1
|
Liang Z, Lei H, Zheng H, Wang HY, Zhang W, Cao R. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chem Soc Rev 2025. [PMID: 40259844 DOI: 10.1039/d4cs01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The oxygen reduction reaction (ORR) can take place via both four-electron (4e-) and two-electron (2e-) pathways. The 4e- ORR, which produces water (H2O) as the only product, is the key reaction at the cathode of fuel cells and metal-air batteries. On the other hand, the 2e- ORR can be used to electrocatalytically synthesize hydrogen peroxide (H2O2). For the practical applications of the ORR, it is very important to precisely control the selectivity. Understanding structural effects on the ORR provides the basis to control the selectivity. Co-based electrocatalysts have been extensively studied for the ORR due to their high activity, low cost, and relative ease of synthesis. More importantly, by appropriately designing their structures, Co-based electrocatalysts can become highly selective for either the 2e- or the 4e- ORR. Therefore, Co-based electrocatalysts are ideal models for studying fundamental structure-selectivity relationships of the ORR. This review starts by introducing the reaction mechanism and selectivity evaluation of the ORR. Next, Co-based electrocatalysts, especially Co porphyrins, used for the ORR with both 2e- and 4e- selectivity are summarized and discussed, which leads to the conclusion of several key structural factors for ORR selectivity regulation. On the basis of this understanding, future works on the use of Co-based electrocatalysts for the ORR are suggested. This review is valuable for the rational design of molecular catalysts and material catalysts with high selectivity for 4e- and 2e- ORRs. The structural regulation of Co-based electrocatalysts also provides insights into the design and development of ORR electrocatalysts based on other metal elements.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Zhang W, Jiao D, Zhang LH, Yu F. Tuning the spin state of the iron center by FePc/Mg(OH) 2 heterojunction boosting oxygen reduction performance. J Colloid Interface Sci 2025; 684:690-695. [PMID: 39813785 DOI: 10.1016/j.jcis.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Iron phthalocyanine (FePc) is a promising non-noble metal catalyst for oxygen reduction reaction (ORR). While, with the plane-symmetric FeN4 site, the ORR activity of FePc is generally low due to its low ability to adsorb and activate O2. Herein, we anchor FePc on Mg(OH)2/N-doped carbon nanosheets building the ternary plate-like catalyst FePc/Mg(OH)2/NC. Theoretical and experimental results show that due to the formation of FePc/Mg(OH)2 heterojunction, the electron spin state of the monodisperse iron active site ranges from medium spin (MS, t2g5eg1) to low spin (LS, t2g6eg0), enhancing the adsorption with oxygen-containing intermediates, thereby improving the dynamics of the oxygen reduction reaction. As a result, FePc/Mg(OH)2/NC catalyst exhibits an outstanding performance (E0 = 1.02 V, E1/2 = 0.91 V) for ORR, superior to the commercial Pt/C electrode (E0 = 1.01 V, E1/2 = 0.85 V) and FePc/NC (E0 = 0.97 V, E1/2 = 0.87 V) under the alkaline conditions. This work offers a new way for the rational design of effective FeNC catalysts with the support of metal oxides/hydroxides.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Di Jiao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China.
| |
Collapse
|
3
|
Tang R, Yuan X, Yang W, Zhang H, Lu Y, Zhang R. Fe─N 4 and Fe 7Co 3 Nanoalloy Dual-Site Modulation by Skeleton Defect in N-Doped Graphene Aerogel for Enhanced Bifunctional Oxygen Electrocatalyst in Zinc-air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410264. [PMID: 39743982 DOI: 10.1002/smll.202410264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Indexed: 01/04/2025]
Abstract
The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N4 and the adjacent Fe7Co3 nanoalloy (FeCoNA) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA). The high-density dual-sites, together with the good electronic conductivity of NGA, synergistically improve the electronic structure for superior electrocatalytic activity. The half-wave potential of Fe─N/FeCo@NGA in ORR is 0.92 V and the overpotential of it in OER is 1.58 V. Corresponding all-solid-state Zn-air battery demonstrates a peak power density of 147.6 mW cm-2 and charge/discharge durability for over 140 h. Theoretical calculations reveal that the single-atomic Fe-N4 and FeCoNA dual-site on the skeleton defect optimized NGA, further refine the local electronic structure, modulating the tensile force on the O─O bond in *OOH intermediate, leading to its spontaneous dissociation and facilitating a significantly reduced energy barrier. This work takes a promising shortcut in the application of defect engineering for the development of highly efficient dual-site bifunctional oxygen electrocatalysts with single atoms.
