1
|
Kumar N, Sharma T, Thakur N, Jain R, Sinha N. Abundant Transition Metal Based Photocatalysts for Red Light-Driven Photocatalysis. Chemistry 2025; 31:e202500365. [PMID: 40135511 DOI: 10.1002/chem.202500365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
Photocatalysis emerges as an efficient and versatile tool for the preparation of organic compounds via the development of new methodologies and new photosensitizers. Mostly UV and blue light irradiation are used for such reactions. Red light is low-energy light, it is less harmful and has more penetration depth. Hence red light-driven photocatalysis would be more suitable for preparing value-added products. Red-absorbing photosensitizers are mostly based on rare and expensive metals. In this review, we describe the recent developments on Earth-abundant transition metal-based photosensitizers (W(0), Mo(0), Cr(0), Fe(III), Cu(I), Zn(II)) and their applications in red light-driven photocatalysis. Photocatalysis using both electron transfer and energy transfer processes is discussed. Three different red light-induced reactions such as direct monophotonic excitation, sensitized triplet-triplet annihilation upconversion (sTTA-UC), and dual red light photocatalysis are presented. Various organic transformations such as reductive dehalogenation and detosylation, reduction of diazonium salts, C─C coupling via C─H activation, oxidation of aryl boronic acids to phenols, polymerization reactions, cross dehydrogenative couplings, α-cyanation of tertiary amines, Barton decarboxylation have been carried out using abundant photosensitizers and red light.
Collapse
Affiliation(s)
- Nitish Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Tanu Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Nirbhay Thakur
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Rahul Jain
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Narayan Sinha
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
2
|
Kong D, Yi L, Nanni A, Rueping M. A scalable photo-mechanochemical platform for sustainable photoredox catalysis by resonant acoustic mixing. Nat Commun 2025; 16:3983. [PMID: 40295515 PMCID: PMC12037873 DOI: 10.1038/s41467-025-59358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Photocatalysis has greatly advanced in organic synthesis but still confronts challenges, including light attenuation in reaction media and excessive solvent utilization. These issues lead to inefficiencies, particularly in heterogeneous cloudy mixtures and in scaling-up applications. Integrating photocatalysis with mechanochemistry offers a nascent but promising solution to these challenges. Herein, we present a scalable photo-mechanochemical platform that combines visible-light photocatalysis with Resonant Acoustic Mixing (RAM), enabling efficient cross-coupling reactions under solvent-minimised conditions. This approach demonstrates broad substrate tolerance, accommodating a variety of aryl (hetero) halides and N-, O-, P-, S-nucleophiles. The protocol supports scaling up to 300 mmol, representing a 1500-fold increase, while maintaining exceptionally low catalyst loading and achieving up to 9800 turnover numbers (TON). The generality of this platform is further validated by its applicability to other synthetic transformations.
Collapse
Affiliation(s)
- Deshen Kong
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Liang Yi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alice Nanni
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Bednářová E, Grotjahn R, Lin C, Xie KA, Karube Y, Owen JS, Joe CL, Lainhart BC, Sherwood TC, Rovis T. From Structure to Function: Designing Iridium Catalysts with Spin-Forbidden Excitation for Low-Energy Light-Driven Reactions. J Am Chem Soc 2025; 147:12511-12522. [PMID: 40194056 DOI: 10.1021/jacs.4c17584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Herein we describe a comprehensive study of ligand effects on optoelectronic properties of a series of Ir(III) catalysts which undergo formally spin-forbidden excitation using low-energy light. We demonstrate that electronic and steric tuning of several variables can be explained by their impact on the HOMO and LUMO energies of the complex. Density functional theory calculations of the catalysts' adiabatic triplet energies agree with the experimental results to within 0.05 eV on average. As many of these subtle effects are independent of each other, the merger of them in a single complex tends to have an additive effect and we thus succeeded in developing a family of highly oxidizing iridium photocatalysts that operate by spin-forbidden excitation.
