1
|
Liu B, Chen X, Yang Y, Alizadeh Kiapi MR, Menon D, Zhao Q, Yuan G, Keenan LL, Fairen-Jimenez D, Xia Q. Engineering Bodipy-Based Metal-Organic Frameworks for Efficient Full-Spectrum Photocatalysis in Amide Synthesis. Angew Chem Int Ed Engl 2025:e202505405. [PMID: 40192658 DOI: 10.1002/anie.202505405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Developing photocatalysts that can efficiently utilize the full solar spectrum is a crucial step toward transforming sustainable energy solutions. Due to their light absorption limitations, most photo-responsive metal-organic frameworks (MOFs) are constrained to the ultraviolet (UV) and blue light regions. Expanding their absorption to encompass the entire solar spectrum would unlock their full potential, greatly enhancing efficiency and applicability. Here, we report the design and synthesis of a series of highly stable boron-dipyrromethene (bodipy)-based MOFs (BMOFs) by reacting dicarboxyl-functionalized bodipy ligands with Zr-oxo clusters. Leveraging the acidity of the methyl groups on the bodipy backbone, we expanded the conjugation system through a solid-state condensation reaction with various aldehydes, achieving full-color absorption, thereby extending the band edge into the near-infrared (NIR) and infrared (IR) regions. These BMOFs demonstrated exceptional reactivity and recyclability in heterogeneous photocatalytic activities, including C─H bond activation of saturated aza-heterocycles and C─N bond cleavage of N,N-dimethylanilines to produce amides under visible light. Our findings highlight the transformative potential of BMOFs in photocatalysis, marking a significant leap forward in the design of advanced photocatalytic materials with tunable properties.
Collapse
Affiliation(s)
- Binhui Liu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xu Chen
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Yuhao Yang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Mohammad Reza Alizadeh Kiapi
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dhruv Menon
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qianyi Zhao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, China
| | - Luke L Keenan
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
| | - David Fairen-Jimenez
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Qingchun Xia
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
2
|
Xie X, Zeng J, Xu MY, Han XH, Fan B, Li X, Wei DD, Han XJ, Huang S. A Strategy to Design Non-Symmetric Compound by Modifying the End-Group Functional Atoms for Photothermal and Photodynamic Therapy of Tumor. Int J Nanomedicine 2025; 20:3877-3890. [PMID: 40181830 PMCID: PMC11967356 DOI: 10.2147/ijn.s509789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background The exploration of non-symmetric compound for combined photothermal therapy (PTT) and photodynamic therapy (PDT) in tumor treatment remains largely unexplored. Methods Through a molecular design strategy, a series of compound (Y-4Cl, Y-2Br, and Y-2Cl-Br) with fused - ring benzothiazole - pyrrole - thiophene - indenone constructure were synthesized to explore its phototherapy properties, to investigate their phototherapeutic properties, respectively. The non-symmetric compound Y-2Cl-Br was further formulated into nanoparticles (NPs) for detailed evaluation. Results The non-symmetric organic compound Y-2Cl-Br demonstrated a high molar extinction coefficient (ε) of 3.0 × 105 M⁻¹ cm⁻¹. Y-2Cl-Br NPs exhibited exceptional photothermal performance, including a temperature increase (ΔT) of 34 °C and a photothermal conversion efficiency (PCE) of 61.2%. Additionally, Y-2Cl-Br NPs displayed superior photostability, a reactive oxygen species (ROS) generation efficiency 9.8-fold higher than indocyanine green (ICG), remarkable fluorescence imaging (FLI) capabilities, and excellent biocompatibility. Conclusion Both in vitro and in vivo studies confirmed that Y-2Cl-Br NPs are highly effective in PTT and PDT for tumor treatment, with minimal adverse effects. This work provides valuable insights into the design and application of non-symmetric organic compound photosensitizers (PSs) in cancer therapy.
Collapse
Affiliation(s)
- Xin Xie
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jie Zeng
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Miao-Yan Xu
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xianglong Li
- Jiangxi Key Laboratory of Organic Chemistry, Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, 330013, People’s Republic of China
| | - Duo-Duo Wei
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Shaorong Huang
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
3
|
Sánchez-Naya R, Beuerle F. A BODIPY-Containing Covalent Organic Framework as a Highly Porous Photosensitizer for Environmental Remediation and Pollutants Adsorption. Angew Chem Int Ed Engl 2025; 64:e202423676. [PMID: 39786969 DOI: 10.1002/anie.202423676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
The direct incorporation of borondipyrromethene (BODIPY) subunits into the structural backbone of covalent organic frameworks (COFs) gives facile access to porous photosensitizers but is still a challenging task. Here, we introduce β-ketoenamine-linked BDP-TFP-COF, which crystallizes in AA-stacking mode with hcb topology. A comprehensive characterization reveals high crystallinity and enhanced stability in a variety of solvents, excellent mesoporosity (SABET=1042 m2 g-1), broad light absorption in the visible region, and red emission upon the exfoliation of few-layer COF nanosheets. The versatility of multifunctional BODIPY-COFs is highlighted in various applications. Pollutants Bisphenol A (BPA, qmax=426 mg g-1) and Methylene Blue (MB, qmax=96 mg g-1) have been efficiently removed from H2O. Fluorescence quenching or enhancement of exfoliated BDP-TFP-COF nanosheets have been utilized for dual-mode sensing of MB or NEt3, respectively. Ultimately, the photosensitizing effect of the BODIPY units is retained in the COF. Thus, BPD-TFP-COF was established as a metal-free triplet photosensitizer, which efficiently oxidized a mustard gas simulant under visible light irradiation.
Collapse
Affiliation(s)
- Roberto Sánchez-Naya
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Florian Beuerle
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Eberhard Karls Universität Tübingen, Institut für Organische Chemie, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Song YH, Gu YJ, Lei Z, Li NK, Zhang YM, Yu Q, Liu Y. Fluorinated Cyclodextrin Supramolecular Nanoassembly Enables Oxygen-Enriched and Targeted Photodynamic Therapy. NANO LETTERS 2025; 25:4476-4484. [PMID: 40056123 DOI: 10.1021/acs.nanolett.5c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Photodynamic therapy has become a promising treatment modality against many diseases, but its dilemma-the intrinsic hypoxia of solid tumors and the high oxygen dependence for generation of cytotoxic species-has seriously hampered its practical translation. Herein a binary supramolecular nanocarrier, which is composed of fluorocarbon chain-appended β-cyclodextrin as an oxygen carrier and adamantane-grafted hyaluronic acid as a cell-targeting agent, can deliver different types of photosensitizers by multiple noncovalent interactions. Superior to the alkylated counterpart, the fluorinated amphiphilic β-cyclodextrin can spontaneously form a nanoparticulate assembly and exhibit high oxygen-enrichment performance. The obtained nanoassembly can alleviate hypoxia in the tumor microenvironment and enhance the efficacy of photodynamic therapy. Remarkable phototoxicity and minimal dark toxicity are observed in the cancer cells, and meanwhile, preferential accumulation and significant cancer ablation are realized in the tumor-bearing mice. To be envisioned, this supramolecular assembly capable of efficiently carrying oxygen can be explored as a universal platform for precise phototherapeutics.
