1
|
Savvateeva LV, Chepikova OE, Solonkina AD, Sakharov AA, Gorokhovets NV, Golovin AV, Zamyatnin AA. Computational Screening and Experimental Evaluation of Wheat Proteases for Use in the Enzymatic Therapy of Gluten-Related Disorders. Pharmaceuticals (Basel) 2025; 18:592. [PMID: 40284026 PMCID: PMC12030614 DOI: 10.3390/ph18040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Gluten-related disorders, particularly celiac disease, are triggered in susceptible individuals by the toxic effects of gluten, the major storage protein of wheat grains. This toxicity can be reduced by wheat glutenases. Members of the papain-like cysteine protease family, which can act in the human gastrointestinal tract, are promising candidates for the enzymatic treatment of celiac disease. Methods: Two wheat proteases were selected using AlphaFold2, produced in recombinant forms, and characterized. Their glutenase potentials under acidic or slightly acidic conditions were evaluated and compared with the properties of the previously characterized wheat glutenase Triticain-α. Results: All enzymes tested, Ta-P7, Ta-V6, and Triticain-α, were able to hydrolyze the model substrate (α-gliadin-derived epitope) in the pH range of 3.6-7.5. Nevertheless, Triticain-α performs the most efficient hydrolysis of the peptide substrate under the conditions of the gastrointestinal tract, according to its kinetic characteristics. In the wheat gluten degradation experiment at pH 4.6 and 37 °C, both Ta-P7 and Triticain-α cleaved the mixture almost completely within 5 min. In addition, Triticain-α and Ta-P7 significantly reduced the levels of toxic peptides compared to both intact gluten and gluten treated with pepsin-trypsin digestion as tested by the Ridascreen Gliadin Kit. Conclusions: Novel wheat proteases under investigation possess the expected glutenase activity to varying degrees; however, Triticain-α is a primary candidate for potential use in the enzymatic therapy of gluten-related disorders.
Collapse
Affiliation(s)
- Lyudmila V. Savvateeva
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (L.V.S.); (O.E.C.); (N.V.G.)
| | - Olga E. Chepikova
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (L.V.S.); (O.E.C.); (N.V.G.)
| | - Alena D. Solonkina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.D.S.); (A.V.G.)
| | - Artemiy A. Sakharov
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Krasnodar Region, Russia;
| | - Neonila V. Gorokhovets
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (L.V.S.); (O.E.C.); (N.V.G.)
| | - Andrey V. Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.D.S.); (A.V.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.D.S.); (A.V.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Dipasquale V, Romano C. New Therapeutic Challenges in Pediatric Gastroenterology: A Narrative Review. Healthcare (Basel) 2025; 13:923. [PMID: 40281872 PMCID: PMC12027047 DOI: 10.3390/healthcare13080923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025] Open
Abstract
Pediatric gastroenterology is entering a pivotal phase marked by significant challenges and emerging opportunities in treating conditions like celiac disease (CeD), eosinophilic esophagitis (EoE), inflammatory bowel disease (IBD), and autoimmune hepatitis (AIH) pose significant clinical hurdles, but new therapeutic avenues are emerging. Advances in precision medicine, particularly proteomics, are reshaping care by tailoring treatments to individual patient characteristics. For CeD, therapies like gluten-degrading enzymes (latiglutenase, Kuma030) and zonulin inhibitors (larazotide acetate) show promise, though clinical outcomes are inconsistent. Immunotherapy and microbiota modulation, including probiotics and fecal microbiota transplantation (FMT), are also under exploration, with potential benefits in symptom management. Transglutaminase 2 inhibitors like ZED-1227 could help prevent gluten-induced damage. Monoclonal antibodies targeting immune pathways, such as AMG 714 and larazotide acetate, require further validation in pediatric populations. In EoE, biologics like dupilumab, cendakimab, dectrekumab (IL-13 inhibitors), and mepolizumab, reslizumab, and benralizumab (IL-5/IL-5R inhibitors) show varying efficacy, while thymic stromal lymphopoietin (TSLP) inhibitors like tezepelumab are also being investigated. These therapies require more pediatric-specific research to optimize their use. For IBD, biologics like vedolizumab, ustekinumab, and risankizumab, as well as small molecules like tofacitinib, etrasimod, and upadacitinib, are emerging treatments. New medications for individuals with refractory or steroid-dependent AIH have been explored. Personalized therapy, integrating precision medicine, therapeutic drug monitoring, and lifestyle changes, is increasingly guiding pediatric IBD management. This narrative review explores recent breakthroughs in treating CeD, EoE, IBD, and AIH, with a focus on pediatric studies when available, and discusses the growing role of proteomics in advancing personalized gastroenterological care.
