1
|
Turov VV, Wei Q, Zheng J, Yang W, Krupska TV, Borysenko MV, Holovan AP, Gun'ko VM. Interfacial and temperature behaviors of concentrated NaCl solutions bound to hydrophilic and hydrophobic nanosilicas under confined space and cryoscopic effects. J Colloid Interface Sci 2025; 695:137785. [PMID: 40334609 DOI: 10.1016/j.jcis.2025.137785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
HYPOTHESIS The aqueous solutions behaviors could change under confined space effects (CSE). The nature of pore surface could affect the interfacial phenomena including CSE and cryoscopic effects (CE) in addition to decreased solvent activity under CSE. EXPERIMENTS Hydrophobic (AM1) and hydrophilic (A-300) nanosilicas were used to analyze CSE/CE on bound water and NaCl/water using microscopy, adsorption, XRD, infrared and NMR spectroscopies, thermogravimetry, rheometry, and quantum chemistry. FINDINGS Water and salt solutions bound to nanosilicas include weakly (frozen at 260 K < T < 273 K) and strongly (frozen at T < 260 K) bound waters, and weakly (chemical shift δH = 0.5-2 ppm) and strongly (δH = 4-6 ppm) associated waters. For bound water/NaCl, there is frozen water with melting delay at 273 K < T < 287 K (metastable water, MSW). MSW appearance is explained by release of water trapped in condensed NaCl dissolved at T > 273 K upon increasing amounts of liquid water with temperature. The difference in the AM1 and A-300 effects onto bound water is due to AM1 Si(CH3)2 'umbrellas' enhancing bound water clusterization. Structural and morphological features of AM1 and A-300 differently affect: (i) NaCl crystallite size distributions; (ii) melting/crystallization temperatures of NaCl; (iii) viscosity and torque vs. shear rate; (iv) temperature and interfacial behaviors of water alone and NaCl solutions; and (v) CSE/CE and effects of dispersion media. Obtained results are of interest from theoretical and practical points of view since various nanosilicas are used as components of composites containing water and NaCl or other salts in various applications in medicine, agriculture, etc.
Collapse
Affiliation(s)
- Volodymyr V Turov
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, PR China; Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164, Ukraine
| | - Qiliang Wei
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, PR China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, PR China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, PR China
| | - Tetyana V Krupska
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City 315211, PR China; Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164, Ukraine
| | - Mykola V Borysenko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164, Ukraine
| | - Alina P Holovan
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164, Ukraine
| | - Volodymyr M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kyiv 03164, Ukraine.
| |
Collapse
|
2
|
Chen M, Deck LT, Bosetti L, Mazzotti M. Developing a Vial-Scale Methodology for the Measurement of Nucleation Kinetics Using Evaporative Crystallization: A Case Study with Sodium Chloride. CRYSTAL GROWTH & DESIGN 2025; 25:2498-2509. [PMID: 40256756 PMCID: PMC12006966 DOI: 10.1021/acs.cgd.4c01722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Understanding nucleation kinetics is vital for designing crystallization processes, yet traditional measurement methods based on cooling are unsuitable for compounds with temperature-independent solubility. This study introduces an experimental procedure to measure the nucleation kinetics based on evaporative crystallization and applies it to sodium chloride (NaCl) in water. By systematically varying the experimental conditions such as temperature and evaporation gas flow rate, we obtained a comprehensive data set for the nucleation of NaCl crystals that allowed estimating kinetic parameters using a rate expression derived from classical nucleation theory (CNT). This work demonstrates the robustness of evaporation as a method for measuring the nucleation kinetics that is applicable regardless of how the solubility of a compound depends on the temperature.
Collapse
Affiliation(s)
- Michele Chen
- Institute of Energy and Process
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Luca Bosetti
- Institute of Energy and Process
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Marco Mazzotti
- Institute of Energy and Process
Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Ettori F, Mandal D, Quigley D. Low-temperature nucleation rate calculations using the N-Fold way. J Chem Phys 2025; 162:124116. [PMID: 40152129 DOI: 10.1063/5.0255066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
We present a numerical study to determine nucleation rates for magnetization reversal within the Ising model (lattice gas model) in the low-temperature regime, a domain less explored in previous research. To achieve this, we implemented the N-Fold way algorithm, a well-established method for low-temperature simulations, alongside a novel, highly efficient cluster identification algorithm. Our method can access nucleation rates up to 50 orders of magnitude lower than previously reported results. We examine three cases: homogeneous pure system, system with static impurities, and system with mobile impurities, where impurities are defined as sites with zero interactions with neighboring spins (the spin value of impurities is set to 0). Classical nucleation theory holds across the entire temperature range studied in the paper, for both the homogeneous system and the static impurity case. However, in the case of mobile impurities, the umbrella sampling technique appears ineffective at low mobility values. These findings provide valuable insights into nucleation phenomena at low temperatures, contributing to theoretical and experimental understanding.
Collapse
Affiliation(s)
- Federico Ettori
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - David Quigley
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
4
|
Zhang Y, Wei N, Li L, Liu Y, Huang C, Li Z, Huang Y, Zhang D, Francisco JS, Zhao J, Wang C, Zeng XC. Fully Atomistic Molecular Dynamics Simulation of Ice Nucleation Near an Antifreeze Protein. J Am Chem Soc 2025; 147:4411-4418. [PMID: 39847391 PMCID: PMC11803617 DOI: 10.1021/jacs.4c15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the Tenebrio molitor antifreeze protein (TmAFP). Our all-atomistic molecular dynamics simulations reveal detailed steps toward precritical nucleus formation from one-dimensional (1D) channel water to a 2D ice nanolayer and, finally, a 3D ice nucleus. Compared with homogeneous ice nucleation under the same supercooling conditions, the IBS of TmAFP can markedly reduce the critical size of the ice embryo and lower the nucleation free energy barrier, thereby favoring ice nucleation. Additionally, through artificial mutation of selected functional groups on the IBS, we gain deeper insights into how the specific functional groups of the IBS affect ice nucleation. We highlight that the carbonyl groups in the backbone play a crucial role by providing fixed locations for channel water. This function is essential for ensuring alignment between the 2D ice nanolayer and the ice lattice structure.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu
Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Ning Wei
- Jiangsu
Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Liwen Li
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong, Kowloon 999077, China
| | - Yuan Liu
- School
of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Changxiong Huang
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong, Kowloon 999077, China
| | - Zhen Li
- Jiangsu
Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Huang
- International
Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon
Neutrality, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Dengsong Zhang
- International
Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon
Neutrality, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Joseph S. Francisco
- Department
of Earth and Environmental Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Junhua Zhao
- Jiangsu
Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Chunlei Wang
- International
Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon
Neutrality, College of Sciences, Shanghai
University, Shanghai 200444, China
| | - Xiao Cheng Zeng
- Department
of Materials Science and Engineering, City
University of Hong Kong, Hong Kong, Kowloon 999077, China
| |
Collapse
|
5
|
Bachtiger F, Rahimee A, Li L, Salvalaglio M. Solution Thermodynamics of l-Glutamic Acid Polymorphs from Finite-Sized Molecular Dynamics Simulations. Ind Eng Chem Res 2025; 64:1309-1318. [PMID: 39830853 PMCID: PMC11741101 DOI: 10.1021/acs.iecr.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Efficiently obtaining atomic-scale thermodynamic parameters characterizing crystallization from solution is key to developing the modeling strategies needed in the quest for digital design strategies for industrial crystallization processes. Based on the thermodynamics of crystal nucleation in confined solutions, we develop a simulation framework to efficiently estimate the solubility and surface tension of organic crystals in solution from a few unbiased molecular dynamics simulations at a reference temperature. We then show that such a result can be extended with minimal computational overhead to capture the solubility curve. This enables an efficient and self-consistent estimate of the solubility and limit of solution stability associated with crystal nucleation in molecular systems from equilibrium molecular dynamics without the need for sophisticated free energy calculations. We apply our analysis to investigate the relative thermodynamic stability and aqueous solubility of the α and β polymorphs of l-glutamic acid. Our analysis enables an efficient appraisal of emergent ensemble properties associated with the thermodynamics of nucleation from solutions against experimental data, demonstrating that while the absolute solubility is still far from being quantitatively captured by an off-the-shelf point charge transferable force field, the relative polymorphic stability and solubility obtained from finite temperature simulation are consistent with the experimentally available information on glutamic acid. We foresee the ability to efficiently obtain solubility information from a limited number of computational experiments as a critical component of high-throughput polymorph screenings.