Collapse
Affiliation(s)
- Ya-Hui Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Yi-Jun Gu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuo Lei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Nan-Kun Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Chen B, Wang Y, Mu M, Li H, Feng C, Xiao S, Fan R, Zou B, Guo G. Boosting Peroxidase-Mimetic Activity of FeMn-NC e Dual-Atom Radiosensitizing Nanozymes for Augmented Radiodynamic Immunotherapy. ACS NANO 2025; 19:10147-10161. [PMID: 40053444 DOI: 10.1021/acsnano.4c17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Dual-atom nanozymes (DAzymes) have garnered considerable attention as catalysts for reactive oxygen species (ROS)-based therapies, effectively leveraging ROS generation within the tumor microenvironment (TME). Herein, we introduce the FeMn-NCe DAzymes, which are meticulously engineered for enhanced peroxidase (POD)-mimetic activity and potent radiosensitization to advance radioimmunotherapy. Density functional theory (DFT) calculations reveal that FeMn-NCe DAzymes lower the energy barrier and increase the substrate affinity, enabling highly efficient catalytic performance. Within the TME, these DAzymes efficiently convert overexpressed hydrogen peroxide (H2O2) into hydroxyl radicals (•OH), potentially activating the cGAS-STING immune pathway. This POD-mimetic catalysis is further accelerated under X-ray irradiation, significantly enhancing radiosensitization. Additionally, a uniform coating of ultrasmall gold nanoparticles on FeMn-NCe significantly enhances X-ray absorption within cancer cells. The incorporation of the STING agonist diABZI onto the DAzymes induces long-term antitumor immunity, reprograms the immunosuppressive TME, and effectively suppresses tumor growth and metastasis following a single low-dose X-ray treatment. This work highlights a valuable strategy for designing DAzymes to advance radiodynamic immunotherapy.
Collapse
Affiliation(s)
- Bo Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinggang Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Mu
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenqian Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Susu Xiao
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rangrang Fan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology and Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Song B, Song W, Liang Y, Liu Y, Li B, Li H, Zhang L, Ma Y, Ye R, Tang BZ, Zhao D, Zhou Y, Liu B. Direct Synthesis of Topology-Controlled BODIPY and CO 2-Based Zirconium Metal-Organic Frameworks for Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2025; 64:e202421248. [PMID: 39742452 DOI: 10.1002/anie.202421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/03/2025]
Abstract
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO2 as a feedstock. By controlling synthetic conditions, we successfully obtained two distinct Zr-MOFs. The first, CO2-Zr6-DEPB, exhibits a face-centered cubic (fcu) topology based on a Zr6(μ3-O)4(μ3-OH)4 node, while the second, CO2-Zr12-DEPB, features a hexagonal closed packed (hcp) topology, structured around a Zr12(μ3-O)8(μ3-OH)8(μ2-OH)6 node. Both MOFs demonstrated excellent crystallinity, as verified through powder X-ray diffraction and high-resolution transmission electron microscopy analyses. These MOF catalysts displayed suitable photocatalytic redox potentials for the reduction of CO2 to CO using H2O as the electron donor in the absence of co-catalyst or toxic sacrificial reagent. Under light irradiation, CO2-Zr12-DEPB and CO2-Zr6-DEPB offered high CO yields of 16.72 and 13.91 μmol g-1 h-1, respectively, with nearly 100 % selectivity. CO2 uptake and photoelectrochemical experiments revealed key insights into the mechanisms driving the different catalytic activities of the two MOFs. These BODIPY and CO2-based, light-responsive Zr-MOFs represent a promising platform for the development of efficient photocatalysts.
Collapse
Affiliation(s)
- Bo Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuhang Liang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yong Liu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Liang Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Yanhang Ma
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yi Zhou
- Shanghai Key Laboratory of High-Resolution Electron Microscopy & School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
7
|
Zheng J, Wang X, Zi X, Zhang H, Chen H, Pensa E, Liu K, Fu J, Lin Z, Chai L, Cortés E, Liu M. Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413203. [PMID: 39792599 PMCID: PMC11884611 DOI: 10.1002/advs.202413203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF4) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose. In this work, a yolk-shell Al2O3 micro-reactor is developed to enhance the catalytic hydrolysis performance of CF4 by creating a local autothermic environment. Finite element simulations predict that the yolk-shell Al2O3 micro-reactor captures the heat released during the catalytic hydrolysis of CF4, resulting in a local autothermic environment within the yolk-shell structure that is 50 °C higher than the set temperature. The effectiveness of this local autothermic environment is experimentally confirmed by in situ Raman spectroscopy. As a result, the obtained yolk-shell Al2O3 micro-reactor achieves 100% CF4 conversion at a considerably low temperature of 580 °C for over 150 h, while hollow and solid Al2O3 structures required higher temperatures of 610 and 630 °C, respectively, to achieve the same conversion rate, demonstrating the potential of yolk-shell Al2O3 micro-reactor to significantly reduce the energy requirements for PFCs degradation and contribute to more sustainable and effective environmental remediation strategies.
Collapse
Affiliation(s)
- Jialin Zheng
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
- School of Metallurgy and EnvironmentCentral South UniversityChangshaHunan410083P. R. China
| | - Xiaojian Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
- School of Metallurgy and EnvironmentCentral South UniversityChangshaHunan410083P. R. China
| | - Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
| | - Hang Zhang
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
| | - Heping Chen
- School of Resource Environment and Safety EngineeringUniversity of South ChinaHengyangHunan421001P. R. China
| | - Evangelina Pensa
- Nanoinstitute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität München80539MünchenGermany
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
| | - Zhang Lin
- School of Metallurgy and EnvironmentCentral South UniversityChangshaHunan410083P. R. China
| | - Liyuan Chai
- School of Metallurgy and EnvironmentCentral South UniversityChangshaHunan410083P. R. China
| | - Emiliano Cortés
- Nanoinstitute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität München80539MünchenGermany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource UtilizationSchool of PhysicsCentral South UniversityChangshaHunan410083P. R. China
- School of Metallurgy and EnvironmentCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
8
|
Qin Y, Gao H, Yin Y, Li J, He X, Gao M, Sun L, Yuan Y, Tian Y, Zhou Y, Zeng Z, Zhang X, Hu R. Photo-Facilitated Nitric Oxide-Triggered Turn-on Photodynamic Therapy for Precise Antitumor Application. Adv Healthc Mater 2025; 14:e2404265. [PMID: 39777446 DOI: 10.1002/adhm.202404265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy. Four o-thiophenediamine derivatives with reaction-tunable donor/acceptor push-pull electronic effect are established, and the systematic structure and property relationship observation reveals the following features: 1) the reactivity against NO can be improved by enhancing the electron density and further facilitated upon photo-irradiation. 2) the reactivity with NO enables the improved intramolecular charge transfer process with the evoking of photosensitizing effect. 3) only o-thiophenediamine derivative with ER enrichment behavior exhibited cancer cell ablation effect compared to photosensitizers localized in lysosome and lipid droplet. Thus, the efficient inhibition of cancer cells both in vitro and in vivo is realized based on the photo-controlled PDT strategy. This work provides more insights into developing promising activatable photosensitizers for advanced therapy based on tumor microenvironment trigger.