Collapse
Affiliation(s)
- Valeria Dipasquale
- Pediatric Gastroenterology and Cystic Fibrosis Unit, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino”, 98122 Messina, Italy;
| | | |
Collapse
|
3
|
Bonner ER, Tschollar W, Anderson R, Mourabit S. Review Article: Novel Enzyme Therapy Design for Gluten Peptide Digestion Through Exopeptidase Supplementation. Aliment Pharmacol Ther 2025; 61:1123-1139. [PMID: 39955716 PMCID: PMC11908114 DOI: 10.1111/apt.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Dietary peptides are increasingly linked to inflammatory gastrointestinal diseases, exemplified by coeliac disease. Coeliac disease is caused by an acquired immune response to proline- and glutamine-rich gluten peptides, which bottleneck proteolysis and provide substrates for immune recognition. Enzyme therapies aim to eliminate gluten immunogenic peptides as an adjunct to gluten-free diet. AIMS To investigate overlooked aspects of enzyme development given difficulties in translating preclinical efficacy into clinical benefit. METHODS We assessed mode-of-action, target organ and drug delivery in the context of digestive physiology and motility for gluten-digesting enzymes on the market or in development until 1 December 2024. RESULTS Most enzymes were gastric endopeptidases specific for proline or glutamine residues. Gastric enzymes may achieve poor enzyme-substrate exposure due to limited mixing and rapid emptying of water-soluble particles. Moreover, endopeptidases cleave proteins/peptides into shorter peptides but do not systematically cleave protein into absorbable fractions. Natural digestive physiology provides thorough mixing at the intestinal brush border, which produces exopeptidases necessary to fully digest proline-rich peptides. Despite reduced activity in patients with coeliac disease, exopeptidases remain underexplored as therapeutic agents. Given limited substrate scope and end-to-end digestion, exopeptidases are ineffective as single agents, requiring functional combinations. Furthermore, vulnerability to gastric acid requires stabilisation or formulation for rapid enteric release. CONCLUSIONS Enzymes should be stabilised throughout the gastrointestinal tract including the small intestine. Exopeptidases perform a critical function by systematically generating absorbable fractions, warranting future investigation as therapeutic agents. Sensitive and translational biomarkers are needed to better assess enzyme efficacy in real-meal conditions.
Collapse
|
4
|
Kowalski MK, Domżał-Magrowska D, Małecka-Wojciesko E. Celiac Disease-Narrative Review on Progress in Celiac Disease. Foods 2025; 14:959. [PMID: 40231983 PMCID: PMC11941517 DOI: 10.3390/foods14060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
Celiac disease is defined as a systemic immunological disorder caused by gluten (gliadin and other prolamin) in genetically predisposed individuals, who present with a variety of gluten-dependent symptoms, specific antibodies, the presence of the HLA DQ2 and DQ8 histocompatibility antigen, and enteropathy. Its prevalence, depending on the studied population and methodology, is estimated at 0.75-1.6% of the general population. During the complex immune reaction it induces, most cells involved in inflammatory processes are activated, which leads to the gradual atrophy of intestinal villi and the proliferation of enterocytes within intestinal crypts. The pathogenesis of celiac disease is extremely complicated and is still the subject of research. According to the current diagnostic guidelines, the following criteria should be taken into account: clinical symptoms (intestinal and extraintestinal), the presence of antibodies against tissue transglutaminase in the IgA class, the level of total IgA, and the presence of typical histological changes in duodenal biopsies. Diet-resistant celiac disease is one of the most important clinical challenges, causing serious complications. Currently, the basic method for treating celiac disease is an elimination diet (i.e., the exclusion of products that may contain gluten from the diet), however, new therapeutic strategies are still being sought, mainly based on supplementation with exogenous endopeptidases, modification of the immune response, and the use of zonulin inhibitors and transglutaminase 2 inhibitors. Clinical trials of new drugs are ongoing. The gradually expanding knowledge about the pathogenesis of celiac disease may allow for the development of new therapeutic strategies for both patients with a mild disease course, as well as those that are diet-resistant.
Collapse
Affiliation(s)
| | | | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Norbert Barlicki University Hospital, 90-153 Lodz, Poland; (M.K.K.); (D.D.-M.)
| |
Collapse
|
5
|
Simpson HL, Smits E, Moerkens R, Wijmenga C, Mooiweer J, Jonkers IH, Withoff S. Human organoids and organ-on-chips in coeliac disease research. Trends Mol Med 2025; 31:117-137. [PMID: 39448329 DOI: 10.1016/j.molmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Hanna L Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Eline Smits
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
6
|
Ge HJ, Chen XL. Advances in understanding and managing celiac disease: Pathophysiology and treatment strategies. World J Gastroenterol 2024; 30:3932-3941. [PMID: 39351055 PMCID: PMC11438662 DOI: 10.3748/wjg.v30.i35.3932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we comment on an article published in the recent issue of the World Journal of Gastroenterology. Celiac disease (CeD) is a disease occurring in genetically susceptible individuals, which is mainly characterized by gluten intolerance in the small intestine and clinical symptoms such as abdominal pain, diarrhea, and malnutrition. Therefore, patients often need a lifelong gluten-free diet, which greatly affects the quality of life and expenses of patients. The gold standard for diagnosis is intestinal mucosal biopsy, combined with serological and genetic tests. At present, the lack of safe, effective, and satisfactory drugs for CeD is mainly due to the complexity of its pathogenesis, and it is difficult to find a perfect target to solve the multi-level needs of patients. In this editorial, we mainly review the pathological mechanism of CeD and describe the current experimental and improved drugs for various pathological aspects.
