1
|
Podder S, Jungi H, Mitra J. In Pursuit of Carbon Neutrality: Progresses and Innovations in Sorbents for Direct Air Capture of CO 2. Chemistry 2025; 31:e202500865. [PMID: 40192268 DOI: 10.1002/chem.202500865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Direct air capture (DAC) is of immense current interest, as a means to facilitate CO2 capture at low concentrations (∼400 ppm) directly from the atmosphere, with the aim of addressing global warming caused by excessive anthropogenic CO2 production. Traditionally, DAC of CO2 has relied on amine scrubbing and metal carbonate /hydroxide solutions. However, recent years have seen notable progress in DAC sorbents, with key advancements aimed at improving efficiency, capacity, and regenerability while reducing energy consumption. This review delivers an exhaustive analysis of contemporary developments in DAC sorbents, addressing the innovations in material design and consequent performance enhancement. The limitations of the sorbents have also been discussed, with future perspectives for improving sustainable CO2 capture strategies. We anticipate that this overview will help lay the groundwork for further development and large-scale implementation of sustainable sorbents and cutting-edge technologies toward attaining carbon neutrality.
Collapse
Affiliation(s)
- Sumana Podder
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hiren Jungi
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joyee Mitra
- IMC Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Periyasamy T, Asrafali SP, Lee J. Efficient CO 2 Capture Using Nitrogen-Enriched Microporous Carbon Derived from Polybenzoxazine in a Single-Step Process for Environmental Sustainability. Polymers (Basel) 2025; 17:343. [PMID: 39940545 PMCID: PMC11820653 DOI: 10.3390/polym17030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
In this research, we successfully synthesized nitrogen-enriched microporous carbon through a meticulous process involving two different activation procedures. Initially, polybenzoxazine was carbonized at 800 °C to create a precursor material, which was then activated with two different activating agents (KOH and KMnO4) at the same temperature. This activation significantly enhanced the material's porosity, increasing its specific surface area from 335 m2/g (KOH activated) to 943 m2/g (KMnO4 activated). XPS analysis confirmed the presence of nitrogen functionalities, including secondary-N, oxide-N, pyridone-N, and pyridine-N, which are critical for CO2 adsorption. Adsorption tests demonstrated a high CO2 uptake of 3.8 mmol/g at 25 °C and 1 bar, driven by a combination of physisorption (physical interaction with the surface area) and chemisorption (chemical interaction with nitrogen sites). This high adsorption capacity can be attributed to the carbon's substantial surface area, significant micropore volume, and the interconnected network of pores, which together provide structural stability and facilitate the diffusion of CO2 molecules. These findings suggest that this nitrogen-enriched microporous carbon, derived from polybenzoxazine, holds significant promise as a highly efficient material for applications in CO2 capture and storage.
Collapse
Affiliation(s)
| | | | - Jaewoong Lee
- Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (T.P.); (S.P.A.)
| |
Collapse
|
3
|
Kang M, Youn J, Choe JH, Lee JH, Hong CS. Diaminopropane-Functionalized Metal-Organic Frameworks with Controllable Diamine Loss and One-Channel Flipped CO 2 Adsorption Mode. CHEMSUSCHEM 2025; 18:e202401404. [PMID: 39166722 DOI: 10.1002/cssc.202401404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Diamine-functionalized metal-organic frameworks (MOFs) based on Mg2(dobpdc) (dobpdc4-=4,4'-dioxidobihyenyl-3,3'-dicarboxylate) are considered promising CO2 adsorbents owing to their characteristic stepwise adsorption behavior. However, the high temperatures required for CO2 desorption from diamine-Mg2(dobpdc)-based adsorbents induce gradual diamine loss. Additionally, the existence of an exotic CO2 adsorption mode remains experimentally unanswered. Herein, we present CO2 adsorbents obtained by functionalizing Mn2(dobpdc) with a series of diaminopropane derivatives. The low regeneration energies of these adsorbents allow for CO2 desorption at temperatures lower than those reported for Mg-based analogs. Our first-principles density functional theory calculations indicated that the bond strength between the diamine and Mn ions in Mn2(dobpdc) is greater than that between the diamine and Mg ions in Mg2(dobpdc). This stronger bonding prevents diamine loss even at high temperatures and enables efficient regeneration. Additionally, the computational and experimental results showed that MOFs functionalized with primary-tertiary diamine exhibit unique one-channel flipped adsorption structures that have not been previously observed. Our findings provide valuable insights into the role of metal ions in diamine loss for the future development of efficient amine-based CO2 adsorbents.
