1
|
Chen S, Yu Y, Chen M. Visible-light-promoted phosphine-mediated synthesis of thioesters and thioalkynes from sodium arylsulfinates. Org Biomol Chem 2025; 23:5174-5181. [PMID: 40309970 DOI: 10.1039/d5ob00453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We herein report a facile method to access thioesters and thioalkynes via a visible-light-promoted phosphine-mediated radical deoxyfunctionalization of sodium arylsulfinates with activated acids and iodoalkynes, respectively. The introduction of acid additives could facilitate the generation of arylthiyl radicals via tuning the equilibrium between arylsulfinate salts and the corresponding sulfinic acids, which favours the formation of thioesters while disfavouring the formation of thioalkynes. This protocol also features readily available starting materials, good functional group tolerance and practical applicability, for example, in the late-stage functionalization of non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Sen Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Yu Yu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China.
| |
Collapse
|
2
|
Chen Z, Liu S, Xu Z, Gan Z, Xu R, Xue Z, Jin Y. Stereoselective Nitration of Olefins via Visible-Light-Induced Iron-Complex β-Homolysis. J Org Chem 2025. [PMID: 40405466 DOI: 10.1021/acs.joc.5c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Herein, we develop a green and efficient method for the stereoselective synthesis of nitroolefins with ferric nitrate as the nitration reagent. With a visible-light-induced iron-complex β-homolysis pathway and I- as a crucial media for electron transfer and dehydrogenation, a broad scope of nitroolefins including some valuable biorelevant derivatives are achieved in high E-selectivity. The reaction is conveniently controlled by nitrate equivalences, and scale-up experiments in batch and flow indicate excellent practicability for this protocol.
Collapse
Affiliation(s)
- Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyi Xu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ran Xu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Gong HW, Tang HT, Pan YM. Sulfuration of unreactive C-H bonds. Chem Commun (Camb) 2025. [PMID: 40395072 DOI: 10.1039/d5cc01794g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The sulfuration of unreactive carbon-hydrogen bonds stands as one of the significant breakthroughs in organic synthetic chemistry in recent years. This methodology enables the efficient construction of C-S bonds through direct activation of high bond energy C-H bonds, substantially enhancing both synthetic efficiency and atom economy for sulfur-containing compounds. This review systematically summarizes the strategic progress in unreactive C-H bond sulfuration, encompassing core methodologies such as transition-metal catalysis, photocatalytic systems, and electrocatalytic systems. It analyses the sulfur source activation mechanisms under different catalytic modes, the kinetic and thermodynamic driving forces for C-H bond cleavage, and the regulatory principles of site selectivity. Furthermore, it compiles application examples in late-stage sulfuration modification of complex molecules, construction of chiral sulfur centres, and synthesis of bioactive molecules within this field.
Collapse
Affiliation(s)
- Hui-Wen Gong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
4
|
Wu M, Chen M, Wang W, Liu P, Sun P. Electrochemical Aryl(alkyl)thiolation on α-C-H Bond of Ethers to Access O,S-Acetals. J Org Chem 2025. [PMID: 40397710 DOI: 10.1021/acs.joc.5c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The efficient construction of a C-S bond is one of the important topics in organic synthesis. In this work, a cross-dehydrogenative coupling reaction between ether and thiophenols or thiols under electrochemical conditions was studied, and the acetal-O,S products were obtained in moderate to good yields. A free radical coupling mechanism was proposed. The reaction provided a simple protocol for the formation of C(sp3)-S bonds under transition-metal- and chemical oxidant-free conditions, and will have a good application prospect in organic synthesis and drug synthesis.
Collapse
Affiliation(s)
- Mengyun Wu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Mingqi Chen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Wenhui Wang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Wang LC, Wu XF. Copper-catalyzed photoinduced carbonylation of C1-C3 gaseous alkanes. Nat Commun 2025; 16:4663. [PMID: 40389418 PMCID: PMC12089323 DOI: 10.1038/s41467-025-58472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 05/21/2025] Open
Abstract
The catalytic conversion of carbon monoxide (CO) provides an enormous opportunity to construct carbonyl-containing molecules. Among them, the direct carbonylation of C-H bonds on gaseous hydrocarbon feedstocks provides a straightforward approach to access industrially important short-chain carboxylic acid derivatives. Here, we report a general and mild direct carbonylation of methane, ethane, and propane under blue LED irradiation at ambient temperature, enabling the direct formation of short-chain carboxylic acid derivatives. Notably, the direct carbonylation of ethane offers the potential for a more cost-efficient route to produce MMA. The combination of copper reduction and chlorine radical released via a ligand-to-metal charge transfer (LMCT) process facilitates the activation of gaseous hydrocarbon in a mild and atom-economical mode.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
- Leibniz-Institut für Katalyse e.V., Rostock, Germany.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Wang Q, Fang P, Zhao J, Huang X, Shen X, Wang F, Liu ZQ. Metal-Free Electrochemical C─H Chlorination of Terminal Alkanes. Angew Chem Int Ed Engl 2025; 64:e202504478. [PMID: 40074705 DOI: 10.1002/anie.202504478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Although research on the activation of C─H bonds in alkanes has been ongoing for decades, there are still few strategies that are both highly selective and suitable for industrial production. Herein, we report a highly selective method for the chlorination of terminal C─H bonds in alkanes by combining electrochemistry and organocatalysis. The specific cavity size of organic molecular catalysts ensures high regioselectivity, while the use of inexpensive and readily reusable graphite felt electrodes, a simple electrochemical device, and mild conditions enables the reaction to maintain good efficiency even when applied to kilogram-scale production.
Collapse
Affiliation(s)
- Qingxu Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Pengkai Fang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xianting Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xiaoqian Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Fan Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
7
|
Sharma P, Singh T, Rawat N, Singh A. Visible-Light-Mediated, LMCT-Enabled C(sp 3)-H Bond Alkylation of Alkanes and Silanes via C-4 Functionalization of Coumarins. J Org Chem 2025; 90:5574-5577. [PMID: 40209150 DOI: 10.1021/acs.joc.5c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
A visible-light-promoted FeCl3-catalyzed protocol for the generation of alkyl and silyl radicals from alkanes and silanes, respectively, is described. Employing a chlorine radical as a hydrogen atom transfer agent, alkyl, and silyl radicals were accessed and functionalized by addition to coumarins, ultimately resulting in a redox-neutral alkylation/silylation. The reaction occurs without an exogenous oxidant and under mild conditions, highlighting the potential of 3D-metal compounds in achieving challenging bond activations via photochemical excitation.