Collapse
Affiliation(s)
- Fabienne Bachtiger
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Aliff Rahimee
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Lunna Li
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Matteo Salvalaglio
- Thomas Young Centre and Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| |
Collapse
|
6
|
Rasheed A, Parmar K, Jain S, Chakravortty D, Basu S. Weather-related changes in the dehydration of respiratory droplets on surfaces bolster bacterial endurance. J Colloid Interface Sci 2024; 674:653-662. [PMID: 38950464 DOI: 10.1016/j.jcis.2024.06.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
HYPOTHESIS The study shows for the first time a fivefold difference in the survivability of the bacterium Pseudomonas Aeruginosa (PA) in a realistic respiratory fluid droplet on fomites undergoing drying at different environmental conditions. For instance, in 2023, the annual average outdoor relative humidity (RH) and temperature in London (UK) is 71 % and 11 °C, whereas in New Delhi (India), it is 45 % and 26 °C, showing that disease spread from fomites could have a demographic dependence. Respiratory fluid droplet ejections containing pathogens on inanimate surfaces are crucial in disease spread, especially in nosocomial settings. However, the interplay between evaporation dynamics, internal fluid flow and precipitation and their collective influence on the distribution and survivability of pathogens at different environmental conditions are less known. EXPERIMENTS Shadowgraphy imaging is employed to study evaporation, and optical microscopy imaging is used for precipitation dynamics. Micro-particle image velocimetry (MicroPIV) measurements reveal the internal flow dynamics. Confocal imaging of fluorescently labelled PA elucidates the bacterial distribution within the deposits. FINDINGS The study finds that the evaporation rate is drastically impeded during drying at elevated solutal concentrations, particularly at high RH and low temperature conditions. MicroPIV shows reduced internal flow under high RH and low temperature (low evaporation rate) conditions. Evaporation rate influences crystal growth, with delayed efflorescence and extending crystallization times. PA forms denser peripheral arrangements under high evaporation rates and shows a fivefold increase in survivability under low evaporation rates. These findings highlight the critical impact of environmental conditions on pathogen persistence and disease spread from inanimate surfaces.
Collapse
Affiliation(s)
- Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Kirti Parmar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India
| | - Siddhant Jain
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore India; School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551 India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore India.
| |
Collapse
|
7
|
Li Q, Wang Z, Guo H, Zhao J, Luo H, Huang X. A perspective view of salt crystallization from solution in porous media: morphology, mechanism, and salt efflorescence. Sci Rep 2024; 14:23510. [PMID: 39379485 PMCID: PMC11461505 DOI: 10.1038/s41598-024-74645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Salt efflorescence is one of the major hazards to cultural heritages, masonries, and highways etc. It is now generally accepted that damages caused by salt efflorescence are mainly due to continuous cycles of salt crystallization/dissolution or hydration/dehydration in confined spaces. The position where salt efflorescence occurs and its type are closely related to the degree of damages caused by salt efflorescence. It is known that water is the key environmental factor determining the salt crystallization position. But influence of the correlation between water supply and evaporation on the position of salt crystallization is still not clearly understood. In this work, a set of experiments are designed to investigate salt efflorescence in porous matrix. It is found that the types and positions of salt efflorescence have little to do with nucleation, but are mainly governed by crystal growth, which is controlled by the rates of water evaporation, water and salt supply, capillary forces and surface properties of the porous matrices.
Collapse
Affiliation(s)
- Qiang Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, China
- Ancient Ceramics Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhongwei Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710016, China
| | - Han Guo
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, 239 Zhangheng Road, Shanghai, 201204, China
| | - Jing Zhao
- Ancient Ceramics Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongjie Luo
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, China.
| | - Xiao Huang
- Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Oluwatoba DS, Safoah HA, Do TD. The rise and fall of adenine clusters in the gas phase: a glimpse into crystal growth and nucleation. Anal Bioanal Chem 2024; 416:5037-5048. [PMID: 39031229 DOI: 10.1007/s00216-024-05442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
The emergence of a crystal nucleus from disordered states is a critical and challenging aspect of the crystallization process, primarily due to the extremely short length and timescales involved. Methods such as liquid-cell or low-dose focal-series transmission electron microscopy (TEM) are often employed to probe these events. In this study, we demonstrate that ion mobility spectrometry-mass spectrometry (IMS-MS) offers a complementary and insightful perspective on the nucleation process by examining the sizes and shapes of small clusters, specifically those ranging from n = 2 to 40. Our findings reveal the significant role of sulfate ions in the growth of adeninediium sulfate clusters, which are the precursors to the formation of single crystals. Specifically, sulfate ions stabilize adenine clusters at the 1:1 ratio. In contrast, guanine sulfate forms smaller clusters with varied ratios, which become stable as they approach the 1:2 ratio. The nucleation size is predicted to be between n = 8 and 14, correlating well with the unit cell dimensions of adenine crystals. This correlation suggests that IMS-MS can identify critical nucleation sizes and provide valuable structural information consistent with established crystallographic data. We also discuss the strengths and limitations of IMS-MS in this context. IMS-MS offers rapid and robust experimental protocols, making it a valuable tool for studying the effects of various additives on the assembly of small molecules. Additionally, it aids in elucidating nucleation processes and the growth of different crystal polymorphs.
Collapse
Affiliation(s)
| | - Happy Abena Safoah
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Wang R, Tiwary P. Atomic scale insights into NaCl nucleation in nanoconfined environments. Chem Sci 2024:d4sc04042b. [PMID: 39234215 PMCID: PMC11367593 DOI: 10.1039/d4sc04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
In this work we examine the nucleation from NaCl aqueous solutions within nano-confined environments, employing enhanced sampling molecular dynamics simulations integrated with machine learning-derived reaction coordinates. Through our simulations, we successfully induce phase transitions between solid, liquid, and a hydrated phase, typically observed at lower temperatures in bulk environments. Interestingly, while generally speaking nano-confinement serves to stabilize the solid phase and elevate melting points, there are subtle variations in the thermodynamics of competing phases with the precise extent of confinement. Our simulations explain these findings by underscoring the significant role of water, alongside ion aggregation and subtle, anisotropic dielectric behavior, in driving nucleation within nano-confined environments. This report thus provides a framework for sampling, analyzing and understanding nucleation processes under nano-confinement.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- University of Maryland Institute for Health Computing Bethesda Maryland 20852 USA
| |
Collapse
|
10
|
Aquino M, Santoro S, Politano A, D’Andrea G, Siciliano A, Straface S, La Russa MF, Curcio E. Environmentally Friendly Photothermal Membranes for Halite Recovery from Reverse Osmosis Brine via Solar-Driven Membrane Crystallization. MEMBRANES 2024; 14:87. [PMID: 38668115 PMCID: PMC11052490 DOI: 10.3390/membranes14040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Modern society and industrial development rely heavily on the availability of freshwater and minerals. Seawater reverse osmosis (SWRO) has been widely adopted for freshwater supply, although many questions have arisen about its environmental sustainability owing to the disposal of hypersaline rejected solutions (brine). This scenario has accelerated significant developments towards the hybridization of SWRO with membrane distillation-crystallization (MD-MCr), which can extract water and minerals from spent brine. Nevertheless, the substantial specific energy consumption associated with MD-MCr remains a significant limitation. In this work, energy harvesting was secured from renewables by hotspots embodied in the membranes, implementing the revolutionary approach of brine mining via photothermal membrane crystallization (PhMCr). This method employs self-heating nanostructured interfaces under solar radiation to enhance water evaporation, creating a carefully controlled supersaturated environment responsible for the extraction of minerals. Photothermal mixed matrix photothermal membranes (MMMs) were developed by incorporating graphene oxide (GO) or carbon black (CB) into polyvinylidene fluoride (PVDF) solubilized in an eco-friendly solvent (i.e., triethyl phosphate (TEP)). MMMs were prepared using non-solvent-induced phase separation (NIPS). The effect of GO or GB on the morphology of MMMs and the photothermal behavior was examined. Light-to-heat conversion was used in PhMCr experiments to facilitate the evaporation of water from the SWRO brine to supersaturation, leading to sodium chloride (NaCl) nucleation and crystallization. Overall, the results indicate exciting perspectives of PhMCr in brine valorization for a sustainable desalination industry.