Collapse
Affiliation(s)
- Yiliang Qin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hanyi Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
- The Seventh Affiliated Hospital, University of South China/Hunan Provincial Veterans Administration Hospital, Hunan, 421001, China
| | - Yuting Yin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Jiayi Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Xia He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Meng Gao
- Hengyang Medical School, University of South China, Hengyang, 421001, China
- The Seventh Affiliated Hospital, University of South China/Hunan Provincial Veterans Administration Hospital, Hunan, 421001, China
| | - Liying Sun
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yi Yuan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Ying Tian
- The Seventh Affiliated Hospital, University of South China/Hunan Provincial Veterans Administration Hospital, Hunan, 421001, China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiaodong Zhang
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
9
|
Zhuang J, Liu S, Li B, Li Z, Wu C, Xu D, Pan W, Li Z, Liu X, Liu B. Electron Transfer Mediator Modulates Type II Porphyrin-Based Metal-Organic Framework Photosensitizers for Type I Photodynamic Therapy. Angew Chem Int Ed Engl 2025; 64:e202420643. [PMID: 39560938 DOI: 10.1002/anie.202420643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Photodynamic therapy (PDT), a minimally invasive and effective local treatment, heavily depends on photosensitizer (PS) performance and oxygen availability. Despite the use of PS-based metal-organic frameworks (MOFs) to address the solubility and aggregation issues of PSs, the inherent hypoxic intolerance of mainstream Type II PDT remains challenging. Herein, we report an electron transfer strategy for the fabrication of hypoxia-tolerant Type I MOFs by encapsulating thymoquinone (TQ) into existing Type II MOFs. With TQ serving as an effective electron transfer mediator, it facilitates the electron transfer process from the MOF ligand PS to oxygen, establishing the Type I pathway and attenuating the original Type II pathway. Four representative porphyrin-based MOFs are synthesized to demonstrate the proposed strategy. Our findings reveal that TQ@MOF-1 nanoparticles (NPs) exhibit enhanced anticancer activity under hypoxic conditions and superior in vivo antitumor efficacy compared to parent MOF-1 NPs. This work offers an effective and universal strategy to modulate ROS generation in PS-based MOFs, endowing hypoxic tolerance with improved PDT performance against solid tumors.
Collapse
Affiliation(s)
- Jiahao Zhuang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Shitai Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhiyao Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Chongzhi Wu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Duo Xu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiaogang Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
10
|
Chen G, Li B, Li T, Lin M, Zhong H, Xie X, Zhang Q, Chen Q, Meng X, Xiao Z, Shuai X. Core-Satellite Nanoassembly Overcomes Spatial Heterogeneity of Dendric Cell Distribution in Pancreatic Tumors for Effective Chemoimmunotherapy. ACS NANO 2025; 19:4739-4753. [PMID: 39834130 DOI: 10.1021/acsnano.4c15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor. The PLAF@P/T core functions as an enhancer for intratumor delivery through size enlargement and charge conversion in response to reactive oxygen species (ROS) and low pH, which triggers polyplex release and enables ultrasound-assisted tumor-penetrating Taxol delivery. Meanwhile, the released cationic polyplexes function as nucleic nanomedicine preferentially engulfed by peripheral dendritic cells (DCs) for immune modulation. Animal studies in mouse orthotopic pancreatic tumor model demonstrated exceptional therapeutic efficacy against both primary and metastatic tumors, which underlines the potential of this heterostructural nanoplatform for overcoming the therapeutic challenges associated with the heterogeneous physical barrier hindering intratumor drug delivery in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Gengjia Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tan Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxue Xie
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaoyun Zhang
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaochun Meng
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
11
|
Melle F, Menon D, Conniot J, Ostolaza-Paraiso J, Mercado S, Oliveira J, Chen X, Mendes BB, Conde J, Fairen-Jimenez D. Rational Design of Metal-Organic Frameworks for Pancreatic Cancer Therapy: from Machine Learning Screening to In Vivo Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412757. [PMID: 39895194 DOI: 10.1002/adma.202412757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/09/2024] [Indexed: 02/04/2025]
Abstract
Despite improvements in cancer survival rates, metastatic and surgery-resistant cancers, such as pancreatic cancer, remain challenging, with poor prognoses and limited treatment options. Enhancing drug bioavailability in tumors, while minimizing off-target effects, is crucial. Metal-organic frameworks (MOFs) have emerged as promising drug delivery vehicles owing to their high loading capacity, biocompatibility, and functional tunability. However, the vast chemical diversity of MOFs complicates the rational design of biocompatible materials. This study employed machine learning and molecular simulations to identify MOFs suitable for encapsulating gemcitabine, paclitaxel, and SN-38, and identified PCN-222 as an optimal candidate. Following drug loading, MOF formulations are improved for colloidal stability and biocompatibility. In vitro studies on pancreatic cancer cell lines have shown high biocompatibility, cellular internalization, and delayed drug release. Long-term stability tests demonstrated a consistent performance over 12 months. In vivo studies in pancreatic tumor-bearing mice revealed that paclitaxel-loaded PCN-222, particularly with a hydrogel for local administration, significantly reduced metastatic spread and tumor growth compared to the free drug. These findings underscore the potential of PCN-222 as an effective drug delivery system for the treatment of hard-to-treat cancers.
Collapse
Affiliation(s)
- Francesca Melle
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dhruv Menon
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jon Ostolaza-Paraiso
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sergio Mercado
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Jhenifer Oliveira
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
12
|
Zhang S, Yang N, Sun S, Zhao H, Wang W, Nie J, Pei Z, He W, Zhang L, Cheng L, Cheng Z. Dually fluorinated unimolecular micelles for stable oxygen-carrying and enhanced photosensitive efficiency to boost photodynamic therapy against hypoxic tumors. Acta Biomater 2025; 193:406-416. [PMID: 39798639 DOI: 10.1016/j.actbio.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Tumor hypoxia is one of key challenges in deep tumor photodynamic therapy (PDT), and how to fix this issue is attracting ongoing concerns worldwide. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for deep hypoxic tumors. Dually fluorinated star copolymers with fluorinated phthalocyanines as the core are prepared through photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under irradiation with NIR LED light at room temperature, followed by assembly into unimolecular micelles. Perfluorocarbons (PFCs) are also introduced into the star polymers during the polymerization to further enhance and stabilize oxygen-carrying capacity, which is slightly affected by concentration-induced size transformation. PFCs assist unimolecular micelles with repelling mucin adsorption, which results in superior cellular uptake within 1 h and high effective accumulation rates in tumors of CT26 tumor-bearing mice within 24 h after systemic administration, and showing effective anti-tumor effects under the irradiation of NIR LED light. This work provides a new type of nano-photosensitizers for highly efficient hypoxic PDT. STATEMENT OF SIGNIFICANCE: One of the major challenges in improving the efficiency of photodynamic therapy (PDT) for deep tumors is how to address tumor hypoxia, which is receiving continued attention worldwide. However, most of the reported oxygen carriers combine with photosensitizers by physical means and the carriers have the risk of dissociating easily, which is not conducive to long-term and efficient PDT, resulting in poor therapeutic effect. This work demonstrates dually fluorinated unimolecular micelles with desirable and stable oxygen-carrying capacity, high cellular penetration, and integrative type I & II PDT for enhanced deep hypoxic tumors, overcoming the key challenges of tumor hypoxia and low photosensitizer efficiency.