Collapse
Affiliation(s)
- Minjung Kang
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongwon Youn
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Seop Hong
- Department, of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
5
|
Deka DJ, Biswas C, Paul R, Xu J, Huang Y, Dao DQ, Mondal J. Harmonizing Between Chemical Functionality and Surface Area of Porous Organic Polymeric Nanotraps for Tuning Carbon Dioxide Capture. Chem Asian J 2024; 19:e202400515. [PMID: 38899858 DOI: 10.1002/asia.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/21/2024]
Abstract
The energy sector has demonstrated significant enthusiasm for investigating post-combustion CO2 capture, storage, and separation. However, the practical application of current porous adsorbents is impeded by challenges related to cost competitiveness, stability, and scalability. Intregation of heteroatoms in the porous organic polymers (POPs) dispense it more susceptible for CO2 adsorption to attenuate green house gases. In this regard, two hydroxy rich hypercrosslinked POPs, namely Ph/Tt-POP have been developed by one-pot condensation polymerization using a facile synthetic strategy. The high surface areas of both the Ph/Tt-POP (1057 and 893 m2g-1, respectively), and the heteroatom functionality in the POP framework instigated us to explore our material for CO2 adsorption study. The CO2 uptake capacities in Ph/Tt-POP are found to be 2.45 and 2.2 mmol g-1, at 273 K respectively. Further, in-situ static 13C NMR experiment shows that CO2 molecules in Tt-POP appear to be less mobile than those in Ph-POP which probably due to the presence of triazine functional groups along with high abundant -OH groups in the Tt-POP framework. An in-depth study of the CO2 adsorption mechanism by density functional theory (DFT) calculations also shows that CO2 adsorption at the cages formed by two benzyl rings represents the most stable interaction and CO2 molecule is more favorably adsorbed on the Ph-POP with the more negative interaction energies values compared to that of Tt-POP. Further, Non-covalent interaction (NCI) plot reveals that CO2 molecules adsorb more on the Ph-POP than Tt-POP, which can be explain by hydrogen bond formation in case of Tt-POP repeating units turning aside CO2 molecule to interact with the Ph component. Overall, our present study reflects the comprising effects of surface area of the solid adsorbents as well as their functionality can be beneficial for developing efficient hypercrosslinked porous polymers as solid CO2 adsorbent.
Collapse
Affiliation(s)
- Dhruba Jyoti Deka
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chandan Biswas
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiabin Xu
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Choe JH, Kim H, Yun H, Kurisingal JF, Kim N, Lee D, Lee YH, Hong CS. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. J Am Chem Soc 2024; 146:19337-19349. [PMID: 38953459 DOI: 10.1021/jacs.4c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Direct air capture (DAC) shows considerable promise for the effective removal of CO2; however, materials applicable to DAC are lacking. Among metal-organic framework (MOF) adsorbents, diamine-Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) effectively removes low-pressure CO2, but the synthesis of the organic ligand requires high temperature, high pressure, and a toxic solvent. Besides, it is necessary to isolate the ligand for utilization in the synthesis of the framework. In this study, we synthesized a new variant of extended MOF-74-type frameworks, M2(hob) (M = Mg2+, Co2+, Ni2+, and Zn2+; hob4- = 5,5'-(hydrazine-1,2-diylidenebis(methanylylidene))bis(2-oxidobenzoate)), constructed from an azine-bonded organic ligand obtained through a facile condensation reaction at room temperature. Functionalization of Mg2(hob) with N-methylethylenediamine, N-ethylethylenediamine, and N,N'-dimethylethylenediamine (mmen) enables strong interactions with low-pressure CO2, resulting in top-tier adsorption capacities of 2.60, 2.49, and 2.91 mmol g-1 at 400 ppm of CO2, respectively. Under humid conditions, the CO2 capacity was higher than under dry conditions due to the presence of water molecules that aid in the formation of bicarbonate species. A composite material combining mmen-Mg2(hob) and polyvinylidene fluoride, a hydrophobic polymer, retained its excellent adsorption performance even after 7 days of exposure to 40% relative humidity. In addition, the one-pot synthesis of Mg2(hob) from a mixture of the corresponding monomers is achieved without separate ligand synthesis steps; thus, this framework is suitable for facile large-scale production. This work underscores that the newly synthesized Mg2(hob) and its composites demonstrate significant potential for DAC applications.
