1
|
Miao J, Chen C, Cao L, Al Nuaimi R, Li Z, Huang KW, Lai Z. Harnessing Lithium-Mediated Green Ammonia Synthesis with Water Electrolysis Boosted by Membrane Electrolyzer with Polyoxometalate Proton Shuttles. Angew Chem Int Ed Engl 2025:e202503465. [PMID: 40289915 DOI: 10.1002/anie.202503465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
Integrating water electrolysis (WE) with lithium-mediated nitrogen reduction (Li-NRR) offers a sustainable route for green ammonia production by directly utilizing protons from water oxidation, eliminating reliance on grey or blue hydrogen. Here, polyoxometalates (POMs) function as electron-coupled proton buffers (ECPBs) to seamlessly link WE with Li-NRR in a three-compartment flow reactor comprising an aqueous anode, an organic cathode, and a gas feed chamber. POMs serve as proton shuttles while suppressing the competing hydrogen evolution reaction (HER), facilitating efficient ammonia synthesis. The addition of polymethyl methacrylate (PMMA) enhances catholyte hydrophobicity, mitigating water contamination. By optimizing ECPB concentration, a dynamic balance is achieved between lithium nitride intermediates (LiNxHy) formation and consumption, yielding ammonia at 573.7 ± 5.2 µg h⁻¹ cm⁻2 with a Faradaic efficiency of 54.2%. This design advances flow reactor technology by uniquely utilizing water oxidation as a direct proton source, bypassing conventional hydrogen oxidation methods. The use of POMs as proton shuttles establishes a new benchmark for green ammonia production, reinforcing its potential in sustainable chemistry.
Collapse
Affiliation(s)
- Jun Miao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cailing Chen
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Li Cao
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Reham Al Nuaimi
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhen Li
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kuo-Wei Huang
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zhiping Lai
- Center of Excellence for Renewable Energy and Storage Technologies, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
3
|
Yun H, Lim C, Kwon M, Lee D, Yun Y, Seo D, Yong K. Localized High-Concentration Electrolyte in Li-Mediated Nitrogen Reduction for Ammonia Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408280. [PMID: 39434486 PMCID: PMC11619219 DOI: 10.1002/adma.202408280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Indexed: 10/23/2024]
Abstract
The lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising green alternative to the Haber-Bosch process for ammonia synthesis. The solid electrolyte interphase (SEI) is crucial for high efficiency and stability, as it regulates reactant diffusion and suppresses side reactions. The SEI properties are greatly influenced by the Li+ ion solvation structure, which is controllable through electrolyte engineering. Although anion-derived SEI enhances selectivity and stability, it has typically been engineered using high-concentration electrolytes (HCEs), which face mass transfer, viscosity, and cost issues. In this study, a localized high-concentration electrolyte (LHCE) in the Li-NRR is first introduced, enabling the formation of anion-derived SEI in a low-concentration electrolyte (LCE) by enhancing the Li-anion coordination using an antisolvent. Among various antisolvents, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) achieves the highest ammonia Faradaic efficiency (73.6 ± 2.5%), more than double that of the LCE (34.3 ± 2.8%) and exceeding the HCE (56.0 ± 2.8%). Systematic calculations and experimental analyses show that the LHCE exhibits anion-rich solvation structures and forms thin, inorganic SEI. Moreover, the LHCE has advantages of low viscosity and high N2 solubility, which facilitate mass transport. This study suggests the application of LHCE as an effective electrolyte engineering strategy to enhance the Li-NRR efficiency.
Collapse
Affiliation(s)
- Hyeju Yun
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chaeeun Lim
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Minjun Kwon
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Dongmin Lee
- Nanocatalysis and Surface Science LaboratoryDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673Republic of Korea
| | - Yongju Yun
- Nanocatalysis and Surface Science LaboratoryDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673Republic of Korea
| | - Dong‐Hwa Seo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials (SCHEMA)Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- Research Center for Carbon‐zero Green Ammonia CyclingPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
4
|
Yang S, Chu J, Park J, Kim H, Shin B. Enhancement of Lithium-Mediated Nitrogen Reduction by Modifying Center Atom of Tetraalkyl-Type Ionic Liquids. Angew Chem Int Ed Engl 2024:e202411909. [PMID: 39183595 DOI: 10.1002/anie.202411909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
The lithium-mediated nitrogen reduction reaction (Li-NRR) offers a viable alternative to the Haber-Bosch process for ammonia production. However, ethanol, a common proton carrier in Li-NRR, exhibits electrochemical instability, leading to oxidation at the anode or byproduct formation at the cathode. This study replaces alcoholic proton carriers with ionic liquids (ILs), specifically tetrabutylphosphonium chloride (TBPCl) and tetrabutylammonium chloride (TBACl), to examine how the electronegativity differences between the central atom and adjacent carbon of the cation affect catalytic performance. The results show that switching the central atom in tetraalkyl-type ILs markedly enhances performance, specifically resulting in a 1.45-fold increase in Faradaic efficiency (FE) with the transition from phosphonium to ammonium cation of ILs. Additionally, optimal IL concentrations in the electrolyte are identified to maximize ammonia yield. TBACl, in particular, demonstrates enhanced ammonia production and operational stability, achieving an ammonia yield rate of 13.60 nmol/cm2/s, an FE of 39.5 %, and operational stability for over 12 h under conditions of 10 mA/cm2 and 10 atm. This research underscores the potential of precise IL modifications for more efficient and sustainable Li-NRR.