Collapse
Affiliation(s)
- Shunhu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wenxuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jihu Nie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RADX), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, PR China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, PR China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou key Laboratory of Macromolecular Deign and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
13
|
Han CQ, Liu XY. Emission Library and Applications of 2,1,3-Benzothiadiazole and Its Derivative-Based Luminescent Metal-Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202416286. [PMID: 39305074 DOI: 10.1002/anie.202416286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Indexed: 11/01/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive attention due to their promising applications in chemical sensing, energy transfer, solid-state-lighting and heterogeneous catalysis. Benefiting from the virtually unlimited emissive organic linkers and the intrinsic advantages of MOFs, significant progress has been made in constructing LMOFs with specific emission behaviors and outstanding performances. Among these reported organic linkers, 2,1,3-benzothiadiazole and its derivatives, as unique building units with tunable electron-withdrawing abilities, can be used to synthesize numerous emissive linkers with a donor-bridge-acceptor-bridge-donor type structure. These linkers were utilized to coordinate with different metal nodes, forming LMOFs with diverse underlying nets and optical properties. In this Minireview, 2,1,3-benzothiadiazole and its derivative-based organic linkers and their corresponding LMOFs are summarized with which an emission library is built between the linker structures and the emission behaviors of constructed LMOFs. In particular, the preparation of LMOFs with customized emission properties ranging from deep-blue to near-infrared and sizes from dozens to hundreds of nanometers is discussed in detail. The applications of these LMOFs, including chemical sensing, energy harvesting and transfer, and catalysis, are then highlighted. Key perspectives and challenges for the future development of LMOFs are also addressed.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
14
|
Fang PH, Qu LL, Ma ZS, Han CQ, Li Z, Wang L, Zhou K, Li J, Liu XY. Full-Color Emissive Zirconium-Organic Frameworks Constructed via in Situ "One-Pot" Single-Site Modification for Tryptophan Detection and Energy Transfer. Angew Chem Int Ed Engl 2025; 64:e202414026. [PMID: 39291884 DOI: 10.1002/anie.202414026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive studies due to the unlimited species of emissive organic linkers and tunable structure of MOFs. However, the multiple-step organic synthesis is always a great challenge for the development of LMOFs. As an alternative strategy, in situ "one-pot" strategy, in which the generation of emissive organic linkers and sequential construction of LMOFs happen in one reaction condition, can avoid time-consuming pre-synthesis of organic linkers. In the present work, we demonstrate the successful utilization of in situ "one-pot" strategy to construct a series of LMOFs via the single-site modification between the reaction of aldehydes and o-phenylenediamine-based tetratopic carboxylic acid. The resultant MOFs possess csq topology with emission covering blue to near-infrared. The nanosized LMOFs exhibit excellent sensitivity and selectivity for tryptophan detection. In addition, two component-based LMOFs can also be prepared via the in situ "one-pot" strategy and used to study energy transfer. This work not only reports the construction of LMOFs with full-color emissions, which can be utilized for various applications, but also indicates that in situ "one-pot" strategy indeed is a useful and powerful method to complement the traditional MOFs construction method for preparing porous materials with tunable functionalities and properties.
Collapse
Affiliation(s)
- Pu-Hao Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zhen-Sha Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
15
|
Hu Z, Li J, Feng L, Zhu Y, Zhao R, Yu C, Xu R, Wang W, Ding H, Yang P. Coassembly of Dual-Modulated AIE-ESIPT Photosensitizers and UCNPs for Enhanced NIR-Excited Photodynamic Therapy. NANO LETTERS 2024; 24:16426-16435. [PMID: 39661654 DOI: 10.1021/acs.nanolett.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aggregation-induced emission (AIE) photosensitizers are promising for photodynamic therapy, yet their short excitation wavelengths present a limitation. In this study, we develop a series of organic photosensitizers with dual modulation capabilities based on excited-state intramolecular proton transfer (ESIPT) and AIE. Notably, we synthesize near-infrared (NIR)-excited photosensitive nanoparticles through a coassembly strategy utilizing upconversion nanoparticles (UCNPs) and amphiphilic polymers. The spectroscopic analysis and theoretical calculations elucidate the significant impact of additional or π-spacer groups on the conformational change and the energy barrier of the ESIPT process. An efficient Förster resonance energy transfer between the photosensitizer and UCNPs is achieved through the coassembly strategy. Both in vitro and in vivo experiments demonstrate the antitumor efficacy of these nanoparticles under NIR excitation. This work not only introduces a novel approach for simultaneously modulating AIE properties and the ESIPT process but also provides a robust solution for overcoming the excitation wavelength limitations of many organic photosensitizers.
Collapse
Affiliation(s)
- Zhen Hu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Jialin Li
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chenghao Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Rongchen Xu
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, P. R. China
| | - Wenzhuo Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
16
|
Cao X, Feng N, Huang Q, Liu Y. Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers: From Synthesis to Cancer Therapy and Biomedical Imaging. ACS APPLIED BIO MATERIALS 2024; 7:7965-7986. [PMID: 38382060 DOI: 10.1021/acsabm.3c01300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recently, there has been significant interest in nanoscale metal-organic frameworks (NMOFs) characterized by ordered crystal structures and nanoscale coordination polymers (NCPs) featuring amorphous structures. These structures arise from the coordination interactions between inorganic metal ions or clusters and organic ligands. Their advantages, such as the ability to tailor composition and structure, efficiently encapsulate diverse therapeutic or imaging agents within porous frameworks, inherent biodegradability, and surface functionalization capability, position them as promising carriers in the biomedical fields. This review provides an overview of the synthesis and surface modification strategies employed for NMOFs and NCPs, along with their applications in cancer treatment and biological imaging. Finally, future directions and challenges associated with the utilization of NMOFs and NCPs in cancer treatment and diagnosis are also discussed.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Lee JH, Lee CG, Kim MS, Kim S, Song M, Zhang H, Yang E, Kwon YH, Jung YH, Hyeon DY, Choi YJ, Oh S, Joe DJ, Kim TS, Jeon S, Huang Y, Kwon TH, Lee KJ. Deeply Implantable, Shape-Morphing, 3D MicroLEDs for Pancreatic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411494. [PMID: 39679727 DOI: 10.1002/adma.202411494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Indexed: 12/17/2024]
Abstract
Controlled photooxidation-mediated disruption of collagens in the tumor microenvironment can reduce desmoplasia and enhance immune responsiveness. However, achieving effective light delivery to solid tumors, particularly those with dynamic volumetric changes like pancreatic ductal adenocarcinoma (PDAC), remains challenging and limits the repeated and sustained photoactivation of drugs. Here, 3D, shape-morphing, implantable photonic devices (IPDs) are introduced that enable tumor-specific and continuous light irradiation for effective metronomic photodynamic therapy (mPDT). This IPD adheres seamlessly to the surface of orthotopic PDAC tumors, mitigating issues related to mechanical mismatch, delamination, and internal lesions. In freely moving mouse models, mPDT using the IPD with close adhesion significantly reduces desmoplastic tumor volume without causing cytotoxic effects in healthy tissues. These promising in vivo results underscore the potential of an adaptable and unidirectional IPD design in precisely targeting cancerous organs, suggesting a meaningful advance in light-based therapeutic technologies.
