, Boston University, Boston, Massachusetts 02155, United States
- Department of Physics, Boston University, Boston, Massachusetts 02155, United States
- Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02155, United States
| |
Collapse
|
40
|
Homma K, Kaneko S, Tsukagoshi K, Nishino T. Intermolecular and Electrode-Molecule Bonding in a Single Dimer Junction of Naphthalenethiol as Revealed by Surface-Enhanced Raman Scattering Combined with Transport Measurements. J Am Chem Soc 2023. [PMID: 37437895 PMCID: PMC10375526 DOI: 10.1021/jacs.3c02050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Electron transport through noncovalent interaction is of fundamental and practical importance in nanomaterials and nanodevices. Recent single-molecule studies employing single-molecule junctions have revealed unique electron transport properties through noncovalent interactions, especially those through a π-π interaction. However, the relationship between the junction structure and electron transport remains elusive due to the insufficient knowledge of geometric structures. In this article, we employ surface-enhanced Raman scattering (SERS) synchronized with current-voltage (I-V) measurements to characterize the junction structure, together with the transport properties, of a single dimer and monomer junction of naphthalenethiol, the former of which was formed by the intermolecular π-π interaction. The correlation analysis of the vibrational energy and electrical conductance enables identifying the intermolecular and molecule-electrode interactions in these molecular junctions and, consequently, addressing the transport properties exclusively associated with the π-π interaction. In addition, the analysis achieved discrimination of the interaction between the NT molecule and the Au electrode of the junction, i.e., Au-π interactions through-π coupling and though-space coupling. The power density spectra support the noncovalent character at the interfaces in the molecular junctions. These results demonstrate that the simultaneous SERS and I-V technique provides a unique means for the structural and electrical investigation of noncovalent interactions.
Collapse
Affiliation(s)
- Kanji Homma
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Satoshi Kaneko
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomoaki Nishino
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 W4-10 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|