Collapse
Affiliation(s)
- Hao-Jie Ge
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
7
|
Sharma L, Rahman F, Sharma RA. The emerging role of biotechnological advances and artificial intelligence in tackling gluten sensitivity. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39145745 DOI: 10.1080/10408398.2024.2392158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Gluten comprises an intricate network of hundreds of related but distinct proteins, mainly "gliadins" and "glutenins," which play a vital role in determining the rheological properties of wheat dough. However, ingesting gluten can trigger severe conditions in susceptible individuals, including celiac disease, wheat allergy, or non-celiac gluten sensitivity, collectively known as gluten-related disorders. This review provides a panoramic view, delving into the various aspects of gluten-triggered disorders, including symptoms, diagnosis, mechanism, and management. Though a gluten-free diet remains the primary option to manage gluten-related disorders, the emerging microbial and plant biotechnology tools are playing a transformative role in reducing the immunotoxicity of gluten. The enzymatic hydrolysis of gluten and the development of gluten-reduced/free wheat lines using RNAi and CRISPR/Cas technology are laying the foundation for creating safer wheat products. In addition to biotechnological interventions, the emerging artificial intelligence technologies are also bringing about a paradigm shift in the diagnosis and management of gluten-related disorders. Here, we provide a comprehensive overview of the latest developments and the potential these technologies hold for tackling gluten sensitivity.
Collapse
Affiliation(s)
- Lakshay Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Farhanur Rahman
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
8
|
Narciso JO, Gulzar S, Soliva-Fortuny R, Martín-Belloso O. Emerging Chemical, Biochemical, and Non-Thermal Physical Treatments in the Production of Hypoallergenic Plant Protein Ingredients. Foods 2024; 13:2180. [PMID: 39063264 PMCID: PMC11276117 DOI: 10.3390/foods13142180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Allergies towards gluten and legumes (such as, soybean, peanut, and faba bean) are a global issue and, occasionally, can be fatal. At the same time, an increasing number of households are shifting to plant protein ingredients from these sources, which application and consumption are limited by said food allergies. Children, the elderly, and people with immune diseases are particularly at risk when consuming these plant proteins. Finding ways to reduce or eliminate the allergenicity of gluten, soybean, peanut, and faba bean is becoming crucial. While thermal and pH treatments are often not sufficient, chemical processes such as glycation, polyphenol conjugation, and polysaccharide complexation, as well as controlled biochemical approaches, such as fermentation and enzyme catalysis, are more successful. Non-thermal treatments such as microwave, high pressure, and ultrasonication can be used prior to further chemical and/or biochemical processing. This paper presents an up-to-date review of promising chemical, biochemical, and non-thermal physical treatments that can be used in the food industry to reduce or eliminate food allergenicity.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Saqib Gulzar
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Robert Soliva-Fortuny
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (S.G.); (R.S.-F.); (O.M.-B.)
- Agrotecnio Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
9
|
Singla D, Malik T, Singh A, Thakur S, Kumar P. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity. FOOD CHEMISTRY ADVANCES 2024; 4:100627. [DOI: 10.1016/j.focha.2024.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Discepolo V, Kelly CP, Koning F, Schuppan D. How Future Pharmacologic Therapies for Celiac Disease Will Complement the Gluten-Free Diet. Gastroenterology 2024; 167:90-103. [PMID: 38604542 DOI: 10.1053/j.gastro.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
The only proven treatment for celiac disease is adherence to a strict, lifelong, gluten-free diet. However, complete dietary gluten avoidance is challenging and a substantial number of patients do not respond fully, clinically, or histologically, despite their best efforts. As celiac disease is common and its central pathophysiology is well elucidated, it has become attractive for drug development to address the limitations of dietary treatment. Most efforts address nonresponsive celiac disease, defined as continued symptoms and/or signs of disease activity despite a gluten-free diet, and the more severe forms of refractory celiac disease, types I and II. An increasing spectrum of therapeutic approaches target defined mechanisms in celiac disease pathogenesis and some have advanced to current phase 2 and 3 clinical studies. We discuss these approaches in terms of potential efficiency, practicability, safety, and need, as defined by patients, regulatory authorities, health care providers, and payors.
Collapse
Affiliation(s)
- Valentina Discepolo
- Department of Translational Medical Science and European Laboratory for the Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy.