Collapse
Affiliation(s)
- Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | | | - Namju Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Donggyu Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Wang C, Chen X, Yao S, Peng F, Xiong L, Guo H, Zhang H, Chen X. Hyper-Cross-Linked Resin Modified by a Micropore Polymer for Gas Adsorption and Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12465-12474. [PMID: 38855944 DOI: 10.1021/acs.langmuir.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Polymerization confined to the pore was first adapted for the nanoscale structure adjustment of adsorption resin. The self-cross-linked polymer (P-1) formed in the pore of hyper-cross-linked resin (HR) by the Friedel-Crafts reaction of p-dichloroxylene (p-DCX), occupying the macropore of the HR resin and bringing about an external micropore. Compared with the raw HR resin, the volume of the micropore of HR@P-1 in 0.4 < D < 1 nm increased but the volume of the macropore has obviously decreased. After the loading of P-1 in the nanopore of HR, HR@P-1 has better gas adsorption performance. At 298 and 100 KPa, the adsorption capacity of CO2 is almost 30% higher than that of HR, reaching 35.7 cm3/g, due to the increase in the smaller micropore volume. Moreover, HR@P-1 has also been found to be the first C2H6-selective adsorption resin. The uptake of C2H6 is up to 56 cm3/g, and the IAST selectivity of C2H6/CH4 reaches 15.3. HR@P-1 can also separate syngas efficiently at ambient temperature and be regenerated by simple vacuum operation.
Collapse
Affiliation(s)
- Chuanhong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Shimiao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Fen Peng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Haijun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| |
Collapse
|
8
|
Owens JR, Feng B, Liu J, Moore D. Understanding the effect of density functional choice and van der Waals treatment on predicting the binding configuration, loading, and stability of amine-grafted metal organic frameworks. J Chem Phys 2024; 160:164711. [PMID: 38656447 DOI: 10.1063/5.0202963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Metal organic frameworks (MOFs) are crystalline, three-dimensional structures with high surface areas and tunable porosities. Made from metal nodes connected by organic linkers, the exact properties of a given MOF are determined by node and linker choice. MOFs hold promise for numerous applications, including gas capture and storage. M2(4,4'-dioxidobiphenyl-3,3'-dicarboxylate)-henceforth simply M2(dobpdc), with M = Mg, Mn, Fe, Co, Ni, Cu, or Zn-is regarded as one of the most promising structures for CO2 capture applications. Further modification of the MOF with diamines or tetramines can significantly boost gas species selectivity, a necessity for the ultra-dilute CO2 concentrations in the direct-air capture of CO2. There are countless potential diamines and tetramines, paving the way for a vast number of potential sorbents to be probed for CO2 adsorption properties. The number of amines and their configuration in the MOF pore are key drivers of CO2 adsorption capacity and kinetics, and so a validation of computational prediction of these quantities is required to suitably use computational methods in the discovery and screening of amine-functionalized sorbents. In this work, we study the predictive accuracy of density functional theory and related calculations on amine loading and configuration for one diamine and two tetramines. In particular, we explore the Perdew-Burke-Ernzerhof (PBE) functional and its formulation for solids (PBEsol) with and without the Grimme-D2 and Grimme-D3 pairwise corrections (PBE+D2/3 and PBEsol+D2/3), two revised PBE functionals with the Grimme-D2 and Grimme-D3 pairwise corrections (RPBE+D2/3 and revPBE+D2/3), and the nonlocal van der Waals correlation (vdW-DF2) functional. We also investigate a universal graph deep learning interatomic potential's (M3GNet) predictive accuracy for loading and configuration. These results allow us to identify a useful screening procedure for configuration prediction that has a coarse component for quick evaluation and a higher accuracy component for detailed analysis. Our general observation is that the neural network-based potential can be used as a high-level and rapid screening tool, whereas PBEsol+D3 gives a completely qualitatively predictive picture across all systems studied, and can thus be used for high accuracy motif predictions. We close by briefly exploring the predictions of relative thermal stability for the different functionals and dispersion corrections.