Collapse
Affiliation(s)
- Parashuram Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nisha Rawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Chandrakanta Kesavan Centre for Energy Policy and Climate Solutions, Kotak School of Sustainability, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
8
|
Le Saux E, Morandi B. Palladium-Catalyzed Transfer Iodination from Aryl Iodides to Nonactivated C( sp3)-H Bonds. J Am Chem Soc 2025; 147:12956-12961. [PMID: 40183519 DOI: 10.1021/jacs.5c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We report a new strategy for the catalytic iodination of nonactivated C(sp3)-H bonds. The method merges the concepts of shuttle and light-enabled palladium catalysis to employ aryl iodides as both hydrogen atom transfer reagents and iodine donors. A noncanonical Pd0/PdI catalytic cycle is harnessed to transfer iodine from a C(sp2) to a C(sp3)-H bond under mild conditions, which tolerate sensitive functional groups. This mechanism is also applied to implement a C(sp3)-H thiolation that exploits reversible steps of the system.
Collapse
Affiliation(s)
- Emilien Le Saux
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Jiang S, Ge Y, Zhang A, Hu S, Jin T, Chen J, Zhang H, Qin Y, Ma X, Tang J, Liu J. Cuprate ion-pair catalyzed conjugate borylation of vinyl sulfones in a biphasic system. Org Biomol Chem 2025; 23:3330-3335. [PMID: 40105210 DOI: 10.1039/d5ob00242g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Herein we report the conjugate borylation of vinyl sulfones mediated by ion pairing, which enables the efficient synthesis of β-sulfonyl alcohols bearing diverse functionalities in 13-98% yields. Further mechanistic investigations suggest the formation of anionic boryl-copper intermediates that kinetically accelerate reactant transfer across phases and provide enhanced boryl nucleophilicity.
Collapse
Affiliation(s)
- Siyu Jiang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Ai Zhang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Silong Hu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Tao Jin
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Jian Chen
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Huangfeng Zhang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yao Qin
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Xiaoyan Ma
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Jinghua Tang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Jinyu Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| |
Collapse
|
10
|
Liang T, Lyu Z, Wang Y, Zhao W, Sang R, Cheng GJ, Ye F. Light-promoted aromatic denitrative chlorination. Nat Chem 2025; 17:598-605. [PMID: 39833512 DOI: 10.1038/s41557-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the CAr-NO2 bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations. Here we develop a general denitrative chlorination reaction under visible-light irradiation, in which the chlorine radical replaces the nitro moiety through the cleavage of the CAr-NO2 bond. This practical method works with a wide range of unactivated nitro(hetero)arenes and nitroalkenes, is not sensitive to air or moisture and can proceed smoothly on a decagram scale. This transformation differs fundamentally from previous nucleophilic aromatic substitution reactions under thermal conditions in both synthesis and mechanism. Density functional theory calculations reveal the possible pathway for the substitution reaction.
Collapse
Affiliation(s)
- Tiantian Liang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Zhen Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Ye Wang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Wenyan Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Ruocheng Sang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| | - Fei Ye
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China.
- Wuhan Institute of Photochemsitry and Technology, Wuhan, China.
| |
Collapse
|
11
|
Ludwig CT, Owolabi IA, Evans LW, Smith GJ, Ramos A, Shepherd JJ, Martin DB. Wavelength-Selective Reactivity of Iron(III) Halide Salts in Photocatalytic C-H Functionalization. J Org Chem 2025; 90:3404-3411. [PMID: 39993181 PMCID: PMC11894668 DOI: 10.1021/acs.joc.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
The utility of halogen radicals in hydrocarbon functionalization extends from early examples of photochemical halogenation to recent reports using photoredox catalysis with iridium complexes and simple transition metal salts such as FeCl3. The majority of these methods (uncatalyzed and iron-catalyzed) require UV light (λ ≤ 390 nm), and systematic efforts to enable the use of visible light remain valuable. We report the use of a simple Fe(III) salt that enables a C-H to C-C and C-N functionalization under visible light. The reactivity and selectivity profile using different light sources demonstrates wavelength-selective behavior, which was further investigated with deuterium kinetic isotope effect experiments and DFT calculations. These results show that control over the reactive intermediates in this iron-catalyzed reaction can be achieved through proper choice of the wavelength of irradiation.
Collapse
Affiliation(s)
- Cory T. Ludwig
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Isiaka A. Owolabi
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Logan W. Evans
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriel J. Smith
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alexander Ramos
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David B.C. Martin
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Lu Z, Putziger J, Lin S. Light-activated hypervalent iodine agents enable diverse aliphatic C-H functionalization. Nat Chem 2025; 17:365-372. [PMID: 39994489 PMCID: PMC11972117 DOI: 10.1038/s41557-025-01749-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
The functionalization of aliphatic C-H bonds is a crucial step in the synthesis and transformation of complex molecules relevant to medicinal, agricultural and materials chemistry. As such, there is substantial interest in the development of general synthetic platforms that enable the efficient diversification of aliphatic C-H bonds. Here we report a hypervalent iodine reagent that releases a potent hydrogen atom abstractor for C-H activation under mild photochemical conditions. Using this reagent, we demonstrate selective (N-phenyltetrazole)thiolation of aliphatic C-H bonds for a broad scope of substrates. The synthetic utility of the thiolated products is showcased through various derivatizations. Simply by altering the radical trapping agent, our method can directly transform C-H bonds into diverse functionalities, including C-S, C-Cl, C-Br, C-I, C-O, C-N, C-C and C=C bonds.