| | - Ciarán P Kelly
- Celiac Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Detlef Schuppan
- Celiac Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts; Institute of Translational Immunology and Research Center for Immunotherapy, Center for Celiac Disease and Autoimmunity, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
12
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
13
|
Abbasi A, Bazzaz S, A. Ibrahim S, Hekmatdoost A, Hosseini H, Sabahi S, Sheykhsaran E, Rahbar Saadat Y, Asghari Ozma M, Lahouty M. A Critical Review on the Gluten-Induced Enteropathy/Celiac Disease: Gluten-Targeted Dietary and Non-Dietary Therapeutic Approaches. FOOD REVIEWS INTERNATIONAL 2024; 40:883-923. [DOI: 10.1080/87559129.2023.2202405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Sciences Program, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, North Carolina, USA
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Sheykhsaran
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Lahouty
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Hu M, Song JX, Miao ST, Wu CK, Gong XW, Sun HJ. Rational design of soluble expressed human aldehyde dehydrogenase 2 with high stability and activity in pepsin and trypsin. Int J Biol Macromol 2024; 265:131091. [PMID: 38521319 DOI: 10.1016/j.ijbiomac.2024.131091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme in alcohol metabolism, and oral administration of ALDH2 is a promising method for alcohol detoxification. However, recombinant ALDH2 is susceptible to hydrolysis by digestive enzymes in the gastrointestinal tract and is expressed as inactive inclusion bodies in E. coli. In this study, we performed three rounds of rational design to address these issues. Specifically, the surface digestive sites of pepsin and trypsin were replaced with other polar amino acids, while hydrophobic amino acids were incorporated to reshape the catalytic cavity of ALDH2. The resulting mutant DE2-852 exhibited a 45-fold increase in soluble expression levels, while its stability against trypsin and pepsin increased by eightfold and twofold, respectively. Its catalytic efficiency (kcat/Km) at pH 7.2 and 3.2 improved by more than four and five times, respectively, with increased Vmax and decreased Km values. The enhanced properties of DE2-852 were attributed to the D457Y mutation, which created a more compact protein structure and facilitated a faster collision between the substrate and catalytic residues. These results laid the foundation for the oral administration and mass preparation of highly active ALDH2 and offered insights into the oral application of other proteins.
Collapse
Affiliation(s)
- Min Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jia-Xu Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shi-Tao Miao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Cheng-Kai Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xing-Wen Gong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Hong-Ju Sun
- School of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| |
Collapse
|
15
|
Zhang Y, Wu H, Fu L. A review of gluten detoxification in wheat for food applications: approaches, mechanisms, and implications. Crit Rev Food Sci Nutr 2024; 65:2100-2116. [PMID: 38470104 DOI: 10.1080/10408398.2024.2326618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes. And individuals with mild non-celiac gluten disorder symptoms may not necessarily require the same gluten-free treatments. Scientists are actively seeking alternative solutions for these consumers. This review delves into the various strategies employed by researchers for detoxifying gluten or modifying its main protein, gliadin, including genetic treatment, transamidation and deamidation, hydrolysis, and microbial treatments. The mechanisms, constraints of these techniques, their current utilization in food items, as well as their implications for gluten-related disorders, are discussed in detail. Although there is still a gap in the application of these methods as alternative solutions in the real market, the summary provided by our review could be beneficial for peers in enriching their basic ideas and developing more applicable solutions for wheat gluten detoxification.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| |
Collapse
|
16
|
Liu YY, Ye RL, Meng M. Specificity Enhancement of Glutenase Bga1903 toward Celiac Disease-Eliciting Pro-Immunogenic Peptides via Active-Site Modification. Int J Mol Sci 2023; 25:505. [PMID: 38203677 PMCID: PMC10779176 DOI: 10.3390/ijms25010505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Celiac disease is an autoimmune disease triggered by oral ingestion of gluten, with certain gluten residues resistant to digestive tract enzymes. Within the duodenum, the remaining peptides incite immunogenic responses, including the generation of autoantibodies and inflammation, leading to irreversible damage. Our previous exploration unveiled a glutenase called Bga1903 derived from the Gram-negative bacterium Burkholderia gladioli. The cleavage pattern of Bga1903 indicates its moderate ability to mitigate the toxicity of pro-immunogenic peptides. The crystal structure of Bga1903, along with the identification of subsites within its active site, was determined. To improve its substrate specificity toward prevalent motifs like QPQ within gluten peptides, the active site of Bga1903 underwent site-directed mutagenesis according to structural insights and enzymatic kinetics. Among the double-site mutants, E380Q/S387L exhibits an approximately 34-fold increase in its specificity constant toward the QPQ sequence, favoring glutamines at the P1 and P3 positions compared to the wild type. The increased specificity of E380Q/S387L not only enhances its ability to break down pro-immunogenic peptides but also positions this enzyme variant as a promising candidate for oral therapy for celiac disease.
Collapse
Affiliation(s)
| | | | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 40227, Taiwan; (Y.-Y.L.); (R.-L.Y.)
| |
Collapse
|
17
|
Syage J, Ramos A, Loskutov V, Norum A, Bledsoe A, Choung RS, Dickason M, Sealey-Voyksner J, Murray J. Dynamics of Serologic Change to Gluten in Celiac Disease Patients. Nutrients 2023; 15:5083. [PMID: 38140342 PMCID: PMC10746107 DOI: 10.3390/nu15245083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Serologic measures of tissue transglutaminase (tTG) immunoglobulin A (IgA) and deamidated gliadin peptide (DGP) IgA and immunoglobulin G (IgG) are hallmark tests utilized when diagnosing individuals for celiac disease (CeD) and for monitoring adherence to a gluten-free diet (GFD), currently the only available treatment for CeD. We address two issues in this study: (i) the relapse to seropositivity for CeD patients who resume a gluten containing diet and (ii) the correlation between two different tTG-IgA assays near the upper limit of normal (ULN) designated thresholds. Regarding the first issue, often a suspected CeD individual is put back on a gluten diet to return to their serologic levels. However, we show it requires a substantial amount of gluten for serology to return to a positive level. For example, in one study of 22 patients treated with placebo and taking 84 g of gluten over 6 weeks, only two converted from seronegative to seropositive for tTG-IgA. Regarding the second topic, we compare the relationship for different serologic assays, namely tTG-IgA AB (recombinant, ULN = 4 units/mL) vs. tTG-IgA (non-recombinant, ULN = 20 units). There is a strong correlation between both measurements as evidenced by a Pearson coefficient of R = 0.8584; however, we observed that the cross-correlation in terms of sensitivity and specificity improved substantially by using an ULN value of three instead of four for the tTG-IgA AB (recombinant) assay. This result suggests that assay thresholds used for initial diagnosis in patients who have not yet started a GFD may need to be adjusted for monitoring and in the setting of a diagnostic gluten challenge.