Collapse
Affiliation(s)
- Jae Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chae Gyu Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Seo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungyeob Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eunbyeol Yang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon Hee Kwon
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Young Hoon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Yeol Hyeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoon Ji Choi
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Daniel J Joe
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- O2MEDi Incorporation, Ulsan, 44919, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Cai L, Sun T, Han F, Zhang H, Zhao J, Hu Q, Shi T, Zhou X, Cheng F, Peng C, Zhou Y, Long S, Sun W, Fan J, Du J, Peng X. Degradable and Piezoelectric Hollow ZnO Heterostructures for Sonodynamic Therapy and Pro-Death Autophagy. J Am Chem Soc 2024; 146:34188-34198. [PMID: 39582172 DOI: 10.1021/jacs.4c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Piezoelectric materials can generate charges and reactive oxygen species (ROS) under external force stimulation for ultrasound-induced sonodynamic therapy (SDT). However, their poor piezoelectricity, fast electron-hole pair recombination rate, and biological toxicity of piezoelectric materials limit the therapeutic effects of piezoelectric SDT. In this study, hollow ZnO (HZnO) nanospheres were synthesized by using a one-step method. The hollow structure facilitated the deformation of HZnO under stimulation by ultrasound mechanical force and increased the piezoelectric constant. Subsequently, black phosphorus quantum dots (BPQDs) and arginine-glycine-aspartic acid peptide (RGD)-poly(ethylene glycol) (PEG) were combined with HZnO to further enhance the piezoelectric effect by constructing heterojunctions and enable tumor-targeting ability. During treatment, HZnO-BPQDs-PEG could degrade in an acidic tumor microenvironment and release Zn2+ and PO43- ions to induce pro-death autophagy. The ROS produced by SDT also accelerated autophagy and promoted ferroptosis in cancer cells. This study demonstrates that HZnO-BPQDs-PEG has a strong piezoelectric SDT effect and can effectively induce autophagy in cancer cells, providing a new idea for the design and application of piezoelectric materials for tumor therapy.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiao Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
19
|
Tian S, Chen M. Global research progress of nanomedicine and colorectal cancer: a bibliometrics and visualization analysis. Front Oncol 2024; 14:1460201. [PMID: 39711965 PMCID: PMC11660184 DOI: 10.3389/fonc.2024.1460201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Background Surgery and chemoradiotherapy are the main clinical treatment methods for colorectal cancer (CRC), but the prognosis is poor. The emergence of nanomedicine brings bright light to the treatment of CRC. However, there has not been a comprehensive and systematic analysis of CRC and nanomedicine by bibliometrics. Methods We searched the Web of Science Core Collection database (WOSCC) for relevant literature published from 2011 to 2024. We used VOSviewer and Citespace to analyze countries, institutions, authors, keywords, highly cited references, and co-cited references. Results 3105 pieces of literatures were included in the research analysis, and PEOPLES R CHINA and the USA took the leading position in the number of papers published and had academic influence. The Chinese Academy of Sciences posted the most papers. The most prolific scholar was Abnous Khalil. The level of economic development is inversely proportional to the number of cases and deaths of colorectal cancer. Nanoparticles (NPs), the nanomedical drug delivery system (NDDS) is a hot topic in the field. Photodynamic therapy (PDT), immunogenic cell death (ICD), tumor microenvironment (TEM), folic acid, and pH are the cutting edge of the field. Conclusion This paper introduces the research hotspot, emphasis, and frontier of CRC and nanomedicine, and points out the direction for this field.
Collapse
Affiliation(s)
| | - Min Chen
- Proctology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Shi J, Cui G, Jin Y, Mi B, Liu K, Zhao L, Bao K, Lu Z, Liu J, Wang Y, He H, Guo Z. Glutathione-Depleted Photodynamic Nanoadjuvant for Triggering Nonferrous Ferroptosis to Amplify Radiotherapy of Breast Cancer. Adv Healthc Mater 2024; 13:e2402474. [PMID: 39397336 DOI: 10.1002/adhm.202402474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Radiotherapy plays a crucial role in the treatment of advanced breast cancer, but the increased antioxidant system, especially the rise in glutathione (GSH), presents a significant obstacle to its effectiveness. To address this challenge, a versatile GSH-depleted photodynamic nanoadjuvant is developed to augment the efficacy of radiotherapy for breast cancer treatment. This nanoadjuvant operates within the tumor microenvironment to effectively deplete intracellular GSH through a sequence of cascaded processes, including GSH exhaustion, biosynthetic inhibition, and photodynamic oxidation. This leads to a notable accumulation of lipid peroxides (LPO) and subsequent suppression of glutathione peroxidase 4 (GPX4) activity. Consequently, the combined GSH depletion induced by the nanoadjuvant markedly promotes nonferrous ferroptosis, thereby contributing to the augmentation of antitumor efficiency during radiotherapy in breast cancer. This work presents an innovative approach to designing and synthesizing biocompatible nanoadjuvants with the goal of improving the efficacy of radiotherapy for breast cancer in prospective clinical scenarios.
Collapse
Affiliation(s)
- Jiangnan Shi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Guoqing Cui
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yaqi Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Boyu Mi
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Kenan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Linqian Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Kewang Bao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ziyao Lu
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jie Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuwei Wang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhengqing Guo
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
21
|
Sun Q, Jia A, Zhao M, Wang K, Sun T, Xie Z. A BODIPY derivative for PDT/PTT synergistic treatment of bacterial infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113049. [PMID: 39476745 DOI: 10.1016/j.jphotobiol.2024.113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 12/10/2024]
Abstract
Phototherapeutic antimicrobials, including photodynamic and photothermal antimicrobials, are considered effective alternatives for antibiotic strategy due to their broad-spectrum antibacterial activity and low risk of resistance. Here, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivative containing triphenylamine groups was co-assembled with Pluronic F-127 (F-127) to form nanoparticles (BICF NPs). BICF NPs have excellent photodynamic and photothermal properties and are demonstrated to be effective in inhibiting and disrupting bacterial biofilms, thereby promoting the healing of subcutaneous abscesses. This work provides a new avenue for antibiotic replacement therapy.