Collapse
Affiliation(s)
- Zhipeng Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - John Putziger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Tian J, Ding Y, Fu W, Zhang Z, Wang Z. Radical 1,3-Hydrosulfonylation of Vinyldiazo Compounds with Sulfinyl Sulfones. Org Lett 2025. [PMID: 39903477 DOI: 10.1021/acs.orglett.4c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Sulfinyl sulfones, as high-valence sulfurization reagents, are widely used to assemble sulfur sources on carbon skeletons, such as one-, two-, and four-carbon synthons, to access organosulfur compounds. However, their reaction with three-carbon synthons has remained a mystery until now. We report here a radical 1,3-hydrosulfonylation of vinyldiazo compounds with sulfinyl sulfones. This reaction not only represents the first example of the reaction of sulfinyl sulfones with three-carbon synthons but also opens up the application of vinyldiazo compounds in radical monofunctionalization.
Collapse
Affiliation(s)
- Jing Tian
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yuanli Ding
- School of Public Health, Hebei University, Baoding 071002, China
| | - Wanting Fu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Zixu Zhang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Zikun Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
14
|
Yang Y, Huang X, Jin Y. Photoinduced ligand-to-metal charge transfer (LMCT) in organic synthesis: reaction modes and research advances. Chem Commun (Camb) 2025; 61:1944-1961. [PMID: 39760393 DOI: 10.1039/d4cc06099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In recent years, visible light-induced ligand-to-metal charge transfer (LMCT) has emerged as an attractive approach for synthesizing a range of functionalized molecules. Compared to conventional photoredox reactions, photoinduced LMCT activation does not depend on redox potential and offers diverse reaction pathways, making it particularly suitable for the activation of inert bonds and the functional modification of complex organic molecules. This review highlights the indispensable role of photoinduced LMCT in synthetic chemistry, with a focus on recent advancements in LMCT-mediated hydrogen atom transfer (HAT), C-C bond cleavage, decarboxylative transformations, and radical ligand transfer (RLT) reactions.
Collapse
Affiliation(s)
- Yingying Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Xinxiang Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
15
|
Pan H, An Q, Mai BK, Chen Y, Liu P, Zuo Z. Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation. J Am Chem Soc 2025; 147:1440-1447. [PMID: 39760382 PMCID: PMC11744741 DOI: 10.1021/jacs.4c16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation. Mechanistic studies highlight the critical roles of Fe(II) and Fe-carbonyl complexes in bypassing methyl radical oxidation via a radical rebound-like pathway, unlocking unprecedented efficiency in methane aerobic carbonylation.
Collapse
Affiliation(s)
- Hui Pan
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| | - Binh Khanh Mai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuegang Chen
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiwei Zuo
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Yi W, Liu J, Hu XQ. Photochemical upcycling of polymers via visible light-driven C-H bond activation. Chem Commun (Camb) 2025; 61:407-418. [PMID: 39620307 DOI: 10.1039/d4cc05866f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The excessive use and improper disposal of plastics have placed a significant burden on the environment. To mitigate this impact, prioritizing the chemical upcycling of plastics is crucial. Unlike traditional thermochemical upcycling, which requires harsh conditions such as high temperatures and pressures, photochemical upcycling is viewed as a more environmentally friendly and cost-effective alternative. This includes using light to promote C-H bond activation to achieve the oxidative degradation of plastics, generating various valuable small molecules, or employing light-induced C-H bond activation for post-polymerization modification of post-consumer plastics to obtain polymers with enhanced properties. These methods are highly attractive approaches within the realm of chemical upcycling. This mini-review highlights the scientific breakthroughs in upcycling polymers through oxidative degradation and post-polymerization modification via visible light-driven C-H bond activation. In addition, the reaction mechanism compatibility as well as practical application have been emphatically discussed.
Collapse
Affiliation(s)
- Wei Yi
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| | - Jing Liu
- Wuhan Institute of Photochemical Technology, Wuhan 430080, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
17
|
Chen G, Liu B, Zhang L, Yan F, Pan S, Li F, Cai Z, Chen X, Cai S. Visible-Light-Enabled Catalytic Intramolecular Double Oxidation of Olefins to ortho-Hydroxylactones. Org Lett 2024; 26:11096-11104. [PMID: 39670800 DOI: 10.1021/acs.orglett.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
We have effectively utilized cost-effective 2-bromoanthraquinone as a photocatalyst to develop an efficient and environmentally friendly method for producing o-hydroxy lactones under mild visible light irradiation. Importantly, this protocol only relies on oxygen as an oxidant, completely eliminating the need for additional chemical reagents and showcasing a sustainable approach to chemical transformation. Operating at room temperature, we utilized a mixed solvent system of DMF and CHCl3, which greatly facilitated the selective conversion of various 2-vinylbenzoic acids and carboxylic acids to functional o-hydroxyl lactones. The process also exhibited excellent diastereoselectivity. Moreover, this versatile strategy is compatible with a wide range of biologically active and complex molecules, offering new opportunities for late-stage structural modifications of these compounds.
Collapse
Affiliation(s)
- Guangxian Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Lele Zhang
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Feiwei Yan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Sanmei Pan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Feiming Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Xiaoping Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
18
|
Zhou B, Dong M, Wang W, Yu S, Yue H, Wei W, Yi D. CeCl 3-Catalyzed C-H Alkylation of N-Sulfonyl Ketimines with Alkanes and Ether via Photoinduced Ligand-to-Metal Charge Transfer. J Org Chem 2024; 89:18337-18343. [PMID: 39648635 DOI: 10.1021/acs.joc.4c02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
A cerium-catalyzed C-H alkylation of N-sulfonyl ketimines with low-cost and readily available alkanes as alkyl sources was developed. This transformation proceeded through the synergy of photoinitiated ligand-to-metal charge transfer (LMCT) using a chlorine radical as an HAT reagent and air as a green oxidant. A series of alkylated N-sulfonyl ketimines were synthesized with moderate to good yields in a highly atom-economic manner under chemical oxidant-free conditions.