Collapse
Affiliation(s)
- Marco Aquino
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Sergio Santoro
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy;
| | - Giuseppe D’Andrea
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Alessio Siciliano
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Salvatore Straface
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| | - Mauro Francesco La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria (DiBEST-UNICAL), Via P. Bucci, CUBO 12/B, 87036 Rende, Italy;
| | - Efrem Curcio
- Department of Environmental Engineering, University of Calabria (DIAm-UNICAL), Via P. Bucci, CUBO 44/A, 87036 Rende, Italy; (M.A.); (G.D.); (A.S.); (S.S.); (E.C.)
| |
Collapse
|
11
|
Balestra S, Rodríguez-Sánchez N, Mena-Torres D, Ruiz-Salvador AR. Structural Features and Zeolite Stability: A Linearized Equation Approach. CRYSTAL GROWTH & DESIGN 2024; 24:938-946. [PMID: 38344677 PMCID: PMC10853909 DOI: 10.1021/acs.cgd.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 10/28/2024]
Abstract
Zeolite stability, in terms of lattice energy, is revisited from a crystal-chemistry point of view. A linearized equation relates the zeolite lattice energy using simple structural data readily available from experiments or modeling. The equation holds for a large range of zeolite energies, up to 3 eV per tetrahedron with respect to quartz, and has been validated internally via two simple machine learning automatic procedures for data fitting/reference partitions and externally using data from recently synthesized zeolites. The approach is certain in locating those recently synthesized zeolites in the energy range of those experimentally known zeolites used in the parametrization of the linearized equation. Hidden intrinsic structural data-energy correlations were found for data sets built from energy-relaxed structures along with energy values computed using the same energy functions employed in the structural relaxation. The asymmetry of the structural features is relevant for an accurate description of the energy.
Collapse
Affiliation(s)
- Salvador
R.G. Balestra
- Departamento
de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
- Centro
de Nanociencia y Tecnologías Sostenibles (CNATS), Universidad Pablo de Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
| | - Noelia Rodríguez-Sánchez
- Departamento
de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
| | - Dayrelis Mena-Torres
- Departamento
de Deporte e Informática, Área de Lenguajes y Sistemas
Informáticos, Universidad Pablo de
Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
- EASYTOSEE
AGTECH S. L., c/José
Delgado Brackenbury 9, Sevilla ES- 41011, Spain
| | - A. Rabdel Ruiz-Salvador
- Departamento
de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
- Centro
de Nanociencia y Tecnologías Sostenibles (CNATS), Universidad Pablo de Olavide, Ctra. Utrera km. 1, Sevilla ES-41013, Spain
| |
Collapse
|
12
|
Chen C, Wang X, Binder K, Pöschl U, Su H, Cheng Y. Convergence of dissolving and melting at the nanoscale. Faraday Discuss 2024; 249:229-242. [PMID: 37814783 DOI: 10.1039/d3fd00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Phase transitions of water and its mixtures are of fundamental importance in physical chemistry, the pharmaceutical industry, materials sciences, and atmospheric sciences. However, current understanding remains elusive to explain relevant observations, especially at the nanoscale. Here, by using molecular dynamics simulations, we investigate the dissolution of sodium chloride (NaCl) nanocrystals with volume-equivalent diameters from 0.51 to 1.75 nm. Our results show that the dissolution of NaCl in aqueous nanodroplets show a strong size dependence, and its solubility can be predicted by the Ostwald-Freundlich equation and Gibbs-Duhem equation after considering a size-dependent solid-liquid surface tension. We find that the structure of dissolved ions in the saturated aqueous nanodropplet resembles the structure of a molten NaCl nanoparticle. With decreasing nanodroplet size, this similarity grows and the average potential energy of NaCl in solution, the molten phase and the crystal phase converges.
Collapse
Affiliation(s)
- C Chen
- Minerva Research Group, Max Planck Institute for Chemistry, 55122 Mainz, Germany.
- Tsinghua University, 100084 Beijing, China
| | - X Wang
- Minerva Research Group, Max Planck Institute for Chemistry, 55122 Mainz, Germany.
- Institute for Carbon-Neutral Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - K Binder
- Institute of Physics, Johannes Gutenberg University of Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - U Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - H Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Y Cheng
- Minerva Research Group, Max Planck Institute for Chemistry, 55122 Mainz, Germany.
| |
Collapse
|
13
|
Wang R, Mehdi S, Zou Z, Tiwary P. Is the Local Ion Density Sufficient to Drive NaCl Nucleation from the Melt and Aqueous Solution? J Phys Chem B 2024; 128:1012-1021. [PMID: 38262436 DOI: 10.1021/acs.jpcb.3c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Even though nucleation is ubiquitous in different science and engineering problems, investigating nucleation is extremely difficult due to the complicated ranges of time and length scales involved. In this work, we simulate NaCl nucleation in both molten and aqueous environments using enhanced sampling of all-atom molecular dynamics with deep-learning-based estimation of reaction coordinates. By incorporating various structural order parameters and learning the reaction coordinate as a function thereof, we achieve significantly improved sampling relative to traditional ad hoc descriptions of what drives nucleation, particularly in an aqueous medium. Our results reveal a one-step nucleation mechanism in both environments, with reaction coordinate analysis highlighting the importance of local ion density in distinguishing solid and liquid states. However, although fluctuations in the local ion density are necessary to drive nucleation, they are not sufficient. Our analysis shows that near the transition states, descriptors such as enthalpy and local structure become crucial. Our protocol proposed here enables robust nucleation analysis and phase sampling and could offer insights into nucleation mechanisms for generic small molecules in different environments.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Shams Mehdi
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Ziyue Zou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Yao L, Jack RL. Heterogeneous nucleation in the random field Ising model. J Chem Phys 2023; 159:244110. [PMID: 38149735 DOI: 10.1063/5.0181596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023] Open
Abstract
We investigate the nucleation dynamics of the three-dimensional random field Ising model under an external field. We use umbrella sampling to compute the free-energy cost of a critical nucleus and use forward flux sampling for the direct estimation of nucleation rates. For moderate to strong disorder, our results indicate that the size of the nucleating cluster is not a good reaction coordinate, contrary to the pure Ising model. We rectify this problem by introducing a coordinate that also accounts for the location of the nucleus. Using the free energy barrier to predict the nucleation rate, we find reasonable agreement, although deviations become stronger as disorder increases. We attribute this effect to cluster shape fluctuations. We also discuss finite-size effects on the nucleation rate.
Collapse
Affiliation(s)
- Liheng Yao
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
15
|
Li L, Wang X, Yan Y, Francisco JS, Zhang J, Zeng XC, Zhong J. Resolving Temperature-Dependent Hydrate Nucleation Pathway: The Role of "Transition Layer". J Am Chem Soc 2023; 145:24166-24174. [PMID: 37874937 DOI: 10.1021/jacs.3c08246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Understanding the nucleation of natural gas hydrate (NGH) at different conditions has important implications to NGH recovery and other industrial applications, such as gas storage and separation. Herein, vast numbers of hydrate nucleation events are traced via molecular dynamics (MD) simulations at different degrees of supercooling (or driving forces). Specifically, to precisely characterize a hydrate nucleus from an aqueous system during the MD simulation, we develop an evolutionary order parameter (OP) to recognize the nucleus size and shape. Subsequently, the free energy landscapes of hydrate during nucleation are explored by using the newly developed OP. The results suggest that at 270 K (or 0.92 Tm supercooling, where Tm is the melting point), the near-rounded nucleus prevails during the nucleation, as described from the classical nucleation theory. In contrast, at relatively strong driving forces of 0.85 and 0.88 Tm, nonclassical nucleation events arise. Specifically, the pathway toward an elongated nucleus becomes as important as the pathway toward a near-rounded nucleus. To explain the distinct nucleation phenomena at different supercoolings, a notion of a "transition layer" (or liquid-blob-like layer) is proposed. Here, the transition layer is to describe the interfacial region between the nucleus and aqueous solution, and this layer entails two functionalities: (1) it tends to retain CH4 depending on the degrees of supercooling and (2) it facilitates collision among CH4, which thus promote the incorporation of CH4 into nucleus. Our simulation indicates that compared to the near-rounded nucleus, the transition layer surrounding the elongated nucleus is more evident with the higher collision rate among CH4 molecules. As such, the transition layer tends to promote the elongated nucleus pathway, while offsetting the cost of larger surface free energy associated with the elongated nucleus. At 0.92 Tm, however, the transition layer gradually disappears, and classical nucleation events dominate. Overall, the notion of "transition layer" offers deeper insight into the NGH nucleation at different degrees of supercooling and could be extended to describe other types of hydrate nucleation.