Collapse
Affiliation(s)
- Sungbin Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwoo Chu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihye Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byungha Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Algethami JS, Altholami RH, Harraz FA, Rahman MM. Efficient nitrite determination by electrochemical approach in liquid phase with ultrasonically prepared gold-nanoparticle-conjugated conducting polymer nanocomposites. Front Chem 2024; 12:1358353. [PMID: 39165336 PMCID: PMC11333211 DOI: 10.3389/fchem.2024.1358353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/22/2024] Open
Abstract
An electrochemical nitrite sensor probe is introduced herein using a modified flat glassy carbon electrode (GCE) and SrTiO3 material doped with spherical-shaped gold nanoparticles (Au-NPs) and polypyrrole carbon (PPyC) at a pH of 7.0 in a phosphate buffer solution. The nanocomposites (NCs) containing Au-NPs, PPyC, and SrTiO3 were synthesized by ultrasonication, and their properties were thoroughly characterized through structural, elemental, optical, and morphological analyses with various conventional spectroscopic methods, such as field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The peak currents due to nitrite oxidation were characterized in detail and analyzed using conventional cyclic voltammetry (CV) as well as differential pulse voltammetry (DPV) under ambient conditions. The sensor response increased significantly from 0.15 to 1.5 mM of nitrite ions, and the sensor was fabricated by coating a conducting agent (PEDOT:PSS) on the GCE to obtain the Au-NPs/PPyC/SrTiO3 NCs/PEDOT:PSS/GCE probe. The sensor's sensitivity was determined as 0.5 μA/μM∙cm2 from the ratio of the slope of the linear detection range by considering the active surface area (0.0316 cm2) of the flat GCE. In addition, the limit of detection was determined as 20.00 ± 1.00 µM, which was found to be satisfactory. The sensor's stability, pH optimization, and reliability were also evaluated in these analyses. Overall, the sensor results were found to be satisfactory. Real environmental samples were then analyzed to evaluate the sensor's reliability through DPV, and the results showed that the proposed novel electrochemical sensor holds great promise for mitigating water contamination in the real samples with the lab-made Au-NPs/PPyC/SrTiO3 NC. Thus, this study provides valuable insights for improving sensors for broad environmental monitoring applications using the electrochemical approach.
Collapse
Affiliation(s)
- M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Faculty of Engineering and Technology, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jari S. Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Raed H. Altholami
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al Dawasir, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Ma X, Liu Z, Sun H, Liang Y, Zhou H, Sun H. Cu(N 2)-Li Battery for Ammonia Synthesis. J Phys Chem Lett 2024; 15:6435-6442. [PMID: 38865163 DOI: 10.1021/acs.jpclett.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The cathodic mechanism of Li-N2 batteries is similar to Li-mediated N2 reduction (LiNR). Herein, the Li-N2, LiNR, and Cu-Li battery were amalgamated to a milliliter-scale Cu(N2)-Li system. The utilization of a lithium anode with lithium oxidation reaction (LiOR), ensures an uninterrupted supply of lithium ions to active N2. LiOR not only enhances electrolyte stability but also reduces voltage by stripping Li ions, in contrast to the inert platinum anode, commonly employed in LiNR. Notably, an unusual observation of ammonia accumulation within the anode chamber elucidates the presence and role of reaction intermediates. The charging process aimed at lithium regeneration faces high polarization, and a cycling procedure involving low-current charging was proposed to improve cycling. This study integrates insights from three distinct research directions to leverage their respective advantages and scientific insights. The Li-N2 battery emerges as a highly advantageous strategy for ammonia synthesis due to the progressiveness of lithium anode.
