1
|
Xie Y, Liu Z, Qin H, Zhao H, Zhang W, Xiao C, Wang X, Yang X, Wang F. Ultraviolet Photodissociation Mass Spectrometry Captures the Acyl Chain Length-Dependent Conformation Dynamics of Acyl Carrier Protein. J Am Chem Soc 2025; 147:16760-16765. [PMID: 40353606 DOI: 10.1021/jacs.5c03426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Capturing the acyl chain dependent conformation dynamics of acyl carrier protein (ACP) is critical for understanding the molecular mechanism of acyl chain stabilization and elongation, providing structural insights for ACP evolution. Herein, we utilize native mass spectrometry (nMS) and 193 nm ultraviolet photodissociation (UVPD) to systematically interrogate the structural details in activation and interactions of ACP with C4-C18 acyl chains. The unstable acyl-ACP intermediates can be isolated and subjected to high-sensitivity UVPD analysis individually without matrix interference. We find that the acyl chains mainly insert into ACP subpocket I until the chain length surpasses the cavity's maximum capacity by 10 carbons. Then, the hydrophobic part of long acyl chains (>C10) bends into subpocket II. Notably, Phe50 and Ile62 play a critical role in regulating the size of the hydrophobic pocket, while Loop I and Thr64-Gln66 are essential for stabilizing long-chain acyl-ACPs. Our findings pave the way for ACP rational evolution to promote the biosynthesis of target fatty acids.
Collapse
Affiliation(s)
- Yuanzhi Xie
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiwen Qin
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Xiao
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Wang
- School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xueming Yang
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangjun Wang
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Britt HM, Robinson CV. Traversing the drug discovery landscape using native mass spectrometry. Curr Opin Struct Biol 2025; 91:102993. [PMID: 39893771 DOI: 10.1016/j.sbi.2025.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
As health needs in our society evolve, the field of drug discovery must undergo constant innovation and improvement to identify novel targets and drug candidates. Owing to its ability to simultaneously capture biological interactions and provide in-depth molecular characterisation of the species involved, native mass spectrometry is starting to play an important role in this endeavour. Here, we discuss recent contributions that native mass spectrometry has made to drug discovery including deciphering protein-small molecule interactions, unravelling biochemical pathways, and integrating with complementary structural approaches.
Collapse
Affiliation(s)
- Hannah M Britt
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK; Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford, OX1 3QU, UK.
| |
Collapse
|
3
|
Wang D, Liu C, Chen J, Zhang Y, Han R, Tang S, Wang N, Hao H, Shao C, Ye H. Lactyllysine Esterification Enables Efficient Lactylprotein Expression via Genetic Code Expansion and Supports Functional Proteomics Studies. J Proteome Res 2024; 23:4614-4625. [PMID: 39316072 DOI: 10.1021/acs.jproteome.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Lysine lactylation has recently been discovered and demonstrated to be an essential player in immunity, cancer and neurodegenerative diseases. Genetic code expansion (GCE) technique is powerful in uncovering lactylation functions, since it allows site-specific incorporation of lactyllysine (Klac) into proteins of interest (POIs) in living cells. However, the inefficient uptake of Klac into cells, due to its high hydrophilicity, results in limited expression of lactylated POIs. To address this challenge, here we designed esterified Klac derivatives, exemplified by ethylated Klac (KlacOEt), to enhance Klac's lipophilicity and improve its cellular uptake. The expression level of site-specifically lactylated POIs was doubled using KlacOEt in both Escherichia coli and HEK293T cells. Immunoprecipitation mass spectrometry analysis verified the significantly increased yield of the precisely lactylated fructose-bisphosphate aldolase A using KlacOEt. Furthermore, in conjunction with the Target Responsive Accessibility Profiling approach, we found that lactylation at ALDOA-K147 altered the protein's conformation, which may explain the lactylation-induced reduction in enzyme activity. Together, we demonstrate that, through enhancing the yield of lactylated proteins with Klac esters via GCE, we are able to site-specifically reveal the effects of lactylation on POIs' interactions, conformations and activities using a suite of functional proteomics and biochemical tools.
Collapse
Affiliation(s)
- Dexiang Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Chenguang Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Jingzhuo Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Yueyang Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Rui Han
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang No. 24, Nanjing 210009, Jiangsu, China
| |
Collapse
|
4
|
Mu Y, Zhao S, Liu J, Liu Z, He J, Cao H, Zhao H, Wang C, Jin Y, Qi Y, Wang F. Assessment of the Conformation Stability and Glycosylation Heterogeneity of Lactoferrin by Native Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10089-10096. [PMID: 38626386 DOI: 10.1021/acs.jafc.3c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Lactoferrin (LTF) has diverse biological activities and is widely used in functional foods and active additives. Nevertheless, evaluating the proteoform heterogeneity, conformational stability, and activity of LTF remains challenging during its production and storage processes. In this study, we describe the implementation of native mass spectrometry (nMS), glycoproteomics, and an antimicrobial activity assay to assess the quality of LTF. We systematically characterize the purity, glycosylation heterogeneity, conformation, and thermal stability of LTF samples from different sources and transient high-temperature treatments by using nMS and glycoproteomics. Meanwhile, the nMS peak intensity and antimicrobial activity of LTF samples after heat treatment decreased significantly, and the two values were positively correlated. The nMS results provide essential molecular insights into the conformational stability and glycosylation heterogeneity of different LTF samples. Our results underscore the great potential of nMS for LTF quality control and activity evaluation in industrial production.
Collapse
Affiliation(s)
- Yu Mu
- College of Food Science and Engineering, Ocean University of Dalian, Dalian 116023, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Hongfang Cao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Caiyun Wang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
| | - Yan Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Ocean University of Dalian, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Inner Mongolia National Center of Technology Innovation for Dairy Co. Ltd., Hohhot 010110, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Luo P, Liu Z, Lai C, Jin Z, Wang M, Zhao H, Liu Y, Zhang W, Wang X, Xiao C, Yang X, Wang F. Time-Resolved Ultraviolet Photodissociation Mass Spectrometry Probes the Mutation-Induced Alterations in Protein Stability and Unfolding Dynamics. J Am Chem Soc 2024; 146:8832-8838. [PMID: 38507251 DOI: 10.1021/jacs.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiong Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Lai C, Tang Z, Liu Z, Luo P, Zhang W, Zhang T, Zhang W, Dong Z, Liu X, Yang X, Wang F. Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry. Chem Sci 2024; 15:2545-2557. [PMID: 38362424 PMCID: PMC10866368 DOI: 10.1039/d3sc05106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
Collapse
Affiliation(s)
- Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiyao Tang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Pan Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Tingting Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenhao Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Dong
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xinyuan Liu
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
| | - Xueming Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology Shenzhen 518055 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- Institute of Advanced Science Facilities Shenzhen 518107 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|