Collapse
Affiliation(s)
- Liwen Li
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiao Wang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Youguo Yan
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Jun Zhang
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xiao Cheng Zeng
- Department of Materials Science & Engineering, City University of Hong Kong, Hong Kong 999077, China
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Zhong
- School of Petroleum Engineering and School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
16
|
Cedeno R, Grossier R, Candoni N, Levernier N, Flood AE, Veesler S. CNT effective interfacial energy and pre-exponential kinetic factor from measured NaCl crystal nucleation time distributions in contracting microdroplets. J Chem Phys 2023; 158:2891367. [PMID: 37191406 DOI: 10.1063/5.0143704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Nucleation, the birth of a stable cluster from a disorder, is inherently stochastic. Yet up to date, there are no quantitative studies on NaCl nucleation that accounts for its stochastic nature. Here, we report the first stochastic treatment of NaCl-water nucleation kinetics. Using a recently developed microfluidic system and evaporation model, our measured interfacial energies extracted from a modified Poisson distribution of nucleation time show an excellent agreement with theoretical predictions. Furthermore, analysis of nucleation parameters in 0.5, 1.5, and 5.5 pl microdroplets reveals an interesting interplay between confinement effects and shifting of nucleation mechanisms. Overall, our findings highlight the need to treat nucleation stochastically rather than deterministically to bridge the gap between theory and experiment.
Collapse
Affiliation(s)
- Ruel Cedeno
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Romain Grossier
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| | - Nadine Candoni
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| | - Nicolas Levernier
- INMED, INSERM, Aix Marseille University, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France
| | - Adrian E Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Stéphane Veesler
- CNRS, Aix-Marseille University, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, F-13288 Marseille Cedex 09, France
| |
Collapse
|
17
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
18
|
Korede V, Nagalingam N, Penha FM, van der Linden N, Padding JT, Hartkamp R, Eral HB. A Review of Laser-Induced Crystallization from Solution. CRYSTAL GROWTH & DESIGN 2023; 23:3873-3916. [PMID: 37159656 PMCID: PMC10161235 DOI: 10.1021/acs.cgd.2c01526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/11/2023]
Abstract
Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.
Collapse
Affiliation(s)
- Vikram Korede
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Nagaraj Nagalingam
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Frederico Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, 114-28 Stockholm, Sweden
| | - Noah van der Linden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Johan T. Padding
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Remco Hartkamp
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
19
|
Iida Y, Hiratsuka T, Miyahara MT, Watanabe S. Mechanism of Nucleation Pathway Selection in Binary Lennard-Jones Solution: A Combined Study of Molecular Dynamics Simulation and Free Energy Analysis. J Phys Chem B 2023; 127:3524-3533. [PMID: 37027488 DOI: 10.1021/acs.jpcb.2c08893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The nucleation process, which is the initial step in particle synthesis, determines the properties of the resultant particles. Although recent studies have observed various nucleation pathways, the physical factors that determine these pathways have not been fully elucidated. Herein, we conducted molecular dynamics simulations in a binary Lennard-Jones system as a model solution and found that the nucleation pathway can be classified into four types depending on microscopic interactions. The key parameters are (1) the strength of the solute-solute interaction and (2) the difference between the strengths of the like-pair and unlike-pair interactions. The increment of the former alters the nucleation mechanism from a two-step to a one-step pathway, whereas that of the latter causes quick assembly of solutes. Moreover, we developed a thermodynamic model based on the formation of core-shell nuclei to calculate the free energy landscapes. Our model successfully described the pathway observed in the simulations and demonstrated that the two parameters, (1) and (2), define the degree of supercooling and supersaturation, respectively. Thus, our model interpreted the microscopic insights from a macroscopic point of view. Because the only inputs required for our model are the interaction parameters, our model can a priori predict the nucleation pathway.
Collapse
Affiliation(s)
- Yuya Iida
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Tatsumasa Hiratsuka
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| | - Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Weatherspoon H, Peters B. Broken bond models, magic-sized clusters, and nucleation theory in nanoparticle synthesis. J Chem Phys 2023; 158:114306. [PMID: 36948834 DOI: 10.1063/5.0132601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Magic clusters are metastable faceted nanoparticles that are thought to be important and, sometimes, observable intermediates in the nucleation of certain faceted crystallites. This work develops a broken bond model for spheres with a face-centered-cubic packing that form tetrahedral magic clusters. With just one bond strength parameter, statistical thermodynamics yield a chemical potential driving force, an interfacial free energy, and free energy vs magic cluster size. These properties exactly correspond to those from a previous model by Mule et al. [J. Am. Chem. Soc. 143, 2037 (2021)]. Interestingly, a Tolman length emerges (for both models) when the interfacial area, density, and volume are treated consistently. To describe the kinetic barriers between magic cluster sizes, Mule et al. invoked an energy parameter to penalize the two-dimensional nucleation and growth of new layers in each facet of the tetrahedra. According to the broken bond model, barriers between magic clusters are insignificant without the additional edge energy penalty. We estimate the overall nucleation rate without predicting the rates of formation for intermediate magic clusters by using the Becker-Döring equations. Our results provide a blueprint for constructing free energy models and rate theories for nucleation via magic clusters starting from only atomic-scale interactions and geometric considerations.
Collapse
Affiliation(s)
- Howard Weatherspoon
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
21
|
Sanchez-Burgos I, Espinosa JR. Direct Calculation of the Interfacial Free Energy between NaCl Crystal and Its Aqueous Solution at the Solubility Limit. PHYSICAL REVIEW LETTERS 2023; 130:118001. [PMID: 37001068 DOI: 10.1103/physrevlett.130.118001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
Salty water is the most abundant electrolyte aqueous mixture on Earth, however, very little is known about the NaCl-saturated solution interfacial free energy (γ_{s}). Here, we provide the first direct estimation of γ_{s} for several NaCl crystallographic planes by means of the mold integration technique, a highly efficient computational method to evaluate interfacial free energies with anisotropic crystal resolution. Making use of the JC-SPC/E model, one of the most benchmarked force fields for NaCl water solutions, we measure γ_{s} of four different crystal planes, (100), (110), (111), and (112[over ¯]) with the saturated solution at normal conditions. We find high anisotropy between the different crystal orientations with values ranging from 100 to 150 mJ m^{-2}, and the average value of the distinct planes being γ[over ¯]_{s}=137(20) mJ m^{-2}. This value for the coexistence interfacial free energy is in reasonable agreement with previous extrapolations from nucleation studies. Our Letter represents a milestone in the computational calculation of interfacial free energies between ionic crystals and aqueous solutions.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
22
|
Tandekar K, Schmidtmann M, Tripathi A, Mishra NK, Supriya S. Light-induced dissolution and concomitant crystallization of a Keggin-type polyoxometalate mimicking a naturally occurring phenomenon. Chem Commun (Camb) 2023; 59:3241-3244. [PMID: 36815372 DOI: 10.1039/d2cc03273b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A suspension of a yellow polycrystalline compound [PPh4]3[PMoVI12O40] in N-methylformanilide (NMF) (in which it is not soluble), on irradiation with sunlight, initiates dissolution via its reduction followed by its crystallization leading to the isolation of single crystals of compound [PPh4]4[PMoVMoVI11O40]·3CH3(C6H5)NCHO (1). Compounds [PPh4]3[PMoVI12O40]·1.75 CH3(C6H5)NCHO (2) and [PPh4]3[PMoVI12O40]·2CH3(C6H5)NCHO (3), each containing an oxidized Keggin anion, are obtained at two different temperatures when the corresponding mother liquor is kept in the dark.