Collapse
Affiliation(s)
- Eva Bednářová
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Robin Grotjahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Chenxi Lin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Yuzuka Karube
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Brendan C Lainhart
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Discovery and Development Sciences, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Zhou Z, Wang Z, Blenko AL, Li J, Lin W. Viologen Covalent Organic Framework Mediates Near-Infrared Light-Induced Electron Transfer for Catalytic Oxidative Coupling Reactions. J Am Chem Soc 2025; 147:10846-10852. [PMID: 40101153 DOI: 10.1021/jacs.5c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Near-infrared (NIR) light-driven photoreactions are advantageous over visible light-driven ones because NIR photons have lower energy and fewer side reactions, deeper penetration in reaction media, and high abundance in the solar spectrum. However, currently available covalent organic frameworks (COFs) absorb in the UV-vis region and catalyze photoreactions under blue or white light irradiation. Herein, we report a linker-to-linker charge transfer process in a viologen-linked porphyrin COF (Vio-COF), leading to a novel type of hyperporphyrin effect and extending the absorption into the NIR region with an absorption edge at 998 nm. Under NIR irradiation, photoinduced charge separation in Vio-COF generates a viologen radical that efficiently reduces oxygen to form superoxide radicals for catalytic oxidative coupling reactions. The proximity of porphyrin and viologen units within the framework significantly enhances the catalytic performance of Vio-COF, outperforming its homogeneous counterparts in aerobic oxidative amidation and amine coupling reactions. Vio-COF was readily recycled and used in six oxidative coupling reactions.
Collapse
Affiliation(s)
- Zhibei Zhou
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abigail L Blenko
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
5
|
Stamoulis A, Mato M, Bruzzese PC, Leutzsch M, Cadranel A, Gil-Sepulcre M, Neese F, Cornella J. Red-Light-Active N,C,N-Pincer Bismuthinidene: Excited State Dynamics and Mechanism of Oxidative Addition into Aryl Iodides. J Am Chem Soc 2025; 147:6037-6048. [PMID: 39924910 PMCID: PMC11848931 DOI: 10.1021/jacs.4c16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Despite the progress made in the field of synthetic organic photocatalysis over the past decade, the use of higher wavelengths, especially those in the deep-red portion of the electromagnetic spectrum, remains comparatively rare. We have previously disclosed that a well-defined N,C,N-pincer bismuthinidene (1a) can undergo formal oxidative addition into a wide range of aryl electrophiles upon absorption of low-energy red light. In this study, we map out the photophysical dynamics of 1a and glean insights into the nature of the excited state responsible for the activation of aryl electrophiles. Transient absorption and emission techniques reveal that, upon irradiation with red light, the complex undergoes a direct S0 → S1 metal-to-ligand charge transfer (MLCT) transition, followed by rapid intersystem crossing (ISC) to a highly reducing emissive triplet state (-2.61 V vs Fc+/0 in MeCN). The low dissipative losses incurred during ISC (∼6% of the incident light energy) help rationalize the ability of the bismuthinidene to convert low-energy light into useful chemical energy. Spectroelectrochemical and computational data support a charge-separated excited-state structure with radical-anion character on the ligand and radical-cation character on bismuth. Kinetic studies and competition experiments afford insights into the mechanism of oxidative addition into aryl iodides; concerted and inner-sphere processes from the triplet excited state are ruled out, with the data strongly supporting a pathway that proceeds via outer-sphere dissociative electron transfer.
Collapse
Affiliation(s)
- Alexios Stamoulis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Mauro Mato
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Paolo Cleto Bruzzese
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Alejandro Cadranel
- Universidad
de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica
y Química Física, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos
Aires, Argentina
- CONICET—Universidad
de Buenos Aires, Instituto de Química Física de Materiales,
Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad
Universitaria, C1428EHA Buenos Aires, Argentina
- Department
Chemie und Pharmazie, Physikalische Chemie I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
- Interdisciplinary
Center for Molecular Materials, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Marcos Gil-Sepulcre
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim an der Ruhr 45470, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| |
Collapse
|
6
|
Li J, Wang P, Bai B, Xiao Y, Wan YF, Yan Y, Li F, Song G, Li G, Wang C, Zhang XP, Dong J, Kang T, Xue D. Synthesis, Characterization, and Catalytic Activity of Ni(0) (DQ)dtbbpy, an Air-Stable, Bifunctional Red-Light-Sensitive Precatalyst. J Am Chem Soc 2025; 147:5851-5859. [PMID: 39910783 DOI: 10.1021/jacs.4c14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Despite a well-established and growing body of work on nickel(0) precatalysts, the potential of nickel(0) complexes as bifunctional precatalysts remains underexplored. In this study, we synthesized, characterized, and evaluated the catalytic activity of (Ni(0)(DQ)dtbbpy), a bifunctional, red-light-sensitive, and air-stable nickel(0) complex. Owing to its unique photophysical properties, it effectively catalyzed the etherification and amination of aryl bromides under 620-630 nm light irradiation, functioning as both a photocatalyst and an active metal catalyst. Mechanistic studies and density functional theory (DFT) calculations further confirmed the exceptional absorption properties of Ni(0)(DQ)dtbbpy in the red-light region, as well as the electron transfer process triggered by red-light irradiation.