Collapse
Affiliation(s)
- Jack Syage
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Ana Ramos
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Vasiliy Loskutov
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Anna Norum
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Adam Bledsoe
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rok Seon Choung
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Dickason
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Jennifer Sealey-Voyksner
- ImmunogenX, Inc., 1600 Dove Street, Suite 330, Newport Beach, CA 92660, USA; (A.R.); (V.L.); (M.D.)
| | - Joseph Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Mousavi Maleki MS, Ebrahimi Kiasari R, Seyed Mousavi SJ, Hashemi-Moghaddam H, Shabani AA, Madanchi H, Sardari S. Bromelain-loaded nanocomposites decrease inflammatory and cytotoxicity effects of gliadin on Caco-2 cells and peripheral blood mononuclear cells of celiac patients. Sci Rep 2023; 13:21180. [PMID: 38040898 PMCID: PMC10692183 DOI: 10.1038/s41598-023-48460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Enzyme therapy can be an appropriate treatment option for celiac disease (CeD). Here, we developed Bromelain-Loaded Nanocomposites (BLNCs) to improve the stability and retention of bromelain enzyme activity. After the characterization of BLNCs, the cytotoxicity of BLNCs was determined on the Caco-2 cell line. The effect of BLNCs on gliadin degradation and the production of pro-inflammatory cytokines and anti-inflammatory molecules in peripheral blood mononuclear cells (PBMCs) obtained from celiac patients were assessed. Furthermore, the expression of CXCR3 and CCR5 genes was measured in CaCo-2 cells treated with gliadin, gliadin-digested with BLNCs, and bromelain. Our study demonstrated that the Bromelain entrapment efficiency in these nanoparticles was acceptable, and BLNCs have no toxic effect on cells. SDS-PAGE confirmed the digestion effect of bromelain released from nanocomposites. When Caco-2 cells were treated with gliadin digested by free bromelain and BLNCs, the expression of CXCR3 and CCR5 genes was significantly decreased. PBMCs of celiac patients treated with Bromelain and BLNCs decreased inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) production compared to untreated PBMCs. This treatment also increased IL-10 and CTLA-4 in PBMCs of CeD patients. According to the promising results of this study, we can hope for the therapeutic potential of BLNCs for CeD.
Collapse
Affiliation(s)
- Masoumeh Sadat Mousavi Maleki
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran
- Gene Therapy and Regenerative Medicine Research Center, Hope Generation Foundation, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ramin Ebrahimi Kiasari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran
| | - Seyed Javad Seyed Mousavi
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran
| | | | - Ali Akbar Shabani
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran
| | - Hamid Madanchi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran.
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran.
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran.
| |
Collapse
|
19
|
Zhang Y, Wu H, Zhang Y, Fu L. Detoxification of Wheat Gluten by Enzymatic Transamidation under Reducing Condition and Its Application in Typical Food Model. Mol Nutr Food Res 2023; 67:e2300568. [PMID: 37867203 DOI: 10.1002/mnfr.202300568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Indexed: 10/24/2023]
Abstract
SCOPE Gluten, the primary network builder of wheat dough, is responsible for celiac disease or wheat allergy. Transamidation of gluten under reduction conditions has been shown to reduce the potential toxicity of celiac disease, but its application in food preparation has not been extensively studied. This work investigates the use of transamidation in food preparation to address this gap in knowledge. METHODS AND RESULTS This study investigates the effects of transamidation on the toxicity of commercial wheat flour and the apparent structure, digestive level, and rheological characteristics of resultant dough and steamed bread, as a typical food model. The results show that transamidation starts at the kneading stage, as evaluated by using R5 enzyme-linked immunoassay and rat basophils. The potential toxicity of celiac disease is reduced by about 83% when 1% microbial transglutaminase (mTG), 2% l-lysine, and 1% reduced glutathione (GSH) are added, while retaining the original physical and rheological properties of wheat flour. The additional of reduced GSH also improves the in vitro protein digestibility. CONCLUSIONS Although it cannot be a celiac disease treatment directly, this study suggests that transamidation can serve as an alternative method for reducing the gluten toxicity of wheat flour-based food products.