Collapse
Affiliation(s)
- Kesar Tandekar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Marc Schmidtmann
- Institute of Chemistry, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Anjali Tripathi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Neeraj Kumar Mishra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Sabbani Supriya
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
23
|
Finney AR, Salvalaglio M. A variational approach to assess reaction coordinates for two-step crystallization. J Chem Phys 2023; 158:094503. [PMID: 36889939 DOI: 10.1063/5.0139842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Molecule- and particle-based simulations provide the tools to test, in microscopic detail, the validity of classical nucleation theory. In this endeavor, determining nucleation mechanisms and rates for phase separation requires an appropriately defined reaction coordinate to describe the transformation of an out-of-equilibrium parent phase for which myriad options are available to the simulator. In this article, we describe the application of the variational approach to Markov processes to quantify the suitability of reaction coordinates to study crystallization from supersaturated colloid suspensions. Our analysis indicates that collective variables (CVs) that correlate with the number of particles in the condensed phase, the system potential energy, and approximate configurational entropy often feature as the most appropriate order parameters to quantitatively describe the crystallization process. We apply time-lagged independent component analysis to reduce high-dimensional reaction coordinates constructed from these CVs to build Markov State Models (MSMs), which indicate that two barriers separate a supersaturated fluid phase from crystals in the simulated environment. The MSMs provide consistent estimates for crystal nucleation rates, regardless of the dimensionality of the order parameter space adopted; however, the two-step mechanism is only consistently evident from spectral clustering of the MSMs in higher dimensions. As the method is general and easily transferable, the variational approach we adopt could provide a useful framework to study controls for crystal nucleation.
Collapse
Affiliation(s)
- A R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - M Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
24
|
Li L, Paloni M, Finney AR, Barducci A, Salvalaglio M. Nucleation of Biomolecular Condensates from Finite-Sized Simulations. J Phys Chem Lett 2023; 14:1748-1755. [PMID: 36758221 PMCID: PMC9940850 DOI: 10.1021/acs.jpclett.2c03512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of protein condensates is a concentration-driven process of assembly. When modeled in the canonical ensemble, condensation is affected by finite-size effects. Here, we present a general and efficient route for obtaining ensemble properties of protein condensates in the macroscopic limit from finite-sized nucleation simulations. The approach is based on a theoretical description of droplet nucleation in the canonical ensemble and enables estimation of thermodynamic and kinetic parameters, such as the macroscopic equilibrium density of the dilute protein phase, the surface tension of the condensates, and nucleation free energy barriers. We apply the method to coarse-grained simulations of NDDX4 and FUS-LC, two phase-separating disordered proteins with different physicochemical characteristics. Our results show that NDDX4 condensate droplets, characterized by lower surface tension, higher solubility, and faster monomer exchange dynamics compared to those of FUS-LC, form with negligible nucleation barriers. In contrast, FUS-LC condensates form via an activated process over a wide range of concentrations.
Collapse
Affiliation(s)
- Lunna Li
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Matteo Paloni
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Aaron R. Finney
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Alessandro Barducci
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Matteo Salvalaglio
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| |
Collapse
|
25
|
Janajreh I, Zhang H, El Kadi K, Ghaffour N. Freeze desalination: Current research development and future prospects. WATER RESEARCH 2023; 229:119389. [PMID: 36450177 DOI: 10.1016/j.watres.2022.119389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Desalination is the solution for water security in regions with insufficient resources. This comes at high energy cost and hence improving desalination technologies translate into huge saving. Freeze desalination (FD) is emerging as an attractive low energy and less corrosion alternative to provide the needed fresh water. The maturity of the heat driven cooling technology and solar cooling have given freeze desalination an additional momentum. This paper summarizes the latest research progress done on FD that continues to push this technology towards deployment. It gives an overview of the FD configurations and highlighting its pros and cons, presents the recent experimental work that investigate the physics of the technology, and reviews the latest high-fidelity numerical modeling of brine freezing and salt diffusion away from crystal lattice which taps on the advanced development in computational power and multiphysics integration. This enables one to identify the challenges facing FD technology and stating the prospect and foreseeable research. The finding suggests that direct and indirect FD have been evolved well while the indirect is becoming the mainstream method for risk avoidance, while vacuum freezing and eutectic freezing are still facing large obstacles in their application. For direct FD, gas hydrate combined with liquefied natural gas (LNG) regasification has been popular topics to reduce their desalination cost. Simulation and modeling development in indirect FD continue to improve the knowledge of the mechanism of ice growth and salt entrapment which are key problems that need further experimental and numerical investigations. Nonetheless, the current successful application of LNG cold energy in freeze desalination, the hybridization of FD with conventional desalination technologies, as well as ultrasound assisted freezing are promising directions for FD commercialization.
Collapse
Affiliation(s)
- Isam Janajreh
- Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
| | - Hongtao Zhang
- Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Khadije El Kadi
- Center for Membrane and Advanced Water Technology, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Noreddine Ghaffour
- Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Khanna V, Doherty MF, Peters B. Predicting solubility and driving forces for crystallization using the absolute chemical potential route. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2155595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vikram Khanna
- Deptartment of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Michael F. Doherty
- Deptartment of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Baron Peters
- Deptartment of Chemical & Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Deptartment of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Roy S, Bocharova V, Stack AG, Bryantsev VS. Nucleation Rate Theory for Coordination Number: Elucidating Water-Mediated Formation of a Zigzag Na 2SO 4 Morphology. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53213-53227. [PMID: 36395432 DOI: 10.1021/acsami.2c17475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Predicting and controlling nanostructure formation during nucleation can pave the way to synthesizing novel energy materials via crystallization. However, such control over nucleation and crystallization remains challenging due to an inadequate understanding of critical factors that govern evolving atomistic structures and dynamics. Herein, we utilize coordination number as a reaction coordinate and rate theory to investigate how sodium sulfate, commonly known as a phase-change energy material, nucleates in a supersaturated aqueous solution. In conjunction with ab initio and force field-based molecular dynamics simulation, the rate theoretical analysis reveals that sodium sulfate from an initially dissolved metastable state transits to a heterogeneous mixture of prenucleated clusters and finally to a large cylindrical zigzag morphology. Measurements of Raman spectra and their ab initio modeling confirm that this nucleated morphology contains a few waters for every sulfate. Rate processes such as solvent exchange and desolvation exhibit high sensitivity to the evolving prenucleation/nucleation structures, providing a means to distinguish between critical nucleation precursors. Desolvation and forming the first-shell interionic coordination structure via monomer-by-monomer addition around sulfates are found to explain the formation of large nuclei. Thus, a detailed understanding of the step-by-step structure formation across scales has been achieved. This can be leveraged to predict nucleation-related structures and dynamics and potentially control the synthesis of novel phase-change materials for energy applications.
Collapse
Affiliation(s)
- Santanu Roy
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee37830, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee37830, United States
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee37830, United States
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee37830, United States
| |
Collapse
|
28
|
Silvestri A, Raiteri P, Gale JD. Obtaining Consistent Free Energies for Ion Binding at Surfaces from Solution: Pathways versus Alchemy for Determining Kink Site Stability. J Chem Theory Comput 2022; 18:5901-5919. [PMID: 36073829 DOI: 10.1021/acs.jctc.2c00787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion incorporation or removal from a solid at the interface with solution is a fundamental part of crystal growth. Despite this, there have been few quantitative determinations of the thermodynamics for such processes from atomistic molecular dynamics due to the associated technical challenges. In this study, we compute the free energies for ion removal from kink sites at the interface between NaCl and water as an illustrative example. To examine the influence of the free energy technique used, we compare methods that follow an explicit pathway for dissolution with those that focus on the thermodynamics of the initial and final states using metadynamics and free energy perturbation, respectively. While the initial results of the two approaches are found to be completely different, it is demonstrated that the thermodynamics can be reconciled with appropriate corrections for the standard states, thus illustrating the need for caution in interpreting raw free energy curves for ion binding as widely found in the literature. In addition, a new efficient approach is introduced to correct for the system size dependence of kink site energies both due to the periodic interaction of charges in an inhomogeneous dielectric system and due to the dipolar interactions between pairs of kinks along a row. Ultimately, it is shown that with suitable care, both classes of free energy techniques are capable of producing kink site stabilities that are consistent with the solubility of the underlying bulk solid. However, the precise values for individual kink sites exhibit a small systematic offset, which can be ascribed to the contribution of the interfacial potential to the pathway-based results. For the case of NaCl, the free energies of the kink sites relative to a 1 M aqueous solution for Na+ and Cl- are found to be surprisingly different and of opposite sign, despite the ions having very similar hydration free energies.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| | - Julian D Gale
- Curtin Institute for Computation, School of Molecular and Life Sciences, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
29
|
Sanchez-Burgos I, Tejedor AR, Vega C, Conde MM, Sanz E, Ramirez J, Espinosa JR. Homogeneous ice nucleation rates for mW and TIP4P/ICE models through Lattice Mold calculations. J Chem Phys 2022; 157:094503. [DOI: 10.1063/5.0101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Water freezing is the most common liquid-to-crystal phase transition on Earth, however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240K. We employ two different water models, mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic non-polarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih, Ic and a stacking mixture of ice Ih/Ic; reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner which contributes to benchmarking the freezing behaviour of two popular water models.