Collapse
Affiliation(s)
- Qijia Sun
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Aoqing Jia
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | - Min Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, PR China.
| | - Tingting Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| |
Collapse
|
22
|
Wen H, Wu Q, Xiang X, Sun T, Xie Z, Chen X. PEGylated BODIPY Photosensitizer for Type I Dominant Photodynamic Therapy and Afterglow Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61739-61750. [PMID: 39473240 DOI: 10.1021/acsami.4c14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Type I photodynamic therapy (PDT) exhibits outstanding therapeutic effects in hypoxic environments in tumors, but the design of type I photosensitizers (PSs), especially those with simple structures but dramatic properties, remains a challenge. Herein, we report a design strategy for developing type I PSs in one molecule with afterglow luminescence. As a proof concept, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) PS (BIP) bearing water-soluble poly(ethylene glycol) (mPEG550) chains is synthesized, and BIP can self-assemble into nanoparticles (BIPNs). Interestingly, BIPNs exhibit an O2•--triggered afterglow luminescence, which is scarce, especially for BODIPY derivatives. BIPNs demonstrate outstanding type I dominant PDT at an ultralow dose under both hypoxic and normoxic environments, which can significantly inhibit tumor growth under irradiation. This work highlights a high-performance PS with afterglow luminescence and excellent PDT effects, underscoring the significant potential of versatile PSs in clinical tumor theranostics.
Collapse
Affiliation(s)
- Hui Wen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qihang Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiujuan Xiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tingting Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhigang Xie
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
23
|
Zhao B, Liu J, Zhu C, Cheng X. Chitosan-naphthalimide probes for dual channel recognition of HClO and H 2S in cells and their application in photodynamic therapy. Int J Biol Macromol 2024; 281:136517. [PMID: 39426764 DOI: 10.1016/j.ijbiomac.2024.136517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The combination of bio-imaging with photodynamic therapy (PDT) to accomplish theranostics is promising in cancer treatment. Three chitosan-naphthalimide probes were studied in this work. 4-(5-Bromothiophen-2-yl)-1,8-naphthalic anhydride was first synthesized, and then reacted with chitosan to obtain the macromolecules (CS-N-Br). The recognition group thiomorpholine or its derivatives were introduced into CS-N-Br to obtain nano-probes (CS-N-ML, CS-N-BSZ, CS-N-FSQ) eventually. The studies revealed that CS-N-ML and CS-N-FSQ exhibit high selectivity and can specifically recognize HClO and H2S. CS-N-ML and CS-N-FSQ can perform exogenous and endogenous confocal imaging of HClO and H2S in cells also. CS-N-ML's ability to target lysosomes positions indicated it could act as a lysosome-specific probe. It was discovered that the probes generate superoxide anions (O2•-) via a Type I mechanism. This discovery endows the probes with high photosensitizing activity even under hypoxic conditions. There is a positive correlation between the extent of the conjugated system and the photosensitivity of the probes, indicating that an enhanced conjugation leads to increased photosensitivity. Upon light irradiation, the probes generate ROS within HeLa cells. These results suggested that these probes can achieve theranostics for diseases associated with abnormal levels of HClO and H2S.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China; School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Jun Liu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Caiqiong Zhu
- School of pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
24
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
25
|
Martins CF, García-Astrain C, Conde J, Liz-Marzán LM. Nanocomposite hydrogel microneedles: a theranostic toolbox for personalized medicine. Drug Deliv Transl Res 2024; 14:2262-2275. [PMID: 38376619 PMCID: PMC11208216 DOI: 10.1007/s13346-024-01533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Due to the severity and high prevalence of cancer, as well as its complex pathological condition, new strategies for cancer treatment and diagnostics are required. As such, it is important to design a toolbox that integrates multiple functions on a single smart platform. Theranostic hydrogels offer an innovative and personalized method to tackle cancer while also considering patient comfort, thereby facilitating future implementation and translation to the clinic. In terms of theranostic systems used in cancer therapy, nanoparticles are widely used as diagnostic and therapeutic tools. Nanoparticles can achieve systemic circulation, evade host defenses, and deliver drugs and signaling agents at the targeted site, to diagnose and treat the disease at a cellular and molecular level. In this context, hydrogel microneedles have a high potential for multifunctional operation in medical devices, while avoiding the complications associated with the systemic delivery of therapeutics. Compared with oral administration and subcutaneous injection, microneedles offer advantages such as better patient compliance, faster onset of action, and improved permeability and efficacy. In addition, they comprise highly biocompatible polymers with excellent degradability and tunable properties. Nanoparticles and microneedles thus offer the possibility to expand the theranostic potential through combined synergistic use of their respective features. We review herein recent advances concerning processing methods and material requirements within the realm of hydrogel microneedles as theranostic platforms, various approaches toward cancer therapy, and the incorporation of nanoparticles for added functionality.
Collapse
Affiliation(s)
- Catarina F Martins
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMSFCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Clara García-Astrain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y, Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMSFCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y, Nanomedicina (CIBER-BBN), 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain.
| |
Collapse
|
26
|
Liu C, Ding Q, Liu Y, Wang Z, Xu Y, Lu Q, Chen X, Liu J, Sun Y, Li R, Yang Y, Sun Y, Li S, Wang P, Kim JS. An NIR Type I Photosensitizer Based on a Cyclometalated Ir(III)-Rhodamine Complex for a Photodynamic Antibacterial Effect toward Both Gram-Positive and Gram-Negative Bacteria. Inorg Chem 2024; 63:13059-13067. [PMID: 38937959 DOI: 10.1021/acs.inorgchem.4c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Type I photosensitizers offer an advantage in photodynamic therapy (PDT) due to their diminished reliance on oxygen levels, thus circumventing the challenge of hypoxia commonly encountered in PDT. In this study, we present the synthesis and comprehensive characterization of a novel type I photosensitizer derived from a cyclometalated Ir(III)-rhodamine complex. Remarkably, the complex exhibits a shift in absorption and fluorescence, transitioning from "off" to "on" states in aprotic and protic solvents, respectively, contrary to initial expectations. Upon exposure to light, the complex demonstrates the effective generation of O2- and ·OH radicals via the type I mechanism. Additionally, it exhibits notable photodynamic antibacterial activity against both Gram-positive and Gram-negative bacteria, demonstrated through in vitro and in vivo experiments. This research offers valuable insights for the development of novel type I photosensitizers.