Collapse
Affiliation(s)
- Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Haoyi Wu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Yan Zhang
- Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Key Laboratory of Special Food Supervision Technology for State Market Regulation, Hebei Engineering Research Center for Special Food Safety and Health, Shijiazhuang, 050227, P. R. China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| |
Collapse
|
20
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Buller R, Lutz S, Kazlauskas RJ, Snajdrova R, Moore JC, Bornscheuer UT. From nature to industry: Harnessing enzymes for biocatalysis. Science 2023; 382:eadh8615. [PMID: 37995253 DOI: 10.1126/science.adh8615] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Biocatalysis harnesses enzymes to make valuable products. This green technology is used in countless applications from bench scale to industrial production and allows practitioners to access complex organic molecules, often with fewer synthetic steps and reduced waste. The last decade has seen an explosion in the development of experimental and computational tools to tailor enzymatic properties, equipping enzyme engineers with the ability to create biocatalysts that perform reactions not present in nature. By using (chemo)-enzymatic synthesis routes or orchestrating intricate enzyme cascades, scientists can synthesize elaborate targets ranging from DNA and complex pharmaceuticals to starch made in vitro from CO2-derived methanol. In addition, new chemistries have emerged through the combination of biocatalysis with transition metal catalysis, photocatalysis, and electrocatalysis. This review highlights recent key developments, identifies current limitations, and provides a future prospect for this rapidly developing technology.
Collapse
Affiliation(s)
- R Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - S Lutz
- Codexis Incorporated, Redwood City, CA 94063, USA
| | - R J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - J C Moore
- MRL, Merck & Co., Rahway, NJ 07065, USA
| | - U T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| |
Collapse
|
22
|
Zhang YH, Leu WM, Meng M. Hydrolysis of Gluten-Derived Celiac Disease-Triggering Peptides across a Broad pH Range by RmuAP1: A Novel Aspartic Peptidase Isolated from Rhodotorula mucilaginosa. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17202-17213. [PMID: 37905834 PMCID: PMC10655810 DOI: 10.1021/acs.jafc.3c04750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
An aspartate peptidase with proteolytic activity toward gluten was identified from an isolated red yeast Rhodotorula mucilaginosa strain. This peptidase consists of 425 amino acids, comprising an N-terminal signal peptide, a propeptide, and a C-terminal catalytic domain. The catalytic domain, termed RmuAP1CD, could be secreted by the recombinant oleaginous yeast Yarrowia lipolytica, whose genome contains the expression cassette for RmuAP1CD. RmuAP1CD exhibited optimum activity at pH 2.5 when acting on bovine serum albumin. Moreover, it facilitated the hydrolysis of gluten-derived immunogenic peptides (GIPs), which are responsible for triggering celiac disease symptoms, across a pH range of 3.0-6.0. The preferred cleavage sites are P-Q-Q-↓-P-Q in the 26-mer and P-Q-L-↓-P-Y in the 33-mer GIPs. Conversely, porcine pepsin cannot hydrolyze these two GIPs. The ability of RmuAP1CD to degrade GIPs under acidic conditions of the stomach indicates its potential as a viable oral enzyme therapy for celiac disease.
Collapse
Affiliation(s)
- Yu-Han Zhang
- Ph.D.
Program in Microbial Genomics, National
Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
- Academia
Sinica, 128 Academia
Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Wei-Ming Leu
- Graduate
Institute of Biotechnology, National Chung
Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Menghsiao Meng
- Graduate
Institute of Biotechnology, National Chung
Hsing University, 250 Kuo-Kuang Road, Taichung 40227, Taiwan
| |
Collapse
|
23
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
24
|
Xiao B, Zhang C, Zhou J, Wang S, Meng H, Wu M, Zheng Y, Yu R. Design of SC PEP with enhanced stability against pepsin digestion and increased activity by machine learning and structural parameters modeling. Int J Biol Macromol 2023; 250:125933. [PMID: 37482154 DOI: 10.1016/j.ijbiomac.2023.125933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Prolyl endopeptidases from Sphingomonas capsulata (SC PEP) has attracted much attention as promising oral therapy candidate for celiac sprue, however, its low stability in the gastric environment leads to unsatisfactory clinical results. Therefore, improving its stability against pepsin digestion at low pH is crucial for clinical applications, but challenging. In this study, machine learning and physical parameter model were combined to design SC PEP mutants. After iterations, 20 mutants had higher hydrolysis activity in stomach environment, which was up to 14.1-fold compared with wild-type SC PEP. Mutant M24 involving stable and active mutations and pegylated M24 (M24-PEG) had higher activity of hydrolyzing immunogen in bread than wild-type SC PEP in vitro and in vivo, and residual immunogens in simulated gastric environment were only 1/8 and 1/10 of that in the wild-type SC PEP group. The total residual immunogens in the gastrointestinal tract of mice in the M24 and M24-PEG groups were <20 ppm, reaching the standard of non-toxic food. Our results indicate that the combination of M24 (or M24-PEG) with EP-B2 may be a promising candidate for celiac disease, and the strategies developed in this study provide a paradigm for the design of SC PEP stability mutants.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Chun Zhang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Junxiu Zhou
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Sa Wang
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Huan Meng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Miao Wu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China
| | - Yongxiang Zheng
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China.