Collapse
Affiliation(s)
| | | | - Carlos Vega
- Departamento de Quimica Fisica, Universidad Complutense de Madrid Facultad de Ciencias Químicas, Spain
| | - Maria M. Conde
- Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | | - Jorge Ramirez
- Chemical Engineering, Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Industriales, Spain
| | | |
Collapse
|
30
|
Lodesani F, Menziani MC, Urata S, Pedone A. Biasing Crystallization in Fused Silica: An Assessment of Optimal Metadynamics Parameters. J Chem Phys 2022; 156:194501. [DOI: 10.1063/5.0089183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Metadynamics is a useful technique to study rare events such as crystallization. It has been only recently applied to study nucleation and crystallization in glass-forming liquids such as silicates but the optimal set of parameters to drive crystallization and obtaining converged Free Energy Surfaces is still unexplored. <p>In this work, we systematically investigated the effects of the simulation conditions to efficiently study the thermodynamics and mechanism of crystallization in highly viscous systems. As a prototype system, we used fused silica, which easily crystallizes to β-cristobalite through MetaD simulations, owing to its simple microstructure. We investigated the influence of the height, width, and bias factor used to define the biasing Gaussian potential, as well as the effects of the temperature and system size on the results. Among these parameters, the bias factor and temperature seem to be most effective to sample the free energy landscape of melt to crystal transition and reach convergence more quickly. We also demonstrate that the temperature rescaling from T > Tm is a reliable approach to recover free energy surfaces below Tm, provided that the temperature gap is below 600 K and the configurational space has been properly sampled. Finally, albeit a complete crystallization is hard to achieve with large simulation boxes, these can be reliably and effectively exploited to study the first stages of nucleation.
Collapse
Affiliation(s)
- Federica Lodesani
- Universita degli Studi di Modena e Reggio Emilia Dipartimento di Scienze Chimiche e Geologiche, Italy
| | - Maria Cristina Menziani
- Universita degli Studi di Modena e Reggio Emilia Dipartimento di Scienze Chimiche e Geologiche, Italy
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Japan
| | - Alfonso Pedone
- Universita degli Studi di Modena e Reggio Emilia Dipartimento di Scienze Chimiche e Geologiche, Italy
| |
Collapse
|
31
|
Urquidi O, Brazard J, LeMessurier N, Simine L, Adachi TBM. In situ optical spectroscopy of crystallization: One crystal nucleation at a time. Proc Natl Acad Sci U S A 2022; 119:e2122990119. [PMID: 35394901 PMCID: PMC9169808 DOI: 10.1073/pnas.2122990119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
While crystallization is a ubiquitous and an important process, the microscopic picture of crystal nucleation is yet to be established. Recent studies suggest that the nucleation process can be more complex than the view offered by the classical nucleation theory. Here, we implement single crystal nucleation spectroscopy (SCNS) by combining Raman microspectroscopy and optical trapping induced crystallization to spectroscopically investigate one crystal nucleation at a time. Raman spectral evolution during a single glycine crystal nucleation from water, measured by SCNS and analyzed by a nonsupervised spectral decomposition technique, uncovered the Raman spectrum of prenucleation aggregates and their critical role as an intermediate species in the dynamics. The agreement between the spectral feature of prenucleation aggregates and our simulation suggests that their structural order emerges through the dynamic formation of linear hydrogen-bonded networks. The present work provides a strong impetus for accelerating the investigation of crystal nucleation by optical spectroscopy.
Collapse
Affiliation(s)
- Oscar Urquidi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | - Johanna Brazard
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| | | | - Lena Simine
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Takuji B. M. Adachi
- Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
32
|
Saravi SH, Panagiotopoulos AZ. Activity Coefficients and Solubilities of NaCl in Water-Methanol Solutions from Molecular Dynamics Simulations. J Phys Chem B 2022; 126:2891-2898. [PMID: 35411772 DOI: 10.1021/acs.jpcb.2c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We obtain activity coefficients and solubilities of NaCl in water-methanol solutions at 298.15 K and 1 bar from molecular dynamics (MD) simulations with the Joung-Cheatham, SPC/E, and OPLS-AA force fields for NaCl, water, and methanol, respectively. The Lorentz-Berthelot combining rules were adopted for the unlike-pair interactions of Na+, Cl-, and the oxygen site in SPC/E water, and geometric combining rules were utilized for the remainder of the cross interactions. We found that the selection of appropriate combining rules is important in obtaining physically realistic solubilities. The solvent compositions studied range from pure water to pure methanol. Several salt concentrations were investigated at each solvent composition, from the lowest concentrations permitted by the system size used up to the experimental solubilities. We first calculated individual ion activity coefficients (IIACs) for Na+ and Cl- from the free energy change due to the gradual insertion of a single cation or anion into the solution, accompanied by a neutralizing background. We obtained the salt solubilities by comparing the chemical potentials in solution with solid NaCl chemical potentials calculated previously using the Einstein crystal method. Mean ionic activity coefficients obtained from the IIACs are in reasonable agreement with experimental data, with deviations increasing for solutions of higher methanol content. Predictions for the salt solubility are in surprisingly good agreement with experimental data, despite well-known challenges in the simultaneous calculation of activity coefficients and solubilities with classical MD simulations. The present study demonstrates that good predictions for these two important phase equilibrium properties can be obtained for mixed-solvent electrolyte solutions using existing nonpolarizable models and further suggests that the previously proposed single ion insertion technique can be extended to complex mixed-solvent solutions as well.
Collapse
Affiliation(s)
- Sina Hassanjani Saravi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | |
Collapse
|
33
|
Bulutoglu PS, Wang S, Boukerche M, Nere NK, Corti DS, Ramkrishna D. An investigation of the kinetics and thermodynamics of NaCl nucleation through composite clusters. PNAS NEXUS 2022; 1:pgac033. [PMID: 36713321 PMCID: PMC9802385 DOI: 10.1093/pnasnexus/pgac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
Having a good understanding of nucleation is critical for the control of many important processes, such as polymorph selection during crystallization. However, a complete picture of the molecular-level mechanisms of nucleation remains elusive. In this work, we take an in-depth look at the NaCl homogeneous nucleation mechanism through thermodynamics. Distinguished from the classical nucleation theory, we calculate the free energy of nucleation as a function of two nucleus size coordinates: crystalline and amorphous cluster sizes. The free energy surface reveals a thermodynamic preference for a nonclassical mechanism of nucleation through a composite cluster, where the crystalline nucleus is surrounded by an amorphous layer. The thickness of the amorphous layer increases with an increase in supersaturation. The computed free energy landscape agrees well with the composite cluster-free energy model, through which phase specific thermodynamic properties are evaluated. As the supersaturation increases, there is a change in stability of the amorphous phase relative to the solution phase, resulting in a change from one-step to two-step mechanism, seen clearly from the free energy profile along the minimum free energy path crossing the transition curve. By obtaining phase-specific diffusion coefficients, we construct the full mesoscopic model and present a clear roadmap for NaCl nucleation.
Collapse
Affiliation(s)
- Pelin S Bulutoglu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Shiyan Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | - Moussa Boukerche
- Process Research and Development , AbbVie Inc, North Chicago, IL 60064, USA
| | - Nandkishor K Nere
- Process Research and Development , AbbVie Inc, North Chicago, IL 60064, USA
| | - David S Corti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-2100, USA
| | | |
Collapse
|
34
|
|
35
|
Zhao Y, Zhang Q, Li Y, Chen L, Yi R, Peng B, Nie D, Zhang L, Shi G, Zhang S, Zhang L. Graphitic-like Hexagonal Phase of Alkali Halides in Quasi-Two-Dimensional Confined Space under Ambient Conditions. ACS NANO 2022; 16:2046-2053. [PMID: 35137582 DOI: 10.1021/acsnano.1c07424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of specific matter phases with abnormal physical properties in low-dimensional systems and/or on particular substrates, such as the hexagonal phase of ice and two-dimensional (2D) CaCl with an abnormal valence state, continuously reveals more fundamental mechanisms of the nature. Alkali halides, represented by NaCl, are one of the most common compounds and usually thought to be well-understood. In the past decades, many theoretical studies suggested the existence of one particular phase, that is, the graphitic-like hexagonal phase of alkali halides at high pressure or in low-dimension states, with the expectation of improved properties of this matter phase but lacking experimental evidence due to severe technical challenges. Here, by optimized cryo-electron microscopy, we report the direct atomic-resolution observation and in situ characterization of the prevalent and stable graphitic-like alkali halide hexagonal phases, which were spontaneously formed by unsaturated NaCl and LiCl solution, respectively, in the quasi-2D confined space between reduced graphene oxide layers under ambient conditions. Combined with a control experiment, density functional theory calculations, and previous theoretical studies, we believe that a delicate balance among the cation-π interaction of the solute and substrate, electrostatic interactions of anions and cations, solute-solvent interactions, and thermodynamics under confinement synergistically results in the formation of such hexagonal crystalline phases. These findings highlight the effects of the substrate and the confined space on the formation of specific matter phases and provide a universal scheme for the preparation of special graphitic-like hexagonal phases of alkali halides.