Collapse
Affiliation(s)
- Bin Zhou
- College of Pharmacy, Shaoyang University, Shaoyang 422099, P. R. China
| | - Min Dong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Wei Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Sha Yu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, P. R. China
| | - Wei Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, P. R. China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| |
Collapse
|
19
|
González‐Gallardo N, Cores A, Marset X, Guijarro N, Guillena G, Ramón DJ. Unlocking the Potential of Deep Eutectic Solvents and Ligand-to-Metal Charge Transfer Processes: A Reusable Iron-and-UV-Based System for Sustainable C-C Bond Formation. CHEMSUSCHEM 2024; 17:e202400911. [PMID: 38957114 PMCID: PMC11660750 DOI: 10.1002/cssc.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Catalytic C-H functionalization has provided new opportunities to access novel organic molecules more sustainably and efficiently. However, these procedures typically rely on precious metals or complex organic catalysts as well as on hazardous solvents or reaction conditions. Herein, a pioneering methodology for direct C-C bond formation enabled by Ligand-to-Metal Charge Transfer (LMCT) and mediated by UV irradiation has been developed using Deep Eutectic Solvents (DESs) as sustainable reaction media. This direct C-H bond functionalization via a radical addition to electrophiles was successfully confirmed over a broad scope of substrates. More importantly, this is the first example of photocatalytic C-C bond formation in DESs. An inexpensive and abundant iron catalyst (FeCl3) was used under air and mild conditions. Different functional groups were well tolerated obtaining promising results that were comparable to those reported in the literature. Additionally, the reaction medium along with the catalyst could be reused for up to 5 consecutive cycles without a significant loss in the reaction outcome. Several green metrics were calculated and compared to those of conventional procedures, revealing the advantages of using DESs.
Collapse
Affiliation(s)
- Nerea González‐Gallardo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Alejandro Cores
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Xavier Marset
- Institute of ElectrochemistryUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Néstor Guijarro
- Institute of ElectrochemistryUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Gabriela Guillena
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Diego J. Ramón
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| |
Collapse
|
20
|
Guo T, Gao C, Li Z, Hu P, Chen H, Han S, Zhao Y, Zhu C. Visible-light-induced cascade chromone cyclization/chalcogenation to access 3-chalcogenyl-chromones using elemental sulfur/selenium. Chem Commun (Camb) 2024; 60:14866-14869. [PMID: 39588611 DOI: 10.1039/d4cc04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A mild and efficient visible-light-induced cascade undergoing a chromone cyclization/chalcogenation at room temperature has been developed. This three-component reaction employs user-friendly elemental S8 and Se as the chalcogenide source, providing an attractive route for the convenient synthesis of 3-chalcogenyl-chromones with a wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Chuanhu Gao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Zhonghui Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Penghua Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, P. R. China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, P. R. China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Congjun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
21
|
Zars E, Pick L, Kankanamge A, Gau MR, Meyer K, Mindiola DJ. C sp2-H/F bond activation and borylation with iron. Chem Commun (Camb) 2024. [PMID: 39555970 DOI: 10.1039/d4cc04127e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Reduction of [K2{(tBupyrr2pyr)Fe}2(μ-N2)] (1) with two equiv. of KC8 in the presence of crown-ether 18-C-6 yields the N2 adduct [{K(18-C-6)}2(tBupyrr2pyr)Fe(N2)] (2). Complex 2 heterolytically splits the Csp2-H bond of benzene to form [{K(18-C-6)}(tBupyrr2pyr)Fe(C6H5)] (3), whereby usage of a diboron B2pin2 promotes hydride elimination to form the salt [K(18-C-6)HB2Pin2] (4). Similarly, 3 can also be formed by cleavage of the C-F bond of fluorobenzene. Reaction of 3 with ClBcat yields [K(18-C-6)(thf)2][(tBupyrr2pyr)FeCl] (5) and PhBcat and the former can be reduced to 2 to complete a synthetic cycle for heterolytic benzene C-H activation and borylation.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA.
| | - Lisa Pick
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), Erlangen 91058, Germany.
| | - Achala Kankanamge
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA.
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA.
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), Erlangen 91058, Germany.
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Tu JL. Recent advances in photocatalytic and transition metal-catalyzed synthesis of disulfide compounds. Org Biomol Chem 2024. [PMID: 39498810 DOI: 10.1039/d4ob01362j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Disulfide bonds are essential in protein folding, cellular redox balance, materials science, and drug development. Despite existing synthetic methods, the efficient and selective synthesis of unsymmetrical disulfides remains challenging. This review highlights innovative approaches in visible light photocatalysis, including decarboxylation, deoxydisulfidation of alcohols, and direct C-H disulfidation, showcasing broad substrate applicability and functional group tolerance under mild conditions. Additionally, it explores transition metal-catalyzed systems with copper, nickel, palladium, chromium, Iridium, Rhodium molybdenum, and scandium, offering effective strategies for unsymmetrical disulfide bond formation and late-stage functionalization of complex molecules through reductive coupling, selective oxidation, and novel insertion reactions.
Collapse
Affiliation(s)
- Jia-Lin Tu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
23
|
Li F, Dong J, Wang C, Liao H, Dang J, Zhou J, Li G, Xue D. Benzyl Alcohol Functionalization of [1.1.1]Propellane with Alkanes and Aldehydes. Org Lett 2024; 26:9276-9281. [PMID: 39432247 DOI: 10.1021/acs.orglett.4c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) play a crucial role in drug discovery research as C(sp3)-rich bioisosteres of benzene rings. However, the preparation of BCPs with strong alkane C(sp3)-H bonds has not been reported to date. In this study, we reported a method for light-induced benzyl alcohol functionalization of [1.1.1]propellane with aliphatic hydrocarbons (which have not previously been explored for this purpose) and aldehydes under metal- and photocatalyst-free conditions. The BCP products could be transformed into various useful derivatives, demonstrating the utility of the method. Notably, we achieved the synthesis of functionalized BCPs with simple alkanes.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
- Department of Scientific Research, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou China
- The Second Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chenya Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Huijuan Liao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jiayi Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Juan Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
24
|
Zhao YL, Min X, Li L, Han XL, Wei Y, Hu XQ. Photocatalyst-Free Transformation of C(sp 3)-H Bonds to Oxime Ethers via Photoinduced Hydrogen Atom Transfer. Org Lett 2024; 26:9383-9388. [PMID: 39436111 DOI: 10.1021/acs.orglett.4c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Herein, a direct transformation of aliphatic C-H bonds to oxime ethers has been developed via light-promoted hydrogen atom transfer (HAT) in the absence of a photocatalyst. Singlet oxygen and chlorine radical are complementary C(sp3)-H bond cleaving agents in this reaction, enabling the extraction of hydrogen atoms from a diverse range of compounds, like cycloalkanes, ethers, amines, amides, and cyclic sulfides. This method excels in transforming common aliphatic C-H bonds into valuable oxime ethers featuring abundant chemical feedstocks, good functional group tolerance, and catalyst free conditions.