Collapse
Affiliation(s)
- Rujuan Tang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| | - Xiaona Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| | - Wenxin Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| | - Yan Lu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| | - Renjie Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
4
|
Zhang M, Cao X, Dong J, Zhu X, Zhu Y, Wang L. Unveiling the Mystery of Precision Catalysis: Dual-Atom Catalysts Stealing the Spotlight. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409560. [PMID: 39726322 DOI: 10.1002/smll.202409560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In the era of atomic manufacturing, the precise manipulation of atomic structures to engineer highly active catalytic sites has become a central focus in catalysis research. Dual-atom catalysts (DACs) have garnered significant attention for their superior activity, selectivity, and stability compared to single-atom catalysts (SACs). However, a comprehensive review that integrates geometric and electronic factors influencing DAC performance remains limited. This review systematically explores the structure of DAC, addressing key macroscopic parameters, such as spatial arrangements and interatomic distances, as well as microscopic factors, including local coordination environments and electronic structures. Additionally, metal-support interactions (MSI) and long-range interactions (LSI) are comprehensively analyzed, which play a pivotal yet underexplored role in governing DAC behavior. the integration of tailored functional groups is further discussed to fine-tune DAC properties, thereby optimizing intermediate adsorption, enhancing reaction kinetics, and expanding their multifunctionality in various electrochemical environments. This review offers novel insights into their rational design by elucidating the intricate mechanisms underlying DACs' exceptional performance. Ultimately, DACs are positioned as critical players in precision catalysis, highlighting their potential to drive significant breakthroughs across a broad spectrum of catalytic applications.
Collapse
Affiliation(s)
- Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xiwen Cao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Jie Dong
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Xianjun Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Materials Science and Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Musgrave CB, Su J, Xiong P, Song Y, Huang L, Liu Y, Li G, Zhang Q, Xin Y, Li MMJ, Kwok RTK, Lam JWY, Tang BZ, Goddard WA, Ye R. Molecular Strain Accelerates Electron Transfer for Enhanced Oxygen Reduction. J Am Chem Soc 2025; 147:3786-3795. [PMID: 39818842 PMCID: PMC11783534 DOI: 10.1021/jacs.4c16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs. We use density functional theory to predict the reaction mechanism for the four-electron reduction of oxygen to water. Several key differences between the reaction mechanisms for curved and flat FePc suggest that molecular strain accelerates the reductive desorption of *OH by decreasing the energy barrier by ∼60 meV. Our theoretical predictions are substantiated by experimental validation; we find that strained FePc on single-walled carbon nanotubes attains a half-wave potential (E1/2) of 0.952 V versus the reversible hydrogen electrode and a Tafel slope of 35.7 mV dec-1, which is competitive with the best-reported Fe-N-C values. We also observe a 70 mV change in E1/2 and dramatically different Tafel slopes for the flat and curved configurations, which agree well with the calculated energies. When integrated into a zinc-air battery, our device affords a maximum power density of 350.6 mW cm-2 and a mass activity of 810 mAh gZn-1 at 10 mA cm-2. Our results indicate that molecular strain provides a compelling tool for modulating the ORR activities of Fe-N-C materials.
Collapse
Affiliation(s)
- Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena 91125, California, United States
| | - Jianjun Su
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Pei Xiong
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hong Kong 999077, P. R. China
| | - Yun Song
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Libei Huang
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
- Division
of Science, Engineering and Health Study, School of Professional Education
and Executive Development (PolyU SPEED), The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yong Liu
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Geng Li
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Qiang Zhang
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Yinger Xin
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Molly Meng-Jung Li
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hong Kong 999077, P. R. China
| | - Ryan Tsz Kin Kwok
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of
Science and Engineering, Shenzhen Institute of Aggregate Science and
Technology, The Chinese University of Hong
Kong, Shenzhen 518172, Guangdong, China
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena 91125, California, United States
| | - Ruquan Ye
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
- City University
of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
6
|
Ao X, Wang H, Zhang X, Wang C. Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Acidic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2844-2862. [PMID: 39754738 DOI: 10.1021/acsami.4c16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field. This review offers a comprehensive summary of the latest developments in atomically dispersed M-N-C catalysts for ORR in acidic environments along with their applications in PEMFCs. The ORR mechanisms, PEMFC configuration, and operational principles are presented first, followed by an in-depth discussion of strategies to improve the activity and stability of the PEMFC using atomically dispersed M-N-C catalysts at the cathode. Lastly, this review highlights the unresolved challenges and proposes future research pathways for advancing high-performance atomically dispersed M-N-C catalysts and PEMFCs.