| | - Rong Yu
- Department of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
25
|
Chugunov AO, Dvoryakova EA, Dyuzheva MA, Simonyan TR, Tereshchenkova VF, Filippova IY, Efremov RG, Elpidina EN. Fighting Celiac Disease: Improvement of pH Stability of Cathepsin L In Vitro by Computational Design. Int J Mol Sci 2023; 24:12369. [PMID: 37569743 PMCID: PMC10418366 DOI: 10.3390/ijms241512369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Roughly 1% of the global population is susceptible to celiac disease (CD)-inheritable autoimmune inflammation of the small intestine caused by intolerance to gliadin proteins present in wheat, rye, and barley grains, and called gluten in wheat. Classical treatment is a life-long gluten-free diet, which is constraining and costly. An alternative approach is based upon the development and oral reception of effective peptidases that degrade in the stomach immunogenic proline- and glutamine-rich gliadin peptides, which are the cause of the severe reaction in the intestine. In previous research, we have established that the major digestive peptidase of an insect Tribolium castaneum-cathepsin L-hydrolyzes immunogenic prolamins after Gln residues but is unstable in the extremely acidic environment (pH 2-4) of the human stomach and cannot be used as a digestive aid. In this work, using molecular dynamics simulations, we discover the probable cause of the pH instability of cathepsin L-loss of the catalytically competent rotameric state of one of the active site residues, His 275. To "fix" the correct orientation of this residue, we designed a V277A mutant variant, which extends the range of stability of the peptidase in the acidic environment while retaining most of its activity. We suggest this protein as a lead glutenase for the development of oral medical preparation that fights CD and gluten intolerance in susceptible people.
Collapse
Affiliation(s)
- Anton O. Chugunov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Elena A. Dvoryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (E.A.D.); (E.N.E.)
| | - Maria A. Dyuzheva
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- Higher Chemical College of the Russian Academy of Sciences, D. Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Tatyana R. Simonyan
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Valeria F. Tereshchenkova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Irina Yu. Filippova
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (T.R.S.); (V.F.T.); (I.Y.F.)
| | - Roman G. Efremov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.A.D.); (R.G.E.)
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (E.A.D.); (E.N.E.)
| |
Collapse
|
26
|
Belyaeva J, Zlobin A, Maslova V, Golovin A. Modern non-polarizable force fields diverge in modeling the enzyme-substrate complex of a canonical serine protease. Phys Chem Chem Phys 2023; 25:6352-6361. [PMID: 36779321 DOI: 10.1039/d2cp05502c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Classical molecular dynamics simulation is a powerful and established method of modern computational chemistry. Being able to obtain accurate information on molecular behavior is crucial to get valuable insights into structure-function relationships that translate into fundamental findings and practical applications. Active sites of enzymes are known to be particularly intricate, therefore, simpler non-polarizable force fields may provide an inaccurate description. In this work, we addressed this hypothesis in a case of a canonical serine triad protease trypsin in its complex with a substrate-mimicking inhibitor. We tested six modern and popular force fields to find that significantly diverging results may be obtained. Amber FB-15 and OPLS-AA/M turned out to model the active site incorrectly. Amber ff19sb and ff15ipq demonstrated mixed performance. The best performing force fields were CHARMM36m and Amber ff99sb-ildn, therefore, they are recommended for use with this and related systems. We speculate that a similar lack of cross-force field convergence may be characteristic of other enzymatic systems. Therefore, we advocate for careful consideration of different force fields in any study within the field of computational enzymology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Alexander Zlobin
- Sirius University of Science and Technology, 354340, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Valentina Maslova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 354340, Sochi, Russia
| | - Andrey Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.,Sirius University of Science and Technology, 354340, Sochi, Russia
| |
Collapse
|
27
|
Jiang Y, Ran X, Yang ZJ. Data-driven enzyme engineering to identify function-enhancing enzymes. Protein Eng Des Sel 2023; 36:gzac009. [PMID: 36214500 PMCID: PMC10365845 DOI: 10.1093/protein/gzac009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
Identifying function-enhancing enzyme variants is a 'holy grail' challenge in protein science because it will allow researchers to expand the biocatalytic toolbox for late-stage functionalization of drug-like molecules, environmental degradation of plastics and other pollutants, and medical treatment of food allergies. Data-driven strategies, including statistical modeling, machine learning, and deep learning, have largely advanced the understanding of the sequence-structure-function relationships for enzymes. They have also enhanced the capability of predicting and designing new enzymes and enzyme variants for catalyzing the transformation of new-to-nature reactions. Here, we reviewed the recent progresses of data-driven models that were applied in identifying efficiency-enhancing mutants for catalytic reactions. We also discussed existing challenges and obstacles faced by the community. Although the review is by no means comprehensive, we hope that the discussion can inform the readers about the state-of-the-art in data-driven enzyme engineering, inspiring more joint experimental-computational efforts to develop and apply data-driven modeling to innovate biocatalysts for synthetic and pharmaceutical applications.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xinchun Ran
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Data Science Institute, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Bakulin IG, Avalueva EB, Semenova EA, Оrеshkо LS, Serkova MY, Sitkin SI. Prospects for the treatment of gluten-associated diseases: on our daily bread, celiac disease, gluten proteins and more…. ALMANAC OF CLINICAL MEDICINE 2023; 50:367-376. [DOI: 10.18786/2072-0505-2022-50-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Food safety all over the world is largely dependent on production of grains that are cultivated in 60% of agricultural lands. Wheat is the main food for millions of people and one of the three most commonly cultivated grain cultures worldwide, along with corn and rice. Modern wheat is a product of gene engineering interventions aimed at increased productivity, yields, nutrient quota, and storage time, as well as immunogenic properties. However, the consumption of gluten, a proline and glutamine-rich wheat, rye and barley protein, triggers gluten-dependent disorders, such as celiac disease, wheat allergy, baker's asthma and wheat-dependent exercise-induced anaphylaxis. This group of disorders are curable provided the correct diagnosis has been made and strict lifelong gluten-free diet is implemented. Continuous patient's adherence to the gluten-free diet is associated with a number of medical and paramedical challenges, and the adherence level of the most compliant patients does not exceed 80%. The paper discuss other treatment strategies to improve the nutrition of people with gluten-sensitive disorders, in particular, the reduction grain gluten content, gluten sequestration in the gut before its digestion, prevention of gluten absorption and subsequent immune cell activation, and administration of tissue transglutaminase 2 inhibitors.