Collapse
Affiliation(s)
- Chuangjun Liu
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Youju Liu
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Zepeng Wang
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Xu
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Qiang Lu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xinyu Chen
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Junhang Liu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Sun
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Rongqiang Li
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yang Yang
- Henan Key Laboratory of Digital Medicine, Affiliated Zhumadian Central Hospital of Huanghuai University, Zhumadian 463000, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Siqiang Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Pengfei Wang
- Digital Medicine Center, Pingyu People's Hospital, Zhumadian 463400, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
27
|
Huang T, Chen Q, Jiang H, Zhang K. Research Progress in the Degradation of Chemical Warfare Agent Simulants Using Metal-Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1108. [PMID: 38998714 PMCID: PMC11243471 DOI: 10.3390/nano14131108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Chemical warfare agents primarily comprise organophosphorus nerve agents, saliva alkaloids, cyanides, and mustard gas. Exposure to these agents can result in severe respiratory effects, including spasms, edema, and increased secretions leading to breathing difficulties and suffocation. Protecting public safety and national security from such threats has become an urgent priority. Porous metal-organic framework (MOF) materials have emerged as promising candidates for the degradation of chemical warfare agents due to their large surface area, tunable pore size distribution, and excellent catalytic performance. Furthermore, combining MOFs with polymers can enhance their elasticity and processability and improve their degradation performance. In this review, we summarize the literature of the past five years on MOF-based composite materials and their effectiveness in degrading chemical warfare agents. Moreover, we discuss key factors influencing their degradation efficiency, such as MOF structure, pore size, and functionalization strategies. Furthermore, we highlight recent developments in the design of MOF-polymer composites, which offer enhanced degradation performance and stability for practical applications in CWA degradation. These composite materials exhibit good performance in degrading chemical warfare agents, playing a crucial role in protecting public safety and maintaining national security. We can expect to see more breakthroughs in the application of metal-organic framework porous materials for degrading chemical warfare agents. It is hoped that these innovative materials will play a positive role in achieving social stability and security.
Collapse
Affiliation(s)
- Taotao Huang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Qian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243032, China; (T.H.); (Q.C.)
| |
Collapse
|
28
|
Yuan H, Chen K, Geng J, Wu Z, Wang C, Shi P. Metal-Organic Framework PCN-224 Combined Cobalt Oxide Nanoparticles for Hypoxia Relief and Synergistic Photodynamic/Chemodynamic Therapy. Chemistry 2024; 30:e202400319. [PMID: 38606488 DOI: 10.1002/chem.202400319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Photodynamic therapy (PDT) and chemodynamic therapy (CDT) are promising tumor treatments mediated by reactive oxygen species (ROS), which have the advantages of being minimally invasive. However, the hypoxia of tumor microenvironment and poor target ability often reduce the therapeutic effect. Here we propose a tumor targeted nanoplatform PCN-224@Co3O4-HA for enhanced PDT and synergistic CDT, constructed by hyaluronate-modified Co3O4 nanoparticles decorated metal-organic framework PCN-224. Co3O4 can catalyze the decomposition of highly expressed H2O2 in tumor cells to produce oxygen and alleviate the problem of hypoxia. It can also produce hydroxyl radicals according to the Fenton-like reaction for chemical dynamic therapy, significantly improving the therapeutic effect. The cell survival experiment showed that after in vitro treatment, 4T1 and MCF-7 cancer cells died in a large area under the anaerobic state, while the survival ability of normal cell L02 was nearly unchanged. This result effectively indicated that PCN-224@Co3O4-HA could effectively relieve tumor hypoxia and improve the effect of PDT and synergistic CDT. Cell uptake experiments showed that PCN-224@Co3O4-HA had good targeting properties and could effectively aggregate in tumor cells. In vivo experiments on mice, PCN-224@Co3O4-HA presented reliable biosafety performance, and can cooperate with PDT and CDT therapy to prevent the growth of tumor.
Collapse
Affiliation(s)
- Haoming Yuan
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, Shandong, P. R. China
| | - Kaixiu Chen
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, Shandong, P. R. China
| | - Jing Geng
- Linyi Mental Health Center, 276000, Linyi, Shandong, P. R. China
| | - Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, Shandong, P. R. China
| | - Chao Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, Shandong, P. R. China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, 276000, Linyi, Shandong, P. R. China
| |
Collapse
|
29
|
Daliran S, Oveisi AR, Kung CW, Sen U, Dhakshinamoorthy A, Chuang CH, Khajeh M, Erkartal M, Hupp JT. Defect-enabling zirconium-based metal-organic frameworks for energy and environmental remediation applications. Chem Soc Rev 2024; 53:6244-6294. [PMID: 38743011 DOI: 10.1039/d3cs01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This comprehensive review explores the diverse applications of defective zirconium-based metal-organic frameworks (Zr-MOFs) in energy and environmental remediation. Zr-MOFs have gained significant attention due to their unique properties, and deliberate introduction of defects further enhances their functionality. The review encompasses several areas where defective Zr-MOFs exhibit promise, including environmental remediation, detoxification of chemical warfare agents, photocatalytic energy conversions, and electrochemical applications. Defects play a pivotal role by creating open sites within the framework, facilitating effective adsorption and remediation of pollutants. They also contribute to the catalytic activity of Zr-MOFs, enabling efficient energy conversion processes such as hydrogen production and CO2 reduction. The review underscores the importance of defect manipulation, including control over their distribution and type, to optimize the performance of Zr-MOFs. Through tailored defect engineering and precise selection of functional groups, researchers can enhance the selectivity and efficiency of Zr-MOFs for specific applications. Additionally, pore size manipulation influences the adsorption capacity and transport properties of Zr-MOFs, further expanding their potential in environmental remediation and energy conversion. Defective Zr-MOFs exhibit remarkable stability and synthetic versatility, making them suitable for diverse environmental conditions and allowing for the introduction of missing linkers, cluster defects, or post-synthetic modifications to precisely tailor their properties. Overall, this review highlights the promising prospects of defective Zr-MOFs in addressing energy and environmental challenges, positioning them as versatile tools for sustainable solutions and paving the way for advancements in various sectors toward a cleaner and more sustainable future.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68151-44316, Iran.
| | - Ali Reza Oveisi
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Unal Sen
- Department of Materials Science and Engineering, Faculty of Engineering, Eskisehir Technical University, Eskisehir 26555, Turkey
| | - Amarajothi Dhakshinamoorthy
- Departamento de Quimica, Universitat Politècnica de València, Av. De los Naranjos s/n, 46022 Valencia, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan.
| | - Mostafa Khajeh
- Department of Chemistry, University of Zabol, P.O. Box: 98615-538, Zabol, Iran.