Collapse
Affiliation(s)
- Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Quan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunzhang Li
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Ruobing Yi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Bingquan Peng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dexi Nie
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lihao Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
36
|
Chen L, Xu P, Wang H. Photocatalytic membrane reactors for produced water treatment and reuse: Fundamentals, affecting factors, rational design, and evaluation metrics. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127493. [PMID: 34879511 DOI: 10.1016/j.jhazmat.2021.127493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Treatment and reuse of produced water (PW), the largest wastewater stream generated during oil and gas production, provides a promising option to address the increasing clean water demands. High-performance treatment technologies are needed to efficiently remove the organic and inorganic contaminants in PW for fit-for-purpose applications. Photocatalytic membrane reactor (PMR) is an emerging green technology for removal of organic pollutants, photoreduction of heavy metals, photo-inactivation of bacteria, and resource recovery. This study critically reviewed the mechanisms of photocatalysis and membrane processes in PMR, factors affecting PMR performance, rational design, and evaluation metrics for PW treatment. Specifically, PW characteristics, photocatalysts properties, membranes applied, and operating conditions are of utmost importance for rational design and reliable operation of PMR. PW pretreatment to remove oil and grease, colloidal and suspended solids is necessary to reduce membrane fouling and ensure optimal PMR performance. The metrics to evaluate PMR performance were developed including light utilization, exergetic efficiency, water recovery, product water improvement, lifetime of the photocatalyst, and costs. This review also presented the research gaps and outlook for future research.
Collapse
Affiliation(s)
- Lin Chen
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
37
|
Bianco V, Conde MM, Lamas CP, Noya EG, Sanz E. Phase diagram of the NaCl–water system from computer simulations. J Chem Phys 2022; 156:064505. [DOI: 10.1063/5.0083371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- V. Bianco
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M. M. Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - C. P. Lamas
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. G. Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - E. Sanz
- Departamento de Química Física (Unidad de I+D+i asociada al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
38
|
Yadav A, Labhasetwar PK, Shahi VK. Membrane distillation crystallization technology for zero liquid discharge and resource recovery: Opportunities, challenges and futuristic perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150692. [PMID: 34600997 DOI: 10.1016/j.scitotenv.2021.150692] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/12/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Water resources are getting limited, which emphasises the need for the reuse of wastewater. The conventional waste(water) treatment methods such as reverse osmosis (RO) and multi-effect distillation (MED) are rendered limited due to certain limitations. Moreover, the imposition of stringent environmental regulations in terms of zero liquid discharge (ZLD) of wastewater containing very high dissolved solids has assisted in developing technologies for the recovery of water and useful solids. Membrane distillation crystallization (MDCr) is an emerging hybrid technology synergising membrane distillation (MD) and crystallization, thus achieving ZLD. MDCr technology can be applied to desalinate seawater, treat nano-filtration, and RO reject brine and industrial wastewater to increase water recovery and yield useful solids. This manuscript focuses on recent advances in MDCr, emphasizing models that account for application in (waste)water treatment. MDCr has dual benefits, first the environmental conservation due to non-disposal of wastewater and second, resources recovery proving the proverb that waste is a misplaced resource. Limitations of standalone MD and crystallization are discussed to underline the evolution of MDCr. In this review, MDCr's ability and feasibility in the treatment of industrial wastewater are highlighted. This manuscript also examines the operational issues, including crystal deposition (scaling) on the membrane surface, pore wetting phenomenon and economic consequences (energy use and operating costs). Finally, opportunities and future prospects of the MDCr technology are discussed. MDCr technology can amplify natural resources availability by recovering freshwater and useful minerals from the waste stream, thus compensating for the relatively high cost of the technology.
Collapse
Affiliation(s)
- Anshul Yadav
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Pawan K Labhasetwar
- Water Technology and Management Division, CSIR- National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vinod K Shahi
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
39
|
Shen L, Gai W, Qin L, Zhou R, Li S. Research of seawater freezing based on TIP4P/ICE potential: A new algorithm for generating proton disordered ice Ih. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
40
|
Xiao W, He Z, Shao G, Li P, Ruan X, Yan X, Wu X, Li X, He G, Jiang X. Membrane-Assisted Cooling Crystallization for Interfacial Nucleation Induction and Self-Seeding Control. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Zeman He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Guanying Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Peiyu Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Ruan
- School of Chemical Engineerng at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- School of Chemical Engineerng at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiangcun Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineerng at Panjin, Dalian University of Technology, Panjin 124221, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
41
|
P Lamas C, R Espinosa J, M Conde M, Ramírez J, Montero de Hijes P, G Noya E, Vega C, Sanz E. Homogeneous nucleation of NaCl in supersaturated solutions. Phys Chem Chem Phys 2021; 23:26843-26852. [PMID: 34817484 DOI: 10.1039/d1cp02093e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The seeding method is an approximate approach to investigate nucleation that combines molecular dynamics simulations with classical nucleation theory. Recently, this technique has been successfully implemented in a broad range of nucleation studies. However, its accuracy is subject to the arbitrary choice of the order parameter threshold used to distinguish liquid-like from solid-like molecules. We revisit here the crystallization of NaCl from a supersaturated brine solution and show that consistency between seeding and rigorous methods, like Forward Flux Sampling (from previous work) or spontaneous crystallization (from this work), is achieved by following a mislabelling criterion to select such threshold (i.e. equaling the fraction of the mislabelled particles in the bulk parent and nucleating phases). This work supports the use of seeding to obtain fast and reasonably accurate nucleation rate estimates and the mislabelling criterion as one giving the relevant cluster size for classical nucleation theory in crystallization studies.
Collapse
Affiliation(s)
- C P Lamas
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. .,Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - J R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - M M Conde
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - J Ramírez
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - P Montero de Hijes
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - E G Noya
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, CSIC, Calle Serrano 119, 28006 Madrid, Spain
| | - C Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - E Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Luo X, Li X, Wei C, Zheng S, Deng Z, Li M, Fan G, Huang X. The prevention of scaling by decreasing the concentration of scale-forming ions in the vacuum evaporation salt-making process. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Wang K, Huang H, Han Y. Quantifying the Driving Force of Silver Crystallization by Chemical Potential Difference. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoyang Huang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongsheng Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Science and Technology on Particle Materials, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
44
|
Mandal D, Quigley D. Nucleation rate in the two dimensional Ising model in the presence of random impurities. SOFT MATTER 2021; 17:8642-8650. [PMID: 34533176 DOI: 10.1039/d1sm01172c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nucleation phenomena are ubiquitous in nature and the presence of impurities in every real and experimental system is unavoidable. Yet numerical studies of nucleation are nearly always conducted for entirely pure systems. We have studied the behaviour of the droplet free energy in two dimensional Ising model in the presence of randomly positioned static and dynamic impurities. We have shown that both the free energy barrier height and critical nucleus size monotonically decreases with increasing the impurity density for the static case. We have compared the nucleation rates obtained from the Classical Nucleation Theory and the Forward Flux Sampling method for different densities of the static impurities. The results show good agreement. In the case of dynamic impurities, we observe preferential occupancy of the impurities at the boundary positions of the nucleus when the temperature is low. This further boosts enhancement of the nucleation rate due to lowering of the effective interfacial free energy.