Collapse
Affiliation(s)
- Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xuehong Min
- Equine Science Research and Horse Doping Control Laboratory, Hubei Provincial Engineering Research Center of Racing Horse Detection and Application Transformation, Wuhan Business University, Wuhan 430056, China
| | - Lijing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Le Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
25
|
Xu KD, Gong XY, Li M, Yi L, Qin HT, Liu F. N-Directed, Radical Relay Enantioconvergent Sulfinylation of Distal C(sp 3)-H Bonds via Cobalt Catalysis. Org Lett 2024; 26:8999-9004. [PMID: 39417715 DOI: 10.1021/acs.orglett.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of C(sp3)-H bonds with in situ-generated sulfenate anions is achieved to access chiral sulfoxides, which are found in the structures of many biologically active agents. The more challenging aliphatic C-H bonds as well as sterically hindered substrates containing tertiary C-H bonds could also be tolerated well. Mechanistic studies indicate that the transformation could undergo a CoIIS(O)R-mediated single-electron transfer with N-fluorocarboxamides, followed by a 1,5-hydrogen atom transfer and then a pivotal organocobalt(IV)-controlled enantioselective cross-coupling process. This novel asymmetric radical reaction for C-S bond construction could open a new door for the synthesis of sulfur-centered chiral compounds.
Collapse
Affiliation(s)
- Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xing-Yu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Meng Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lin Yi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
26
|
Hu AM, Tu JL, Wang K, Yin J, Guo L, Yang C, Xia W. Photoinduced Ligand-to-Copper Charge Transfer for Aryl Decarboxylative Allylation, Thiolation, and Bromination. Org Lett 2024; 26:8572-8576. [PMID: 39330937 DOI: 10.1021/acs.orglett.4c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Herein, aryl decarboxylative allylation, thiolation, and bromination reactions via photoinduced ligand-to-copper charge transfer are described. Utilizing inexpensive copper metal, the transformations of various aryl carboxylic acids enable the rapid synthesis of the corresponding alkene, thioether, and aryl bromide derivatives under visible light irradiation, which offers significant synthetic value. The reaction conditions are mild and straightforward, exhibiting a broad substrate compatibility. Furthermore, this method can be applied for the late-stage modification of complex drug molecules.
Collapse
Affiliation(s)
- Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Ke Wang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiawen Yin
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
27
|
Tu JL, Huang B. Direct C(sp 3)-H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents. Chem Commun (Camb) 2024; 60:11450-11465. [PMID: 39268687 DOI: 10.1039/d4cc03383c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)-H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)-H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
28
|
Zhang Y, Fu D, Chen Z, Cui R, He W, Wang H, Chen J, Chen Y, Li SJ, Lan Y, Duan C, Jin Y. Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping. Nat Commun 2024; 15:8619. [PMID: 39366970 PMCID: PMC11452693 DOI: 10.1038/s41467-024-53021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
The challenging synthesis of thermodynamic-unfavored cis-olefins through catalytic cross-coupling reactions requires the synergistic interaction of substrate-activating units and configuration-regulating catalysts. Successfully hitting these two birds with one stone, we herein develop a convenient photoredox access to Z-alkenes from alkynes and light alkanes with a bifunctional iron-catalyzed system possessing both C(sp3)-H activation and configuration-controlling abilities. The protocol exhibits 100% atom utilization, mild conditions, a broad substrate scope, and compatibility with multitudinous functional groups. The detailed reaction mechanism and the origin of geometry regulation are well investigated by experimental and computational studies. Progressively, a catalytic amount of diaryl disulfides is introduced for consecutive photoinduced Z-E isomerization via reversible radical addition and flipping. Big steric hindrance substituents assembled on the disulfide emerge necessity for suppressing double-bond migration. This tandem strategy paves a promising way for stereoselective alkene construction and will bring significant inspiration for the development of transition metal photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dongmin Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong He
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hongyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yufei Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China.
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
29
|
Tao R, Liu G, Huang Z. Site- and Enantioselective Homobenzylic C(sp 3)-H Borylation via Dehydrogenation of Alkyl Chains. Org Lett 2024; 26:7626-7631. [PMID: 39225696 DOI: 10.1021/acs.orglett.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A one-pot, dehydrogenation-based Ir/Co/Cu triple catalysis has been developed for formal asymmetric borylation of homobenzylic C(sp3)-H bonds, furnishing enantioenriched organoboronates with a β-stereocenter directly from simple arylalkanes. Mechanistic studies indicate that the Ir catalyst is responsible for dehydrogenation of arylalkanes to 1-arylalkenes, followed by Cu-catalyzed regio- and enantioselective protoboration of (E)-arylalkenes; the introduction of Co-catalyzed stereoisomerization of the (Z)-alkenes to (E)-isomers was found to have a beneficial effect on the productivity and enantioselectivity.
Collapse
Affiliation(s)
- Renqing Tao
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
30
|
Wang M, Huang Y, Hu P. Hydrogen atom transfer-induced selective borylation of C(sp<sup>3</sup>)–H bonds. SCIENTIA SINICA CHIMICA 2024; 54:1445-1454. [DOI: 10.1360/ssc-2024-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Hwang C, Jang Y, Jung Y, Seo J, Shin K, Cho SH. Diverse Synthesis of (Thio)ethers and (Thio)esters Using Halodiborylmethane as a Transformable C 1 Building Block. Org Lett 2024; 26:7010-7014. [PMID: 39115428 DOI: 10.1021/acs.orglett.4c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The development of effective strategies to forge C-O and C-S bonds in diverse chemical spaces is of considerable interest in synthetic organic chemistry. Herein we report a versatile approach for the modular synthesis of structurally diverse (thio)ethers and (thio)esters via homologative coupling of α-halodiborylmethane followed by transformation of the introduced diborylmethyl group. This method accommodates a wide array of oxygen- and sulfur-containing molecules, including biologically active compounds. The initial coupling exhibits a broad substrate scope, while subsequent diversification of the diborylmethyl moiety enables access to various structural motifs through deborylative alkylation, Zweifel olefination, and boron-Wittig reaction. This protocol efficiently generates diversely functionalized (thio)ethers and (thio)esters, expanding the toolkit for accessing biologically relevant scaffolds.