| | - Mustafa Erkartal
- Department of Basic Sciences, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
| |
Collapse
|
30
|
Mo Q, Zhong T, Cao B, Han Z, Hu X, Zhao S, Wei X, Yang Z, Qin J. Dihydroxanthene-based monoamine oxidase A-activated photosensitizers for photodynamic/photothermal therapy of tumors. Eur J Med Chem 2024; 272:116474. [PMID: 38735149 DOI: 10.1016/j.ejmech.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Small molecule photosensitizers for combined in vivo tailored cancer diagnostics and photodynamic/photothermal therapy are desperately needed. Monoamine oxidase A (MAO-A)-activated therapeutic and diagnostic compounds provide great selectivity because MAO-A can be employed as a biomarker for associated Tumors. In order to screen photosensitizers with photodynamic therapeutic potential, we have created a range of near-infrared fluorescent molecules in this work by combining dihydroxanthene parent with various heterocyclic fluorescent dyes. The NIR fluorescent diagnostic probe, DHMQ, was created by combining the screened fluorescent dye matrices with the propylamino group, which is the recognition moiety of MAO-A, based on the oxidative deamination mechanism of the enzyme. This probe has a low toxicity level and can identify MAO-A precisely. It has the ability to use fluorescence imaging on mice and cells to track MAO-A activity in real-time. It has strong phototoxicity and can produce singlet oxygen when exposed to laser light. The temperature used in photothermal imaging can get up to 50 °C, which can harm tumor cells permanently and have a positive phototherapeutic impact on tumors grown from SH-SY5Y xenograft mice. The concept of using MAO-A effectively in diseases is expanded by the MAO-A-activated diagnostic-integrated photosensitizers, which offer a new platform for in vivo cancer diagnostics and targeted anticancer treatment.
Collapse
Affiliation(s)
- Qingyuan Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Guangxi Institute of Standards and Technology, Nanning, 530200, PR China
| | - Tiantian Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Bingying Cao
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Zhongyao Han
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Xianyun Hu
- Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaoyu Wei
- China Pharmaceutical University, School of Traditional Chinese Pharmacy, Nanjing, 211100, PR China
| | - Zhengmin Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China; Qiannan Medical College for Nationalities, Duyun, 558003, PR China
| | - Jiangke Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
31
|
Chen S, Gao J, Lin S, Zhao H. Enhancing anti-neuroinflammation effect of X-ray-triggered RuFe-based metal-organic framework with dual enzyme-like activities. Front Bioeng Biotechnol 2024; 12:1269262. [PMID: 38707498 PMCID: PMC11066228 DOI: 10.3389/fbioe.2024.1269262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Traumatic spinal cord injury (SCI), often resulting from external physical trauma, initiates a series of complex pathophysiological cascades, with severe cases leading to paralysis and presenting significant clinical challenges. Traditional diagnostic and therapeutic approaches, particularly X-ray imaging, are prevalent in clinical practice, yet the limited efficacy and notable side effects of pharmacological treatments at the injury site continue to pose substantial hurdles. Addressing these challenges, recent advancements have been made in the development of multifunctional nanotechnology and synergistic therapies, enhancing both the efficacy and safety of radiographic techniques. In this context, we have developed an innovative nerve regeneration and neuroprotection nanoplatform utilizing an X-ray-triggered, on-demand RuFe metal-organic framework (P-RuFe) for SCI recovery. This platform is designed to simulate the enzymatic activities of catalase and superoxide dismutase, effectively reducing the production of reactive oxygen species, and to remove free radicals and reactive nitrogen species, thereby protecting cells from oxidative stress-induced damage. In vivo studies have shown that the combination of P-RuFe and X-ray treatment significantly reduces mortality in SCI mouse models and promotes spinal cord repair by inhibiting glial cell proliferation and neuroinflammation. P-RuFe demonstrates excellent potential as a safe, effective scavenger of reactive oxygen and nitrogen species, offering good stability, biocompatibility, and high catalytic activity, and thus holds promise for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Shurui Chen
- Clinical Research Center, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jinpeng Gao
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Sen Lin
- Clinical Research Center, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Haosen Zhao
- Department of Orthopedic, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
32
|
Gupta DK, Kumar S, Wani MY. MOF magic: zirconium-based frameworks in theranostic and bio-imaging applications. J Mater Chem B 2024; 12:2691-2710. [PMID: 38419476 DOI: 10.1039/d3tb02562d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Over the past two decades, metal-organic frameworks (MOFs) have garnered substantial scientific interest across diverse fields, spanning gas storage, catalysis, biotechnology, and more. Zirconium, abundant in nature and biologically relevant, offers an appealing combination of high content and low toxicity. Consequently, Zr-based MOFs have emerged as promising materials with significant potential in biomedical applications. These MOFs serve as effective nanocarriers for controlled drug delivery, particularly for challenging antitumor and retroviral drugs in cancer and AIDS treatment. Additionally, they exhibit prowess in bio-imaging applications. Beyond drug delivery, Zr-MOFs are notable for their mechanical, thermal, and chemical stability, making them increasingly relevant in engineering. The rising demand for stable, non-toxic Zr-MOFs facilitating facile nanoparticle formation, especially in drug delivery and imaging, is noteworthy. This review focuses on biocompatible zirconium-based metal-organic frameworks (Zr-MOFs) for controlled delivery in treating diseases like cancer and AIDS. These MOFs play a key role in theranostic approaches, integrating diagnostics and therapy. Additionally, their utility in bio-imaging underscores their versatility in advancing medical applications.
Collapse
Affiliation(s)
- Dinesh K Gupta
- Department of Chemistry, School of Science, U.P. Rajarshi Tandon Open University, Prayagraj-211021, UP, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur-208002, UP, India.
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
33
|
Wei W, Ai L, Li M, Hou F, Xiong C, Li Y, Wei A. Liquid Metal Encased in Biomimic Polydopamine Armor to Reinforce Photothermal Conversion and Photothermal Stability. Chem Asian J 2024:e202301038. [PMID: 38311860 DOI: 10.1002/asia.202301038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/06/2024]
Abstract
Liquid metal (LM) faces numerous obstacles like spontaneous coalescence, prone oxidizability, and deterioration in photothermal conversion, impeding the potential application as photothermal agent. To tackle these issues, several studies have focused on surface engineering strategy. Developing a feasible and efficient surface engineering strategy is crucial to prevent the aggregation and coalescence of LM, while also ensuring exceptional photothermal conversion and biosecurity. In order to achieve these goals in this work, the biomimetic polydopamine (PDA) armor was chosen to encase a typical LM (eutectic gallium-indium-tin alloy) via self-polymerization. Characterization results showed that the PDA encased LM nanoparticle exhibited enhanced photothermal stability, photothermal conversion, and biosecurity, which could be derived from the following factors: (1) The PDA protective shell acted as an "armor", isolating LM from dissolved oxygen and water, inhibiting heating-accelerated oxidation and shape morphing. (2) The exceptional near-infrared absorption of PDA was conducive to the photothermal conversion. (3) The biomimetic characteristic of polydopamine (PDA) was advantageous for improving the biosecurity. Hence, this work presented a new surface engineering strategy to reinforce LM for photothermal conversion application.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Libang Ai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Kunshan Innovation Institute of Xidian University, Suzhou, 215316, P. R. China
| | - Minhao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Fengming Hou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Can Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nantong Institute of Nanjing University of Posts and Telecommunications Co. Ltd., Nantong, 226001, P. R. China
| | - Yihang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Ang Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), College of Chemistry and Life Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|