Collapse
Affiliation(s)
- Jingsheng Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Pengpeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoyu Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yulin Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ya-Fei Wan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Geyang Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Tengfei Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
7
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
8
|
Cabanero DC, Rovis T. Low-energy photoredox catalysis. Nat Rev Chem 2025; 9:28-45. [PMID: 39528711 DOI: 10.1038/s41570-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Kumar Kundu B, Bashar N, Srivastava P, Elles CG, Sun Y. Organic Two-Photon-Absorbing Photosensitizers Can Overcome Competing Light Absorption in Organic Photocatalysis. Chemistry 2024; 30:e202402856. [PMID: 39235975 DOI: 10.1002/chem.202402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Conventional organic photocatalysis typically relies on ultraviolet and short-wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co-catalysts, leading to reduced quantum efficiency and side reactions. To address this issue, we developed novel organic two-photon-absorbing (TPA) photosensitizers capable of functioning under deep red and near-infrared light irradiation. Three model reactions including cyclization, Sonogashira Csp2-Csp cross-coupling, and Csp2-N cross-coupling reactions were selected to compare the performance of the new photosensitizers under both blue (427 nm) and deep red (660 nm) light irradiation. The obtained results unambiguously prove that for reactions involving blue light-absorbing reactants, products, and/or co-catalysts, deep red light source resulted in better performance than blue light when utilizing our TPA photosensitizers. This work highlights the potential of our metal-free TPA photosensitizers as a sustainable and effective solution to mitigate the competing light absorption issue in photocatalysis, not only expanding the scope of organic photocatalysts but also reducing reliance on expensive Ru/Ir/Os-based photosensitizers.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| | - Noorul Bashar
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| | | | | | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| |
Collapse
|
10
|
Taylor OR, Saucedo PJ, Bahamonde A. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions. J Org Chem 2024; 89:16093-16105. [PMID: 38231475 DOI: 10.1021/acs.joc.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This perspective details advances made in the field of Ni-catalyzed C-N bond formation. The use of this Earth abundant metal to decorate amines, amides, lactams, and heterocycles enables direct access to a variety of biologically active and industrially relevant compounds in a sustainable manner. Herein, different strategies that leverage the propensity of Ni to facilitate both one- and two-electron processes will be surveyed. The first part of this Perspective focuses on strategies that facilitate C-N couplings at room temperature by accessing oxidized Ni(III) intermediates. In this context, advances in photochemical, electrochemical, and chemically mediated processes will be analyzed. A special emphasis has been put on providing a comprehensive explanation of the different mechanistic avenues that have been proposed to facilitate these chemistries; either Ni(I/III) self-sustained cycles or Ni(0/II/III) photochemically mediated pathways. The second part of this Perspective details the ligand designs that also enable access to this reactivity via a two-electron Ni(0/II) mechanism. Finally, we discuss our thoughts on possible future directions of the field.
Collapse
Affiliation(s)
- Olivia R Taylor
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Zhang H, Yuan T, Zhumabay N, Ruan Z, Qian H, Rueping M. Ketone-functionalized conjugated organic polymers boost red-light-driven molecular oxygen-mediated oxygenation. Chem Sci 2024:d4sc05816j. [PMID: 39371460 PMCID: PMC11446402 DOI: 10.1039/d4sc05816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Photocatalytic molecular oxygen activation has emerged as a valuable tool for organic synthesis, environmental remediation and energy conversion. Most reported instances have relied on high-energy light sources. Herein, 9-fluorenone-functionalized porous organic polymers (POPs) were reported to enable red-light-excited photocatalysis for the organic oxygenation reaction. Notably, this modification extends the conjugated backbone, allowing the capture of lower-energy light. Incorporating ketone groups into POPs also facilitates charge separation and enhances carrier concentration, thereby promoting catalytic efficiency. The new POP photomaterials exhibit high activity for the direct α-oxygenation of N-substituted tetrahydroisoquinolines (THIQs) using O2 as a green oxidant under 640 nm light irradiation, achieving high yield in short reaction times. Detailed mechanistic investigations clearly showed the role of oxygen and the photocatalyst. This work provides valuable insights into the potential of ketone-modified POPs for superior photocatalytic activation of molecular oxygen under low-energy light conditions.