Collapse
Affiliation(s)
- Xiang Ao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Haoran Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
7
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
8
|
Wu J, Ke Z, Xu M, Xu Q, Zhang L, Zhou Y, Hu G. Facilitating charge transfer via a Semi-Coherent Fe(PO 3) 2-Co 2P 2O 7 heterointerface for highly efficient Zn-Air batteries. J Colloid Interface Sci 2025; 677:178-188. [PMID: 39089126 DOI: 10.1016/j.jcis.2024.07.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Developing reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for achieving high-performance rechargeable Zn-air batteries (ZABs). This study introduced an nitrogen-doped carbon confined with a semi-coherent Fe(PO3)2-Co2P2O7 heterojunction for bifunctional oxygen electrocatalysis. This nanocomposite yielded an ORR half-wave potential of 0.908 V and an OER overpotential of 291 mV at 10 mA/cm2. ZABs incorporating this catalyst yielded impressive performance, including a peak power density of 203 mW/cm2, a specific capacity of 737 mAh/gZn, and promoted stability. Both experimental and theoretical simulations demonstrated that the unique electric field between Fe(PO3)2 and Co2P2O7 promoted efficient charge transport across the heterointerface. This interaction likely modulated the d-band center of the heterojunction, expedite the desorption of oxygen intermediates, thus improving oxygen catalysis and, consequently, ZAB performance. This work illustrates a significant design principle for creating efficient bifunctional catalysts in energy conversion technologies.
Collapse
Affiliation(s)
- Jianwei Wu
- School of Chemistry and Material Engineering, Anhui Engineering Research Center for Photoelectrocatalytic Electrode Materials, Huainan Normal University, Huainan, Anhui 232031, PR China
| | - Zhifan Ke
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Mai Xu
- School of Chemistry and Material Engineering, Anhui Engineering Research Center for Photoelectrocatalytic Electrode Materials, Huainan Normal University, Huainan, Anhui 232031, PR China.
| | - Qiaoling Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, PR China.
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316004, PR China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, PR China.
| |
Collapse
|
9
|
Sun Q, Yue X, Yu L, Li FZ, Zheng Y, Liu MT, Peng JZ, Hu X, Chen HM, Li L, Gu J. Well-Defined Co 2 Dual-Atom Catalyst Breaks Scaling Relations of Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:35295-35304. [PMID: 39660442 DOI: 10.1021/jacs.4c12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The 4-electron oxygen reduction reaction (ORR) under alkaline conditions is central to the development of non-noble metal-based hydrogen fuel cell technologies. However, the kinetics of ORR are constrained by scaling relations, where the adsorption free energy of *OOH is intrinsically linked to that of *OH with a nearly constant difference larger than the optimal value. In this study, a well-defined binuclear Co2 complex was synthesized and adsorbed onto carbon black, serving as a model dual-atom catalyst. This catalyst achieved a record half-wave potential of 0.972 V versus the reversible hydrogen electrode in an alkaline electrolyte. Density functional theory simulations and in situ infrared spectroscopy revealed that the dual-atom site stabilizes the *OOH intermediate through bidentate coordination, thereby reducing the free energy gap between *OOH and *OH. By altering the adsorption configuration of *OOH on the dual-atom site, the scaling relations are effectively disrupted, leading to a significant enhancement in ORR activity.