Collapse
Affiliation(s)
- Jonathan R Owens
- Material Chemistry and Physics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - Bojun Feng
- AI, Software, and Robotics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - Jie Liu
- Material Chemistry and Physics Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| | - David Moore
- Decarbonization Lab, GE Vernova Advanced Research, Niskayuna, New York 12309, USA
| |
Collapse
|
9
|
Zhu Z, Tsai H, Parker ST, Lee JH, Yabuuchi Y, Jiang HZH, Wang Y, Xiong S, Forse AC, Dinakar B, Huang A, Dun C, Milner PJ, Smith A, Guimarães Martins P, Meihaus KR, Urban JJ, Reimer JA, Neaton JB, Long JR. High-Capacity, Cooperative CO 2 Capture in a Diamine-Appended Metal-Organic Framework through a Combined Chemisorptive and Physisorptive Mechanism. J Am Chem Soc 2024; 146:6072-6083. [PMID: 38400985 PMCID: PMC10921408 DOI: 10.1021/jacs.3c13381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.
Collapse
Affiliation(s)
- Ziting Zhu
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hsinhan Tsai
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jung-Hoon Lee
- Department
of Physics, University of California, Berkeley, California 94720, United States
| | - Yuto Yabuuchi
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yang Wang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Shuoyan Xiong
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alexander C. Forse
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Bhavish Dinakar
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Adrian Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chaochao Dun
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Phillip J. Milner
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alex Smith
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Pedro Guimarães Martins
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey J. Urban
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey A. Reimer
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey B. Neaton
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Physics, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Feng L, Zhang Q, Su J, Ma B, Wan Y, Zhong R, Zou R. Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:24. [PMID: 38202479 PMCID: PMC10780323 DOI: 10.3390/nano14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
MOF-74 (metal-organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage.
Collapse
Affiliation(s)
- Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Qiuning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Bing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
11
|
Han X, Zhang W, Chen Z, Liu Y, Cui Y. The future of metal-organic frameworks and covalent organic frameworks: rational synthesis and customized applications. MATERIALS HORIZONS 2023; 10:5337-5342. [PMID: 37850465 DOI: 10.1039/d3mh01396k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are designable and tunable functional crystalline porous materials that have been explored for applications such as catalysis, chemical sensing, water harvesting, gas storage, and separation. On the basis of reticular chemistry, the rational design and synthesis of MOFs and COFs allows us to have unprecedented control over their structural features and functionalities. Given the vast number of possible MOF and COF structures and the flexibility of modifying them, it remains challenging to navigate the infinite chemical space solely through a trial-and-error process. This Opinion Article provides a brief perspective of the current state and future prospects of MOFs and COFs. We envision that emerging technologies based on machine learning and robotics, such as high-throughput computational screening and fully automatic synthesis, can potentially address some challenges facing this field, accelerating the discovery of porous framework materials and the development of rational synthetic strategies for customized applications.
Collapse
Affiliation(s)
- Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhijie Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|