Collapse
Affiliation(s)
- Hao Zhang
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Nursaya Zhumabay
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University 351100 Fujian China
| | - Hai Qian
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
12
|
Roy M, Mishra B, Maji S, Sinha A, Dutta S, Mondal S, Banerjee A, Pachfule P, Adhikari D. Covalent Organic Framework Catalyzed Amide Synthesis Directly from Alcohol Under Red Light Excitation. Angew Chem Int Ed Engl 2024; 63:e202410300. [PMID: 38953116 DOI: 10.1002/anie.202410300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/03/2024]
Abstract
The dehydrogenative coupling of alcohols and amines to form amide bonds is typically catalysed by homogeneous transition metal catalysts at high temperatures ranging from 130-140 °C. In our pursuit of an efficient and recyclable photocatalyst capable of conducting this transformation at room temperature, we report herein a COF-mediated dehydrogenative synthesis. The TTT-DHTD COF was strategically designed to incorporate a high density of functional units, specifically dithiophenedione, to trap photogenerated electrons and effectively facilitate hydrogen atom abstraction reactions. The photoactive TTT-DHTD COF, synthesized using solvothermal methods showed high crystallinity and moderate surface area, providing an ideal platform for heterogeneous amide synthesis. Light absorption by the COF across the entire visible range, narrow band gap, and valence band position make it well-suited for the efficient generation of excitons necessary for targeted dehydrogenation. Utilizing red light irradiation and employing extremely low loading of the COF, we have successfully prepared a wide range of amides, including challenging secondary amides, in good to excellent yields. The substrates' functional group tolerance, very mild reaction conditions, and the catalyst's significant recyclability represent substantial advancements over prior methodologies.
Collapse
Affiliation(s)
- Monojit Roy
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Bikash Mishra
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Shyamali Maji
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| | - Archisman Sinha
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Supriti Dutta
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Sukanta Mondal
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Abhik Banerjee
- Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology Sector V, Salt Lake, Kolkata, 700091, India
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata-, 700106, India
| | - Debashis Adhikari
- Department of Chemical Science, Indian Institute of Science Education and Research Mohali, SAS Nagar-, 140306, Mohali, India
| |
Collapse
|
13
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
14
|
Gu X, Shen J, Xu Z, Liu J, Shi M, Wei Y. Visible-Light-Mediated Activation of Remote C(sp 3)-H Bonds by Carbon-Centered Biradical via Intramolecular 1,5- or 1,6-Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202409463. [PMID: 39031578 DOI: 10.1002/anie.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
In this study, we introduce a novel intramolecular hydrogen atom transfer (HAT) reaction that efficiently yields azetidine, oxetane, and indoline derivatives through a mechanism resembling the carbon analogue of the Norrish-Yang reaction. This process is facilitated by excited triplet-state carbon-centered biradicals, enabling the 1,5-HAT reaction by suppressing the critical 1,4-biradical intermediates from undergoing the Norrish Type II cleavage reaction, and pioneering unprecedented 1,6-HAT reactions initiated by excited triplet-state alkenes. We demonstrate the synthetic utility and compatibility of this method across various functional groups, validated through scope evaluation, large-scale synthesis, and derivatization. Our findings are supported by control experiments, deuterium labeling, kinetic studies, cyclic voltammetry, Stern-Volmer experiments, and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xintao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiahao Shen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ziyu Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jiaxin Liu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
15
|
Wang J, Li S, Yang C, Gao H, Zuo L, Guo Z, Yang P, Jiang Y, Li J, Wu LZ, Tang Z. Photoelectrochemical Ni-catalyzed cross-coupling of aryl bromides with amine at ultra-low potential. Nat Commun 2024; 15:6907. [PMID: 39134536 PMCID: PMC11319468 DOI: 10.1038/s41467-024-51333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Photoelectrochemical (PEC) cell is an ideal platform for organic transformation because of its green benefits and minimal energy consumption. As an emerging methodology, the reaction types of photoelectrocatalytic organic synthesis (PECOS) are limited to simple oxidation and C-H activation at current stage. Metal catalysis for the construction of C(sp2)-N bonds has not been touched yet in PECOS. We introduce here a PEC method that successfully engages Ni catalysis for the mild production of aniline derivatives. Experimental and computational investigations elucidate that the addition of photoanode-generated amine radical to Ni catalyst avoids the sluggish nucleophilic attack, enabling the reaction to proceed at an ultra-low potential (-0.4 V vs. Ag/AgNO3) and preventing the overoxidation of products in conventional electrochemical synthesis. This synergistic catalysis strategy exhibits good functional group tolerance and wide substrate scope on both aryl halides and amines, by which some important natural products and pharmaceutical chemicals have been successfully modified.