Collapse
Affiliation(s)
- Qidi Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Petroleum Engineering and Technology Research Institute, Sinopec Shengli Oilfield, Dongying 257001, China
| | - Xian Yue
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Linke Yu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Zheng
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Meng-Ting Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Zhao Peng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Gu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Chen J, Zhou T, He C, Luo Z, Shi C, Zhang L, Zhang Q, He C, Ren X. p-Block metal atom-induced spin state transition of Fe-N-C catalysts for efficient oxygen reduction. NANOSCALE 2024; 16:21515-21522. [PMID: 39485106 DOI: 10.1039/d4nr03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A deep understanding of the role of spin configurations of Fe-N-C catalysts in the adsorption and desorption of oxygen intermediates during ORRs is critical for the development of new catalysts for the ORR. Herein, we successfully implanted p-block metal single sites (SnN4, SbN4) into the Fe-N-C system to vary the spin states of Fe species and investigated the ORR performance of active metal centers with varying effective magnetic moments. Through a combination of zero-field cooling (ZFC) temperature-dependent magnetic susceptibility measurements and DFT calculations, we successfully established correlations between the spin state and ORR activity. Magnetic analysis reveals that the p-block metal catalytic sites can effectively induce a low-to-high (or medium) spin state transition of Fe centers. Consequently, the 3d orbital electrons in Fe,M-N-C catalysts penetrate the antibonding π-orbitals of oxygen more easily, thus optimizing the adsorption/desorption of key oxygen intermediates on Fe-N-C catalysts. As a result, the optimized Fe,M-N-C catalyst exhibits a half-wave potential of 0.97 V in a 0.1 M KOH electrolyte, as well as higher durability than conventional Pt/C catalysts. Moreover, the Fe,M-N-C catalysts show encouraging performance in a rechargeable Zn-air battery with high power density and long-term cyclability, indicating the practical applicability of these Fe,M-N-C catalysts.
Collapse
Affiliation(s)
- Jiana Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Tingyi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Changjie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuan Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
11
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
12
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
13
|
Li Y, Huang A, Zhou L, Li B, Zheng M, Zhuang Z, Chen C, Chen C, Kang F, Lv R. Main-group element-boosted oxygen electrocatalysis of Cu-N-C sites for zinc-air battery with cycling over 5000 h. Nat Commun 2024; 15:8365. [PMID: 39333097 PMCID: PMC11436649 DOI: 10.1038/s41467-024-52494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Developing highly active and durable air cathode catalysts is crucial yet challenging for rechargeable zinc-air batteries. Herein, a size-adjustable, flexible, and self-standing carbon membrane catalyst encapsulating adjacent Cu/Na dual-atom sites is prepared using a solution blow spinning technique combined with a pyrolysis strategy. The intrinsic activity of the Cu-N4 site is boosted by the neighboring Na-containing functional group, which enhances O2 adsorption and optimizes the rate-determining step of O2 activation (*O2 → *OOH) during the oxygen reduction reaction process. Meanwhile, the Cu-N4 sites are encapsulated within carbon nanofibers and anchored by the carbon matrix to form a C2-Cu-N4 configuration, thereby reinforcing the stability of the Cu centers. Moreover, the introduction of Na-containing functional groups on the carbon atoms significantly reduces the positive charge on their outer shell C atoms, rendering the carbon skeletons less susceptible to corrosion by oxygen species and further preventing the dissolution of Cu centers. Under these multi-type regulations, the zinc-air battery with Cu/Na-carbon membrane catalyst as the air cathode demonstrates long-term discharge/charge cycle stability of over 5000 h. This considerable stability improvement represents a critical step towards developing Cu-N4 active sites modified with the neighboring main-group metal-containing functional groups to overcome the durability barriers of zinc-air batteries for future practical applications.
Collapse
Affiliation(s)
- Yifan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Aijian Huang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lingxi Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Bohan Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Muyun Zheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
| | - Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feiyu Kang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ruitao Lv
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Zhang W, Zhang S, Guo P, Chen H, Zhou Y, Yu F. Efficient and durable oxygen reduction in alkaline media by doping heteroatomic boron into Fe SA-NC catalyst. J Colloid Interface Sci 2024; 669:896-901. [PMID: 38749228 DOI: 10.1016/j.jcis.2024.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/27/2024]
Abstract
Despite extensive research has been conducted on atomic dispersion catalysts for various reactions, altering the electronic structure of the central metal to enhance electrochemical reactivity remains a challenging task. Herein, the electrochemical reactivity was considerably enhanced by introducing heteroatomic B to adjust the d-band of single Fe center. In specific, the obtained FeSA-BNC catalyst demonstrated an outstanding ORR performance (E1/2 = 0.87 V) and exhibited greater long-term durability in alkaline media compared to Pt/C. The performance of FeSA-BNC in Zn-air battery was also higher than that of Pt/C. According to theoretical calculations, a downward shift in the d-band center of Fe was induced by introducing B, thereby improving the desorption of intermediates and facilitating the oxygen reduction reaction (ORR).