Collapse
Affiliation(s)
- Dipanjan Mandal
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| | - David Quigley
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
45
|
Garaizar A, Espinosa JR. Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. J Chem Phys 2021; 155:125103. [PMID: 34598583 DOI: 10.1063/5.0062687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multivalent proteins and nucleic acids can self-assemble into biomolecular condensates that contribute to compartmentalize the cell interior. Computer simulations offer a unique view to elucidate the mechanisms and key intermolecular interactions behind the dynamic formation and dissolution of these condensates. In this work, we present a novel approach to include explicit water and salt in sequence-dependent coarse-grained (CG) models for proteins and RNA, enabling the study of biomolecular condensate formation in a salt-dependent manner. Our framework combines a reparameterized version of the HPS protein force field with the monoatomic mW water model and the mW-ion potential for NaCl. We show how our CG model qualitatively captures the experimental radius of the gyration trend of a subset of intrinsically disordered proteins and reproduces the experimental protein concentration and water percentage of the human fused in sarcoma (FUS) low-complexity-domain droplets at physiological salt concentration. Moreover, we perform seeding simulations as a function of salt concentration for two antagonist systems: the engineered peptide PR25 and poly-uridine/poly-arginine mixtures, finding good agreement with their reported in vitro phase behavior with salt concentration in both cases. Taken together, our work represents a step forward towards extending sequence-dependent CG models to include water and salt, and to consider their key role in biomolecular condensate self-assembly.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
46
|
Finney AR, McPherson IJ, Unwin PR, Salvalaglio M. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite. Chem Sci 2021; 12:11166-11180. [PMID: 34522314 PMCID: PMC8386640 DOI: 10.1039/d1sc02289j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Graphite and related sp2 carbons are ubiquitous electrode materials with particular promise for use in e.g., energy storage and desalination devices, but very little is known about the properties of the carbon–electrolyte double layer at technologically relevant concentrations. Here, the (electrified) graphite–NaCl(aq) interface was examined using constant chemical potential molecular dynamics (CμMD) simulations; this approach avoids ion depletion (due to surface adsorption) and maintains a constant concentration, electroneutral bulk solution beyond the surface. Specific Na+ adsorption at the graphite basal surface causes charging of the interface in the absence of an applied potential. At moderate bulk concentrations, this leads to accumulation of counter-ions in a diffuse layer to balance the effective surface charge, consistent with established models of the electrical double layer. Beyond ∼0.6 M, however, a combination of over-screening and ion crowding in the double layer results in alternating compact layers of charge density perpendicular to the interface. The transition to this regime is marked by an increasing double layer size and anomalous negative shifts to the potential of zero charge with incremental changes to the bulk concentration. Our observations are supported by changes to the position of the differential capacitance minimum measured by electrochemical impedance spectroscopy, and are explained in terms of the screening behaviour and asymmetric ion adsorption. Furthermore, a striking level of agreement between the differential capacitance from solution evaluated in simulations and measured in experiments allows us to critically assess electrochemical capacitance measurements which have previously been considered to report simply on the density of states of the graphite material at the potential of zero charge. Our work shows that the solution side of the double layer provides the more dominant contribution to the overall measured capacitance. Finally, ion crowding at the highest concentrations (beyond ∼5 M) leads to the formation of liquid-like NaCl clusters confined to highly non-ideal regions of the double layer, where ion diffusion is up to five times slower than in the bulk. The implications of changes to the speciation of ions on reactive events in the double layer are discussed. CμMD reveals multi-layer electrolyte screening in the double layer beyond 0.6 M, which affects ion activities, speciation and mobility; asymmetric charge screening explains concentration dependent changes to electrochemical properties.![]()
Collapse
Affiliation(s)
- Aaron R Finney
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| | - Ian J McPherson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London London WC1E 7JE UK
| |
Collapse
|
47
|
Blow KE, Quigley D, Sosso GC. The seven deadly sins: When computing crystal nucleation rates, the devil is in the details. J Chem Phys 2021; 155:040901. [PMID: 34340373 DOI: 10.1063/5.0055248] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The formation of crystals has proven to be one of the most challenging phase transformations to quantitatively model-let alone to actually understand-be it by means of the latest experimental technique or the full arsenal of enhanced sampling approaches at our disposal. One of the most crucial quantities involved with the crystallization process is the nucleation rate, a single elusive number that is supposed to quantify the average probability for a nucleus of critical size to occur within a certain volume and time span. A substantial amount of effort has been devoted to attempt a connection between the crystal nucleation rates computed by means of atomistic simulations and their experimentally measured counterparts. Sadly, this endeavor almost invariably fails to some extent, with the venerable classical nucleation theory typically blamed as the main culprit. Here, we review some of the recent advances in the field, focusing on a number of perhaps more subtle details that are sometimes overlooked when computing nucleation rates. We believe it is important for the community to be aware of the full impact of aspects, such as finite size effects and slow dynamics, that often introduce inconspicuous and yet non-negligible sources of uncertainty into our simulations. In fact, it is key to obtain robust and reproducible trends to be leveraged so as to shed new light on the kinetics of a process, that of crystal nucleation, which is involved into countless practical applications, from the formulation of pharmaceutical drugs to the manufacturing of nano-electronic devices.
Collapse
Affiliation(s)
- Katarina E Blow
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Quigley
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gabriele C Sosso
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
48
|
Goswami A, Dalal IS, Singh JK. Universal Nucleation Behavior of Sheared Systems. PHYSICAL REVIEW LETTERS 2021; 126:195702. [PMID: 34047572 DOI: 10.1103/physrevlett.126.195702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Using molecular simulations and a modified classical nucleation theory, we study the nucleation, under flow, of a variety of liquids: different water models, Lennard-Jones, and hard sphere colloids. Our approach enables us to analyze a wide range of shear rates inaccessible to brute-force simulations. Our results reveal that the variation of the nucleation rate with shear is universal. A simplified version of the theory successfully captures the nonmonotonic temperature dependence of the nucleation behavior, which is shown to originate from the violation of the Stokes-Einstein relation.
Collapse
Affiliation(s)
- Amrita Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Indranil Saha Dalal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
49
|
Takemura S, Takeda T, Nakanishi T, Koyama Y, Ikeno H, Hirosaki N. Dissimilarity measure of local structure in inorganic crystals using Wasserstein distance to search for novel phosphors. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:185-193. [PMID: 33967628 PMCID: PMC8079038 DOI: 10.1080/14686996.2021.1899555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
To efficiently search for novel phosphors, we propose a dissimilarity measure of local structure using the Wasserstein distance. This simple and versatile method provides the quantitative dissimilarity of a local structure around a center ion. To calculate the Wasserstein distance, the local structures in crystals are numerically represented as a bag of interatomic distances. The Wasserstein distance is calculated for various ideal structures and local structures in known phosphors. The variation of the Wasserstein distance corresponds to the structural variation of the local structures, and the Wasserstein distance can quantitatively explain the dissimilarity of the local structures. The correlation between the Wasserstein distance and the full width at half maximum suggests that candidates for novel narrow-band phosphors can be identified by crystal structures that include local structures with small Wasserstein distances to local structures of known narrow-band phosphors. The quantitative dissimilarity using the Wasserstein distance is useful in the search of novel phosphors and expected to be applied in materials searches in other fields in which local structures play an important role.
Collapse
Affiliation(s)
- Shota Takemura
- Sialon Group, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Takeda
- Sialon Group, National Institute for Materials Science, Tsukuba, Japan
| | | | - Yukinori Koyama
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba, Japan
| | - Hidekazu Ikeno
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Naoto Hirosaki
- Sialon Group, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
50
|
Wang L, Chen J, Cox SJ, Liu L, Sosso GC, Li N, Gao P, Michaelides A, Wang E, Bai X. Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. PHYSICAL REVIEW LETTERS 2021; 126:136001. [PMID: 33861106 DOI: 10.1103/physrevlett.126.136001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The fundamental understanding of crystallization, in terms of microscopic kinetic and thermodynamic details, remains a key challenge in the physical sciences. Here, by using in situ graphene liquid cell transmission electron microscopy, we reveal the atomistic mechanism of NaCl crystallization from solutions confined within graphene cells. We find that rock salt NaCl forms with a peculiar hexagonal morphology. We also see the emergence of a transitory graphitelike phase, which may act as an intermediate in a two-step pathway. With the aid of density functional theory calculations, we propose that these observations result from a delicate balance between the substrate-solute interaction and thermodynamics under confinement. Our results highlight the impact of confinement on both the kinetics and thermodynamics of crystallization, offering new insights into heterogeneous crystallization theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
| | - Ji Chen
- School of Physics and the Collaborative Innovation Center of Quantum Matters, Peking University, Beijing 100871, China
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ning Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Enge Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- School of Physics, Liaoning University, Shenyang 110036, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Laboratory for Materials Science, Dongguan 523000, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|