Collapse
Affiliation(s)
- Jinghao Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyang Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Huiwen Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Lulu Zuo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyu Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Pengqi Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
| | - Yuheng Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Jian Li
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Li-Zhu Wu
- University of Chinese Academy of Sciences, Beijing, PR China.
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Beijing, PR China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
16
|
Zhang T, Rabeah J, Das S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat Commun 2024; 15:5208. [PMID: 38890327 PMCID: PMC11189478 DOI: 10.1038/s41467-024-49514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (-CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that -CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the -CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the -CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (-SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Rostock, Germany
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, P. R. China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
17
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
18
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Sutcliffe E, Cagan DA, Hadt RG. Ultrafast Photophysics of Ni(I)-Bipyridine Halide Complexes: Spanning the Marcus Normal and Inverted Regimes. J Am Chem Soc 2024; 146:15506-15514. [PMID: 38776490 PMCID: PMC11157544 DOI: 10.1021/jacs.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Owing to their light-harvesting properties, nickel-bipyridine (bpy) complexes have found wide use in metallaphotoredox cross-coupling reactions. Key to these transformations are Ni(I)-bpy halide intermediates that absorb a significant fraction of light at relevant cross-coupling reaction irradiation wavelengths. Herein, we report ultrafast transient absorption (TA) spectroscopy on a library of eight Ni(I)-bpy halide complexes, the first such characterization of any Ni(I) species. The TA data reveal the formation and decay of Ni(I)-to-bpy metal-to-ligand charge transfer (MLCT) excited states (10-30 ps) whose relaxation dynamics are well described by vibronic Marcus theory, spanning the normal and inverted regions as a result of simple changes to the bpy substituents. While these lifetimes are relatively long for MLCT excited states in first-row transition metal complexes, their duration precludes excited-state bimolecular reactivity in photoredox reactions. We also present a one-step method to generate an isolable, solid-state Ni(I)-bpy halide species, which decouples light-initiated reactivity from dark, thermal cycles in catalysis.
Collapse
Affiliation(s)
| | | | - Ryan G. Hadt
- Division of Chemistry and
Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
21
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
22
|
Okanishi Y, Takemoto O, Kawahara S, Hayashi S, Takanami T, Yoshimitsu T. Red-Light-Promoted Radical Cascade Reaction to Access Tetralins and Dialins Enabled by Zinc(II)porphyrin, A Light-Flexible Catalyst. Org Lett 2024; 26:3929-3934. [PMID: 38669286 DOI: 10.1021/acs.orglett.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
[5,15-Bis(pentafluorophenyl)-10,20-diphenylporphinato]zinc(II) (1), a metalloporphyrin derivative that was recently reported as an efficient photocatalyst driven by blue LEDs by our group, was found to catalyze a red-light-promoted (630 nm LEDs) radical cascade reaction of N-3-arylpropionyloxyphthalimides with radicophiles including electron-deficient alkenes and alkynes, providing access to a range of functionalized tetralin and dialin derivatives. The radical cascade reaction catalyzed by 1 took place via an oxidative quenching cycle in DMSO, where no sacrificial electron donor was required, uncovering a unique solvent effect capable of promoting the porphyrin catalysis.