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Shenghu Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Peng Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Huilin Chen
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yuzhuo Zhou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
15
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
16
|
Qiu Y, Wu Y, Wei X, Luo X, Jiang W, Zheng L, Gu W, Zhu C, Yamauchi Y. Improvement in ORR Durability of Fe Single-Atom Carbon Catalysts Hybridized with CeO 2 Nanozyme. NANO LETTERS 2024; 24:9034-9041. [PMID: 38990087 DOI: 10.1021/acs.nanolett.4c02178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
FeNC catalysts are considered one of the most promising alternatives to platinum group metals for the oxygen reduction reaction (ORR). Despite the extensive research on improving ORR activity, the undesirable durability of FeNC is still a critical issue for its practical application. Herein, inspired by the antioxidant mechanism of natural enzymes, CeO2 nanozymes featuring catalase-like and superoxide dismutase-like activities were coupled with FeNC to mitigate the attack of reactive oxygen species (ROS) for improving durability. Benefiting from the multienzyme-like activities of CeO2, ROS generated from FeNC is instantaneously eliminated to alleviate the corrosion of carbon and demetallization of metal sites. Consequently, FeNC/CeO2 exhibits better ORR durability with a decay of only 5 mV compared to FeNC (18 mV) in neutral electrolyte after 10k cycles. The FeNC/CeO2-based zinc-air battery also shows minimal voltage decay over 140 h in galvanostatic discharge-charge cycling tests, outperforming FeNC and commercial Pt/C.
Collapse
Affiliation(s)
- Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Xiaoqian Wei
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku, Tokyo, 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Xin Luo
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenxuan Jiang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| |
Collapse
|
17
|
Tan X, Zhu H, He C, Zhuang Z, Sun K, Zhang C, Chen C. Customizing catalyst surface/interface structures for electrochemical CO 2 reduction. Chem Sci 2024; 15:4292-4312. [PMID: 38516078 PMCID: PMC10952066 DOI: 10.1039/d3sc06990g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising route to converting CO2 into value-added chemicals and to neutralizing the greenhouse gas emission. For the industrial application of CO2RR, high-performance electrocatalysts featuring high activities and selectivities are essential. It has been demonstrated that customizing the catalyst surface/interface structures allows for high-precision control over the microenvironment for catalysis as well as the adsorption/desorption behaviors of key reaction intermediates in CO2RR, thereby elevating the activity, selectivity and stability of the electrocatalysts. In this paper, we review the progress in customizing the surface/interface structures for CO2RR electrocatalysts (including atomic-site catalysts, metal catalysts, and metal/oxide catalysts). From the perspectives of coordination engineering, atomic interface design, surface modification, and hetero-interface construction, we delineate the resulting specific alterations in surface/interface structures, and their effect on the CO2RR process. At the end of this review, we present a brief discussion and outlook on the current challenges and future directions for achieving high-efficiency CO2RR via surface/interface engineering.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Haojie Zhu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Chang He
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zewen Zhuang
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Kaian Sun
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Wang Y, Paidi VK, Wang W, Wang Y, Jia G, Yan T, Cui X, Cai S, Zhao J, Lee KS, Lee LYS, Wong KY. Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O 2 activation. Nat Commun 2024; 15:2239. [PMID: 38472201 DOI: 10.1038/s41467-024-46528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe-Cu dual-atomic sites, vertically stacked Fe-Cu geometry in FePc@2D-Cu-N-C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu-N-C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug-drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Vinod K Paidi
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38043, Cedex 9, France
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Guangri Jia
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Tingyu Yan
- Key Laboratory of Photonic and Electronic Bandgap Materials of MOE, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials of MOE, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
19
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
20
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|