Collapse
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yunhui Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaeyoon Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
32
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
33
|
Li P, Tu JL, Hu AM, Zhu Y, Yin J, Guo L, Yang C, Xia W. Iron-Catalyzed Multicomponent C-H Alkylation of in Situ Generated Imines via Photoinduced Ligand-to-Metal Charge Transfer. Org Lett 2024; 26:6347-6352. [PMID: 39038192 DOI: 10.1021/acs.orglett.4c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Herein, we describe a novel photoinduced iron-catalyzed strategy for multicomponent C-H alkylation of in situ generated imines. By utilizing the alkyl radicals generated through iron-mediated photocatalytic C-H activation, the imines formed in situ are further subjected to addition reactions, resulting in the synthesis of various secondary and tertiary amine products. This method is simple to operate and does not require additional oxidants. It is applicable to inert alkane substrates such as cyclic alkanes, cyclic ethers, toluene, and ketones. The reaction is also compatible with various aromatic amines, alkyl amines, halogenated aromatic amines, as well as aromatic aldehydes, alkyl aldehydes, and cinnamaldehyde, among other different types of aldehydes.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yining Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiawen Yin
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
34
|
Huang B, Tang X, Yuan J, Zhang M, Luo Z, Wang J, Lu C. Visible-light induced selenocyclization of 2-ethynylanilines under ambient conditions: simple FeBr 3 as a dual-functional catalyst. Org Biomol Chem 2024. [PMID: 39028029 DOI: 10.1039/d4ob01062k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report herein a visible-light induced, Fe-catalyzed selenocyclization of 2-ethynylanilines with diselenides under ambient conditions, employing ethyl acetate as a benign solvent with no stoichiometric additive required. The simple iron salt FeBr3 serves as both a photo-induced LMCT (Ligand-to-Metal Charge Transfer) catalyst and a Lewis acid catalyst to promote the desired transformation in a sustainable manner, enabling the facile synthesis of diverse 3-selenylindoles with extended substitution patterns. Moreover, gram-scale reactions and late-stage functionalization of bioactive molecules further highlight the synthetic practicality of this method.
Collapse
Affiliation(s)
- Binbin Huang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Xinye Tang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Jiawei Yuan
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Mingyu Zhang
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Zhenyu Luo
- Faculty of Arts and Sciences/College of Education for the Future, Beijing Normal University, Zhuhai 519085, China.
| | - Junlei Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Caicai Lu
- Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
35
|
Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Iron-Catalyzed, Light-Driven Decarboxylative Alkoxyamination. Chemistry 2024; 30:e202401252. [PMID: 38736425 DOI: 10.1002/chem.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
An iron-catalyzed visible-light driven decarboxylative alkoxyamination is disclosed. In the presence of FeBr2 and TEMPO, a large array of carboxylic acids including marketed drugs and biobased molecules is turned into the corresponding alkoxyamine derivatives. The versatility of the latter offers an entry towards molecular diversity generation from abundant starting materials and catalyst. Overall, this method proposes a unified and general approach for LMCT-based iron-catalyzed decarboxylative functionalization.
Collapse
Affiliation(s)
- Milan Innocent
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Clément Tanguy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Sigrid Gavelle
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
36
|
Chen J, Gan Z, Zhang Y, Chen Z, Liu S, Cui R, Xue Z, Sun H, Shi L, Jiang WF, Jin Y. Iron-Catalyzed Photoredox Alcohol α-C-H Alkylation and Tandem Intramolecular Cyclization: Facile Access to Multisubstituted 2,3-Dihydrofurans and γ-Butyrolactones. Org Lett 2024; 26:5329-5334. [PMID: 38869223 DOI: 10.1021/acs.orglett.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.
Collapse
Affiliation(s)
- Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Haoxiang Sun
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Feng Jiang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
37
|
Carré V, Godard P, Méreau R, Jacquot de Rouville HP, Jonusauskas G, McClenaghan N, Tassaing T, Vincent JM. Photogeneration of Chlorine Radical from a Self-Assembled Fluorous 4CzIPN•Chloride Complex: Application in C-H Bond Functionalization. Angew Chem Int Ed Engl 2024; 63:e202402964. [PMID: 38634355 DOI: 10.1002/anie.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)-H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl- dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.
Collapse
Affiliation(s)
- Victor Carré
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Pascale Godard
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | | | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798, Univ. Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| |
Collapse
|
38
|
Venkatraman RK, Tolba AH, Sølling TI, Cibulka R, El-Zohry AM. Ultrafast Events of Photoexcited Iron(III) Chloride for Activation of Benzylic C-H Bonds. J Phys Chem Lett 2024; 15:6202-6208. [PMID: 38836909 DOI: 10.1021/acs.jpclett.4c01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The usage of rare-earth-metal catalysts in the synthesis of organic compounds is widespread in chemical industries but is limited owing to its environmental and economic costs. However, recent studies indicate that abundant-earth metals like iron(III) chloride can photocatalyze diverse organic transformations using blue-light LEDs. Still, the underlying mechanism behind such activity is debatable and controversial, especially in the absence of ultrafast spectroscopic results. To address this urgent challenge, we performed femtosecond time-resolved electronic absorption spectroscopy experiments of iron(III) chloride in selected organic solvents relevant to its photocatalytic applications. Our results show that the long-lived species [Fe(II) ← Cl•]* is primarily responsible for both oxidizing the organic substrate and reducing molecular oxygen through the diffusion process, leading to the final product and regenerating the photocatalyst rather than the most widely proposed free chloride radical (Cl•). Our study will guide the rational design of efficient earth-abundant photocatalysts.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Amal Hassan Tolba
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
- Chemistry Department, Faculty of Science, Assiut University, Assiut 2074020, Egypt
| | - Theis I Sølling
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ahmed M El-Zohry
- Ultrafast Laser Spectroscopy Lab Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
39
|
Sun K, Sun T, Jiang Y, Shi J, Sun W, Zheng Y, Wang Z, Li Z, Lv X, Zhang X, Luo F, Liu S. Iron-catalyzed benzylic C-H thiolation via photoinduced ligand-to-metal charge-transfer. Chem Commun (Camb) 2024; 60:5755-5758. [PMID: 38747147 DOI: 10.1039/d4cc01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Here, we describe an iron-catalyzed benzylic C-H thiolation of alkylarenes via photoinduced ligand-to-metal charge-transfer. The protocol features operational simplicity, mild reaction conditions, and the use of FeCl3 as catalyst and thiols/disulfides as sulfur sources, which enables the transformation of diverse benzylic C-H bonds into C-S bonds with a high efficiency.