Collapse
Affiliation(s)
- Yusuke Okanishi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Otoki Takemoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sanpou Kawahara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Hayashi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Toshikatsu Takanami
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Hossain MM, Shaikh AC, Kaur R, Gianetti TL. Red Light-Blue Light Chromoselective C(sp 2)-X Bond Activation by Organic Helicenium-Based Photocatalysis. J Am Chem Soc 2024; 146:7922-7930. [PMID: 38498938 DOI: 10.1021/jacs.3c13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Chromoselective bond activation has been achieved in organic helicenium (nPr-DMQA+)-based photoredox catalysis. Consequently, control over chromoselective C(sp2)-X bond activation in multihalogenated aromatics has been demonstrated. nPr-DMQA+ can only initiate the halogen atom transfer (XAT) pathway under red light irradiation to activate low-energy-accessible C(sp2)-I bonds. In contrast, blue light irradiation initiates consecutive photoinduced electron transfer (conPET) to activate more challenging C(sp2)-Br bonds. Comparative reaction outcomes have been demonstrated in the α-arylation of cyclic ketones with red and blue lights. Furthermore, red-light-mediated selective C(sp2)-I bonds have been activated in iodobromoarenes to keep the bromo functional handle untouched. Finally, the strength of the chromoselective catalysis has been highlighted with two-fold functionalization using both photo-to-transition metal and photo-to-photocatalyzed transformations.
Collapse
Affiliation(s)
- Md Mubarak Hossain
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Ramandeep Kaur
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
24
|
Carr CR, Vrionides MA, Grills DC. Reactivity of radiolytically and photochemically generated tertiary amine radicals towards a CO2 reduction catalyst. J Chem Phys 2023; 159:244503. [PMID: 38146832 DOI: 10.1063/5.0180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
Homogeneous solar fuels photocatalytic systems often require several additives in solution with the catalyst to operate, such as a photosensitizer (PS), Brønsted acid/base, and a sacrificial electron donor (SED). Tertiary amines, in particular triethylamine (TEA) and triethanolamine (TEOA), are ubiquitously deployed in photocatalysis applications as SEDs and are capable of reductively quenching the PS's excited state. Upon oxidation, TEA and TEOA form TEA•+ and TEOA•+ radical cations, respectively, which decay by proton transfer to generate redox non-innocent transient radicals, TEA• and TEOA•, respectively, with redox potentials that allow them to participate in an additional electron transfer step, thus resulting in net one-photon/two-electron donation. However, the properties of the TEA• and TEOA• radicals are not well understood, including their reducing powers and kinetics of electron transfer to catalysts. Herein, we have used both pulse radiolysis and laser flash photolysis to generate TEA• and TEOA• radicals in CH3CN, and combined with UV/Vis transient absorption and time-resolved mid-infrared spectroscopies, we have probed the kinetics of reduction of the well-established CO2 reduction photocatalyst, fac-ReCl(bpy)(CO)3 (bpy = 2,2'-bipyridine), by these radicals [kTEA• = (4.4 ± 0.3) × 109 M-1 s-1 and kTEOA• = (9.3 ± 0.6) × 107 M-1 s-1]. The ∼50× smaller rate constant for TEOA• indicates, that in contrast to a previous assumption, TEA• is a more potent reductant than TEOA• (by ∼0.2 V, as estimated using the Marcus cross relation). This knowledge will aid in the design of photocatalytic systems involving SEDs. We also show that TEA can be a useful radiolytic solvent radical scavenger for pulse radiolysis experiments in CH3CN, effectively converting unwanted oxidizing radicals into useful reducing equivalents in the form of TEA• radicals.
Collapse
Affiliation(s)
- Cody R Carr
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Michael A Vrionides
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| |
Collapse
|
25
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
26
|
Tsai ZN, Li LY, Paculba AS, Miñoza S, Tsao YT, Lin PS, Liao HH. Pro-aromatic Dihydroquinazolinones - From Multigram Synthesis to Reagents for Gram-scale Metallaphotoredox Reactions. Chem Asian J 2023:e202301004. [PMID: 38102804 DOI: 10.1002/asia.202301004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Dihydroquinazolinone (DHQZ) has recently been harnessed as a ketone-derived pro-aromatic reagent extensively employed in (metalla)photoredox reactions as versatile group transfer agents. In this work, we outline a column chromatography-free protocol for the multigram-scale synthesis of pro-aromatic DHQZs as well as its use in a gram-scale nickel/photoredox dual-catalyzed cross-coupling in single-batch, photoflow, and simultaneous multiple smaller batches. While the single-batch approach leveraged moderate yields, a simple plug-flow photoreactor also exhibited amenable productivity (up to 45 % yield) despite the use of a heterogeneous base. Meanwhile, performing the metallaphotoredox-catalyzed reaction in multiple smaller batches in an improvised photoreactor facilitated high yields of up to 59 % and good reproducibility, implying a convenient alternative in the absence of photoflow setups.