Collapse
Affiliation(s)
- Xingyu Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Zhiyang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Houkang Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Yongxiang Liang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| | - Hui Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum-Beijing, Fuxue Road No. 18, Changping District, Beijing 102249, P.R. China
| |
Collapse
|
7
|
Chaudhary K, Zulfiqar S, ALOthman ZA, Shakir I, Warsi MF, Cochran EW. Three-dimensional bimodal pore-rich G/MXene sponge amalgamated with vanadium diselenide nanosheets as a high-performance electrode for electrochemical water-oxidation/reduction reactions. Dalton Trans 2024; 53:8177-8190. [PMID: 38683625 DOI: 10.1039/d4dt00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Exploring new strategies to design non-precious and efficient electrocatalysts can provide a solution for sluggish electrocatalytic kinetics and sustainable hydrogen energy. Transition metal selenides are potential contenders for bifunctional electrocatalysis owing to their unique layered structure, low band gap, and high intrinsic activities. However, insufficient access to active sites, lethargic water dissociation, and structural degradation of active materials during electrochemical reactions limit their activities, especially in alkaline media. In this article, we report a useful strategy to assemble vanadium diselenide (VSe2) into a 3D MXene/rGO-based sponge-like architecture (VSe2@G/MXe) using hydrothermal and freeze-drying approaches. The 3D hierarchical meso/macro-pore rich sponge-like morphology not only prevents aggregation of VSe2 nanosheets but also offers a kinetics-favorable framework and high robustness to the electrocatalyst. Synergistic coupling of VSe2 and a MXene/rGO matrix yields a heterostructure with a large specific surface area, high conductivity, and multi-dimensional anisotropic pore channels for uninterrupted mass transport and gas diffusion. Consequently, VSe2@G/MXe presented superior electrochemical activity for both the HER and OER compared to its counterparts (VSe2 and VSe2@G), in alkaline media. The overpotentials required to reach a cathodic and anodic current density of 10 mA cm-2 were 153 mV (Tafel slope = 84 mV dec-1) and 241 mV (Tafel slope = 87 mV dec-1), respectively. The Rct values at the open circuit voltage were as low as 9.1 Ω and 1.41 Ω for the HER and OER activity, respectively. Importantly, VSe2@G/MXe withstands a steady current output for a long 24 h operating time. Hence, this work presents a rational design for 3D microstructures with optimum characteristics for efficient bifunctional alkaline water-splitting.
Collapse
Affiliation(s)
- Khadija Chaudhary
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, Ostrava 701 03, Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Imran Shakir
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Eric W Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Sweeney Hall, 618 Bissell Road, Ames, Iowa 50011, USA.
| |
Collapse
|
8
|
Jiang SQ, Xu C, Li XG, Deng CZ, Yan S, Zhu XN. Mixed crushing and competitive leaching of all electrode material components and metal collector fluid in the spent lithium battery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120818. [PMID: 38599086 DOI: 10.1016/j.jenvman.2024.120818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Hydrometallurgy is a primary method for recovering cathode electrode materials from spent lithium-ion batteries (LIBs). Most of the current research materials are pure cathode electrode materials obtained through manual disassembly. However, the spent LIBs are typically broken as a whole during the actual industrial recycling which makes the electrode materials combined with the collector fluid. Therefore, the competitive leaching between metal collector fluid and electrode material was examined. The pyrolysis characteristics of the electrode materials were analyzed to determine the pyrolysis temperature. The electrode sheet was pyrolyzed and then crushed for competitive leaching. The effect of pyrolysis was analyzed by XPS. The competitive leaching behavior was studied based on leaching agent concentration, leaching time and leaching temperature. The composition and morphology of the residue were determined to prove the competitive leaching results by XRD-SEM. TG results showed that 500 °C was the suitable pyrolysis temperature. XPS analysis demonstrated that pyrolysis can completely remove PVDF. Li and Co were preferentially leached during the competitive leaching while the leaching rates were 90.10% and 93.40% with 50 min leaching at 70 °C. The Al and Cu had weak competitive leachability and the leaching rate was 29.10% and 0.00%. XRD-SEM analysis showed that Li and Co can be fully leached with residual Al and Cu remaining. The results showed that the mixed leaching of electrode materials is feasible based on its excellent selective leaching properties.
Collapse
Affiliation(s)
- Si-Qi Jiang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Chang Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Xi-Guang Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Chao-Zhu Deng
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Shuai Yan
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City, Zhejiang Province, 315211, China
| | - Xiang-Nan Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| |
Collapse
|
9
|
Shahzad U, Saeed M, Marwani HM, Al-Humaidi JY, Rehman SU, Althomali RH, Awual MR, Rahman MM. Recent Progress on Potentiometric Sensor Applications Based on Nanoscale Metal Oxides: A Comprehensive Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38593048 DOI: 10.1080/10408347.2024.2337876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemical sensors have been the subject of much research and development as of late, with several publications detailing new designs boasting enhanced performance metrics. That is, without a doubt, because such sensors stand out from other analytical tools thanks to their excellent analytical characteristics, low cost, and ease of use. Their progress has shown a trend toward seeking out novel useful nano structure materials. A variety of nanostructure metal oxides have been utilized in the creation of potentiometric sensors, which are the subject of this article. For screen-printed pH sensors, metal oxides have been utilized as sensing layers due to their mixed ion-electron conductivity and as paste-ion-selective electrode components and in solid-contact electrodes. Further significant uses include solid-contact layers. All the metal oxide uses mentioned are within the purview of this article. Nanoscale metal oxides have several potential uses in the potentiometry method, and this paper summarizes such uses, including hybrid materials and single-component layers. Potentiometric sensors with outstanding analytical properties can be manufactured entirely from metal oxides. These novel sensors outperform the more traditional, conventional electrodes in terms of useful characteristics. In this review, we looked at the potentiometric analytical properties of different building solutions with various nanoscale metal oxides.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shujah Ur Rehman
- Institute of Energy & Environmental Engineering, University of the Punjab, Lahore, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, Saudi Arabia
| | - Md Rabiul Awual
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, Australia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|