Collapse
Affiliation(s)
- Kaiting Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Tianyi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Jiayue Shi
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Wenlu Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Youyou Zheng
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Zhixuan Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Fan Luo
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, 314001, P. R. China.
| |
Collapse
|
40
|
Li Z, Zeng G, He Y, Zhou S, Chen J, Chen Z, Chen J, Lv N. Markovnikov Hydrochlorination of Unactivated Alkenes with FeCl 3 via a HAT/XAT Sequence. Org Lett 2024. [PMID: 38780034 DOI: 10.1021/acs.orglett.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrochlorination of alkenes is a practical strategy for accessing organic chlorides. Herein, we report the hydrochlorination of unactivated alkenes via a hydrogen atom transfer/halogen atom transfer process using earth-abundant and biocompatible FeCl3 as a chlorine source under extraordinarily mild reaction conditions. The protocol is easy to operate with notable features such as excellent chemoselectivity, remarkable efficiency, a broad substrate scope, and good functional group tolerance. Importantly, the synthetic utility is highlighted by scaled-up reactions, late-stage derivatizations of products, and the modification of sulfonamides.
Collapse
Affiliation(s)
- Zhefeng Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ge Zeng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yequan He
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Si Zhou
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Juehong Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ningning Lv
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, China
| |
Collapse
|
41
|
Koo Y, Hong S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem Sci 2024; 15:7707-7713. [PMID: 38784747 PMCID: PMC11110154 DOI: 10.1039/d4sc02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The extensive utility of organosilicon compounds across a wide range of disciplines has sparked significant interest in their efficient synthesis. Although catalytic 1,2-silyldifunctionalization of alkenes provides a promising method for the assembly of intricate organosilicon frameworks with atom and step economy, its advancement is hindered by the requirement of an external hydrogen atom transfer (HAT) agent in photoredox catalysis. Herein, we disclose an efficient three-component silylacylation of α,β-unsaturated carbonyl compounds, leveraging a synergistic nickel/photoredox catalysis with various hydrosilanes and aroyl chlorides. This method enables the direct conversion of acrylates into valuable building blocks that contain both carbonyl and silicon functionalities through a single, redox-neutral process. Key to this reaction is the precise activation of the Si-H bond, achieved through chlorine radical-induced HAT, enabled by the photoelimination of a Ni-Cl bond. Acyl chlorides serve a dual role, functioning as both acylating agents and chloride donors. Our methodology is distinguished by its mild conditions and extensive substrate adaptability, significantly enhancing the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
42
|
Xu Q, Ou W, Hou H, Wang Q, Yu L, Su C. Photosynthesis of C-1-Deuterated Aldehydes via Chlorine Radical-Mediated Selective Deuteration of the Formyl C-H Bond. Org Lett 2024; 26:4098-4103. [PMID: 38708839 DOI: 10.1021/acs.orglett.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
C-1-deuterated aldehydes are essential building blocks in the synthesis of deuterated chemicals and pharmaceuticals. This has led chemists to devise mild methodologies for their efficient production. Ideally, hydrogen-deuterium exchange (HDE) is the most effective approach. However, the traditional HDE for creating C-1-deuterated aldehydes often requires a complex system involving multiple catalysts and/or ligands. In this study, we present a mild photocatalytic HDE of the formyl C-H bond with D2O. This process is facilitated by chlorine radicals that are generated in situ from low-cost FeCl3. This strategy demonstrated a broad reaction scope and high functional group tolerance, affording good yields and ≤99% D incorporation. To bridge the gap between research and industrial applications, we designed a new flow photoreactor equipped with a high-intensity light-emitting diode bucket, enabling the synthesis of C-1-deuterated aldehydes on a scale of 85 g. Finally, we successfully produced several important deuterated aldehydes that are integral to the synthesis of deuterated pharmaceuticals.
Collapse
Affiliation(s)
- Qingzhu Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Wei Ou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hao Hou
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Qiyuan Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Lei Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
43
|
Xia GD, Li R, Zhang L, Wei Y, Hu XQ. Iron-Catalyzed Photochemical Synthesis of Sulfinamides from Aliphatic Hydrocarbons and Sulfinylamines. Org Lett 2024; 26:3703-3708. [PMID: 38668695 DOI: 10.1021/acs.orglett.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Run Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Long Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
44
|
Li P, Tu JL, Hu AM, Guo L, Yang C, Xia W. Photoinduced decatungstate-catalyzed C(sp 3)-H thioetherification by sulfinate salts. Org Biomol Chem 2024; 22:3420-3424. [PMID: 38619101 DOI: 10.1039/d4ob00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Thiols and thioesters play crucial roles in pharmaceuticals, biology, and material science as essential organosulfur compounds. Leveraging readily available and cost-effective inert alkanes through direct thioetherification holds promise for yielding high-value-added products. Herein, we present a photoinduced strategy for sulfur-containing modification of inert alkanes utilizing decatungstate as hydrogen atom transfer reagent, offering a straightforward and practical approach for synthesizing thioethers and thioesters.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
45
|
Lei Z, Wu J. Terminal-selective C(sp 3)-H borylation of unbranched alkanes enabled by intermolecular radical sampling and LMCT photocatalysis. Natl Sci Rev 2024; 11:nwae105. [PMID: 38650664 PMCID: PMC11034613 DOI: 10.1093/nsr/nwae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Zhexuan Lei
- Department of Chemistry, National University of Singapore, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, Singapore
| |
Collapse
|
46
|
Yu IF, D'Angelo KA, Hernandez-Mejías ÁD, Cheng N, Hartwig JF. 2-Aminophenanthroline Ligands Enable Mild, Undirected, Iridium-Catalyzed Borylation of Alkyl C-H Bonds. J Am Chem Soc 2024; 146:7124-7129. [PMID: 38456743 PMCID: PMC11620480 DOI: 10.1021/jacs.3c12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The catalytic, undirected borylation of alkyl C-H bonds typically occurs at high reaction temperatures or with excess substrate, or both, because of the low reactivity of alkyl C-H bonds. Here we report a new iridium system comprising 2-anilino-1,10-phenanthroline as the ligand that catalyzes the borylation of alkyl C-H bonds with little to no induction period and with high reaction rates. This superior activation and reactivity profile of 2-aminophenanthroline-ligated catalysts leads to broader reaction scope, including reactions of sensitive substrates, such as epoxides and glycosidic acetals, enhanced diastereoselectivity, and higher yields of borylated products. These catalysts also enable the borylation of alkanes, amines, and ethers at room temperature for the first time. Mechanistic studies imply that facile N-borylation occurs under the reaction conditions and that iridium complexes containing N-boryl aminophenanthrolines are competent precatalysts for the reaction.