Collapse
Affiliation(s)
- Zong-Nan Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Li-Yun Li
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Aira Shayne Paculba
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Shinje Miñoza
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Yong-Ting Tsao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Pei-Shan Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| | - Hsuan-Hung Liao
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
- Department of Applied and Medicinal Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC
- Green Hydrogen Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (ROC
| |
Collapse
|
27
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
28
|
Seo T, Kubota K, Ito H. Dual Nickel(II)/Mechanoredox Catalysis: Mechanical-Force-Driven Aryl-Amination Reactions Using Ball Milling and Piezoelectric Materials. Angew Chem Int Ed Engl 2023; 62:e202311531. [PMID: 37638843 DOI: 10.1002/anie.202311531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The combination of a nickel(II) catalyst and a mechanoredox catalyst under ball-milling conditions promotes mechanical-force-driven C-N cross-coupling reactions. In this nickel(II)/mechanoredox cocatalyst system, the modulation of the oxidation state of the nickel center, induced by piezoelectricity, is used to facilitate a highly efficient aryl-amination reaction, which is characterized by a broad substrate scope, an inexpensive combination of catalysts (NiBr2 and BaTiO3 ), short reaction times, and an almost negligible quantity of solvents. Moreover, this reaction can be readily up-scaled to the multi-gram scale, and all synthetic operations can be carried out under atmospheric conditions without the need for complicated reaction setups. Furthermore, this force-induced system is suitable for excitation-energy-accepting molecules and poorly soluble polyaromatic substrates that are incompatible with solution-based nickel(II)/photoredox cocatalysts.
Collapse
Affiliation(s)
- Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 060-0021, Japan
| |
Collapse
|
29
|
Xie KA, Bednarova E, Joe CL, Lin C, Sherwood TC, Simmons EM, Lainhart BC, Rovis T. Orange Light-Driven C(sp 2)-C(sp 3) Cross-Coupling via Spin-Forbidden Ir(III) Metallaphotoredox Catalysis. J Am Chem Soc 2023; 145:19925-19931. [PMID: 37642382 DOI: 10.1021/jacs.3c06285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
We report the development and characterization of a library of Ir(III) photocatalysts capable of undergoing spin-forbidden excitation (SFE) under orange light irradiation (595 nm). These catalysts were successfully applied to the construction of synthetically valuable C(sp2)-C(sp3) bonds inaccessible with existing methods of low-energy light-driven dual nickel/photoredox catalysis, demonstrating the synthetic utility of this photocatalyst family. The photocatalysts are capable of accessing both oxidatively and reductively activated coupling partners, illustrated through deaminative arylation and potassium alkyl trifluoroborate cross-coupling reactions with aryl halides. We demonstrate diverse substrate scopes of both cross-coupling paradigms under mild conditions in the first example of low-energy light-driven C(sp2)-C(sp3) metallaphotoredox coupling.
Collapse
Affiliation(s)
- Katherine A Xie
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eva Bednarova
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Chenxi Lin
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brendan C Lainhart
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Mato M, Bruzzese PC, Takahashi F, Leutzsch M, Reijerse EJ, Schnegg A, Cornella J. Oxidative Addition of Aryl Electrophiles into a Red-Light-Active Bismuthinidene. J Am Chem Soc 2023; 145:18742-18747. [PMID: 37603853 PMCID: PMC10472430 DOI: 10.1021/jacs.3c06651] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 08/23/2023]
Abstract
The oxidative addition of aryl electrophiles is a fundamental organometallic reaction widely applied in the field of transition metal chemistry and catalysis. However, the analogous version based on main group elements still remains largely underexplored. Here, we report the ability of a well-defined organobismuth(I) complex to undergo formal oxidative addition with a wide range of aryl electrophiles. The process is facilitated by the reactivity of both the ground and excited states of N,C,N-bismuthinidenes upon absorption of low-energy red light.