Collapse
Affiliation(s)
- Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kyan A D'Angelo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Nanrun Cheng
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Huang Y, Wang M, Liu W, Wu Q, Hu P. Unraveling the Prominent Existence of Trace Metals in Photocatalysis: Exploring Iron Impurity Effects. J Org Chem 2024; 89:4156-4164. [PMID: 38450620 DOI: 10.1021/acs.joc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Metal impurities can complicate the identification of active catalyst species in transition metal catalysis and electrocatalysis, potentially leading to misleading findings. This study investigates the influence of metal impurities on photocatalysis. Specifically, the photocatalytic reaction of inert alkanes using chlorides without the use of an external photocatalyst was studied, achieving successful C(sp3)-H functionalization. The observations reveal that Fe and Cu impurities are challenging to avoid in a typical laboratory environment and are prominently present in normal reaction systems, and iron impurities play a dominant role in the aforementioned apparent 'metal-free' reaction. Additionally, iron exhibits significantly higher catalytic activity compared to Cu, Ce, and Ni at low metal concentrations in the photocatalytic C(sp3)-H functionalization using chlorides. Considering the widespread presence of Fe and Cu impurities in typical laboratory environments, this study serves as a reminder of their involvement in reaction processes.
Collapse
Affiliation(s)
- Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Miao Wang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Wei Liu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qiang Wu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
48
|
Abdukerem D, Chen H, Mao Z, Xia K, Zhu W, Liu C, Yu Y, Abdukader A. Transition metal-free C(sp 3)-H selenation of β-ketosulfones. Org Biomol Chem 2024; 22:2075-2080. [PMID: 38363158 DOI: 10.1039/d4ob00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The installation of selenium groups has become an essential step across a number of industries such as agrochemicals, drug discovery, and materials. However, direct C(sp3)-H selenation, which is most atom economical, remains a formidable challenge, and only a few examples have been reported to date. In this article, we introduce the transition metal-free C(sp3)-H selenation with the easily available β-ketosulfones and diselenides as the material source. This benign protocol permits access to a broad spectrum of α-aryl(alkyl) seleno-β-ketosulfones in high yields with outstanding functional group compatibility. Distinct advantages of this protocol over all previous methods encompass the utilization of base and air as an oxidant, room temperature, and enhanced green chemistry matrices.
Collapse
Affiliation(s)
- Dilshat Abdukerem
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Hui Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Zechuan Mao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Kun Xia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Wenli Zhu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Changhong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
49
|
Kumar Jha R, Rohilla K, Jain S, Parganiha D, Kumar S. Blue-Light Irradiated Mn(0)-Catalyzed Hydroxylation and C(sp 3 )-H Functionalization of Unactivated Alkanes with C(sp 2 )-H Bonds of Quinones for Alkylated Hydroxy Quinones and Parvaquone. Chemistry 2024; 30:e202303537. [PMID: 37991931 DOI: 10.1002/chem.202303537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Site-selective C(sp3 )-H functionalization of unreactive hydrocarbons is always challenging due to its inherited chemical inertness, slightly different reactivity of various C-H bonds, and intrinsically high bond dissociation energies. Here, a site-selective C-H alkylation of naphthoquinone with unactivated hydrocarbons using Mn2 (CO)10 as a catalyst under blue-light (457 nm) irradiation without any external acid or base and pre-functionalization is presented. The selective C-H functionalization of tertiary over secondary and secondary over primary C(sp3 )-H bonds in abundant chemical feedstocks was achieved, and hydroxylation of quinones was realized in situ by employing the developed methodology. This protocol provides a new catalytic system for the direct construction of high-value-added compounds, namely, parvaquone (a commercially available drug used to treat theileriosis) and its derivatives under ambient reaction conditions. Moreover, this operationally simple protocol applies to various linear-, branched-, and cyclo-alkanes with high degrees of site selectivity under blue-light irradiated conditions and could provide rapid and straightforward access to versatile methodologies for upgrading feedstock chemicals. Mechanistic insight by radical trapping, radical scavenging, EPR, and other controlled experiments well corroborated with DFT studies suggest that the reaction proceeds by a radical pathway.
Collapse
Affiliation(s)
- Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Komal Rohilla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Devendra Parganiha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
50
|
Li LJ, Wei Y, Zhao YL, Gao Y, Hu XQ. Radical-Mediated Decarboxylative C-C and C-S Couplings of Carboxylic Acids via Iron Photocatalysis. Org Lett 2024; 26:1110-1115. [PMID: 38277128 DOI: 10.1021/acs.orglett.3c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Despite the significant success of decarboxylative radical reactions, the catalytic systems vary considerably upon different radical acceptors, requiring renewed case-by-case reaction optimization. Herein, we developed an iron catalytic condition that enables the highly efficient decarboxylation of various carboxylic acids for a range of radical transformations. This operationally simple protocol was amenable to a wide array of radical acceptors, delivering structurally diverse oxime ethers, alkenylation, alkynylation, thiolation, and amidation products in useful to excellent yields (>40 examples, up to 95% yield).
Collapse
Affiliation(s)
- Li-Jing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|