Collapse
Affiliation(s)
- Mauro Mato
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Paolo Cleto Bruzzese
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Fumiya Takahashi
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Edward J. Reijerse
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr 45470, Germany
| | - Josep Cornella
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
31
|
Jia C, She Y, Lu Y, Wu M, Yang X, Chen L, Li Y. Octalithium, Tetrasodium, and Decalithium Compounds Based on Pyrrolyl Ligands: Synthesis, Structures, and Activation of the C-H Bonds of Pyrrolyl Rings and C═N Bonds of a Series of Ligands by Organolithium Reagents. Inorg Chem 2023; 62:14072-14085. [PMID: 37578854 DOI: 10.1021/acs.inorgchem.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The organometallic compounds of lithium ions have garnered continuous interest as indispensable precursors for the syntheses of organometallic complexes of main-group metals, transition metals, lanthanide metals, and actinide metals. In this work, we present a strategy for the preparation of a series of polynuclear lithium complexes. This methodology features the utilization of organolithium reagents both as metal sources to coordinate with the ligands and as nucleophilic reagents to undergo nucleophilic addition to the C═N bonds of the ligands. Reaction of a ligand HL1 [HL1 = 2-(((1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)methylene)amino)phenol] with n-BuLi produced complex [Li8(L1a)4]·1.5Tol (1·1.5Tol) [H2L1a = 2-((1-(1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)pentyl)amino)phenol]. One prominent feature regarding the formation of 1·1.5Tol is the occurrence of nucleophilic addition of n-BuLi to the C═N bond of HL1, leading to the generation of a new [L1a]2- ligand that contains both aminophenol and 1-(2-pyrrolyl)alkylamine scaffolds. The developed protocol can be adapted to a series of organolithium reagents. Compounds [Li8(L1b)4] (2) and [Li8(L1c)4] (3) were afforded by treatment of HL1 with sec-BuLi and LiCH2SiMe3, respectively. Reaction of an analogous ligand HL2 [HL2 = 2-(((1-(2-(dimethylamino)ethyl)-1H-pyrrol-2-yl)methylene)amino)-4-methylphenol] with n-BuLi generated compound [Li8(L2a)4] (4). C═N bond activation was not observed in the reaction of HL1 with NaOtBu, and the complex [Na4(L1)4]·Tol (5·Tol) was obtained. A decanuclear complex [Li10(L3a)2(L3b)2] (6) was also prepared via the reaction of HL3 [HL3 = 2-(2-((((1H-pyrrol-2-yl)methylene)amino)methyl)-1H-pyrrol-1-yl)-N,N-dimethylethan-1-amine] with t-BuLi. A remarkable feature in terms of the synthesis of 6 is the simultaneous occurrence of hydrogen atom abstraction from the C-H bond of the pyrrolyl ring and nucleophilic addition to the C═N bond of the HL3 ligand by t-BuLi. A series of amines containing biologically and physiologically important moieties were achieved by hydrolysis of the crude products from the reactions of the HL1-HL3 ligands and organolithium reagents. This work provides an efficient approach to high-nuclearity lithium compounds as well as a series of amines.
Collapse
Affiliation(s)
- Chaohong Jia
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yeye She
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yanhua Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Mengxiang Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaohan Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Ling Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Yahong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
32
|
Schade AH, Mei L. Applications of red light photoredox catalysis in organic synthesis. Org Biomol Chem 2023; 21:2472-2485. [PMID: 36880439 DOI: 10.1039/d3ob00107e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Photoredox catalysis has emerged as an efficient and versatile approach for developing novel synthetic methodologies. Particularly, red light photocatalysis has attracted more attention due to its intrinsic advantages of low energy, few health risks, few side reactions, and high penetration depth through various media. Impressive progress has been made in this field. In this review, we outline the applications of different photoredox catalysts in a wide range of red light-mediated reactions including direct red light photoredox catalysis, red light photoredox catalysis through upconversion, and dual red light photoredox catalysis. Due to the similarities between near-infrared (NIR) and red light, an overview of NIR-induced reactions is also presented. Lastly, current evidence showing the advantages of red light and NIR photoredox catalysis is also described.
Collapse
Affiliation(s)
- Alexander H Schade
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| | - Liangyong Mei
- Department of Chemistry, Colgate University, 13 Oak Dr, Hamilton, NY 13346, USA.
| |
Collapse
|
33
|
Cabanero DC, Nguyen JA, Cazin CSJ, Nolan SP, Rovis T. Deep Red to Near-Infrared Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- David C. Cabanero
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jennifer A. Nguyen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Catherine S. J. Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, Ghent 9000, Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S3, Ghent 9000, Belgium
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|