Collapse
|
29
|
Mamone G, Di Stasio L, Vitale S, Picascia S, Gianfrani C. Analytical and functional approaches to assess the immunogenicity of gluten proteins. Front Nutr 2023; 9:1049623. [PMID: 36741992 PMCID: PMC9890883 DOI: 10.3389/fnut.2022.1049623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Gluten proteins are the causative agents of celiac disease (CD), a lifelong and worldwide spread food intolerance, characterized by an autoimmune enteropathy. Gluten is a complex mixture of high homologous water-insoluble proteins, characterized by a high content of glutamine and proline amino acids that confers a marked resistance to degradation by gastrointestinal proteases. As a consequence of that, large peptides are released in the gut lumen with the potential to activate inflammatory T cells, in CD predisposed individuals. To date, several strategies aimed to detoxify gluten proteins or to develop immunomodulatory drugs to recover immune tolerance to gluten are under investigation. This review overviews the state of art of both analytical and functional methods currently used to assess the immunogenicity potential of gluten proteins from different cereal sources, including native raw seed flours and complex food products, as well as drug-treated samples. The analytical design to assess the content and profile of gluten immunogenic peptides, described herein, is based on the oral-gastro-intestinal digestion (INFOGEST model) followed by extensive characterization of residual gluten peptides by proteomic and immunochemical analyses. These approaches include liquid chromatography-high-resolution mass spectrometry (LC-MS/MS) and R5/G12 competitive ELISA. Functional studies to assess the immune stimulatory capabilities of digested gluten peptides are based on gut mucosa T cells or peripheral blood cells obtained from CD volunteers after a short oral gluten challenge.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Luigia Di Stasio
- Institute of Food Science, Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Avellino, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Stefania Picascia
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, Department of Biomedical Sciences, National Research Council of Italy, Naples, Italy,*Correspondence: Carmen Gianfrani,
| |
Collapse
|
30
|
Machado MV. New Developments in Celiac Disease Treatment. Int J Mol Sci 2023; 24:ijms24020945. [PMID: 36674460 PMCID: PMC9862998 DOI: 10.3390/ijms24020945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/18/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Celiac disease (CD) is a common autoimmune disease affecting around 1% of the population. It consists of an immune-mediated enteropathy, triggered by gluten exposure in susceptible patients. All patients with CD, irrespective of the presence of symptoms, must endure a lifelong gluten-free diet (GFD). This is not an easy task due to a lack of awareness of the gluten content in foods and the extensive incorporation of gluten in processed foods. Furthermore, a GFD imposes a sense of limitation and might be associated with decreased quality of life in CD patients. This results in gluten contamination in the diet of four out of five celiac patients adhering to a GFD. Furthermore, one in three adult patients will report persistent symptoms and two in three will not achieve full histological recovery when on a GFD. In recent years, there has been extensive research conducted in the quest to find the holy grail of pharmacological treatment for CD. This review will present a concise description of the current rationale and main clinical trials related to CD drug therapy.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Gastroenterology Department, Hospital de Vila Franca de Xira, Estrada Carlos Lima Costa, Nª 2, 2600-009 Vila Franca de Xira, Portugal; ; Tel.: +351-263-006-500
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
31
|
Chaykin A, Odintsova` E, Nedorubov A. Celiac Disease: Disease Models in Understanding Pathogenesis and Search for Therapy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.11024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Celiac disease is a complex polygenic systemic disorder caused by dietary gluten exposure that selectively occurs in genetically susceptible people. The potential celiac disease is defined by the presence of celiac disease-specific antibodies and compatible human leukocyte antigen but without histological abnormalities in duodenal biopsies. At present, the only treatment is lifelong adherence to a gluten-free diet. Despite its effectiveness, the diet is difficult to maintain due to its cost, availability of gluten-free foods, and hidden gluten. The need to develop non-dietary treatment methods is widely recognized, but this is prevented by the absence of a pathophysiologically relevant preclinical model. Nonetheless, in vitro and in vivo models have made it possible to investigate the mechanisms of the disease and develop new treatment approaches: The use of foods with neutralized gluten, microbiota correction, cocktails of specific endoproteinase, polymer gluten binders, specific inhibitors of transglutaminases and inflammatory cytokines, and a vaccine based on allergen-specific therapy.
Collapse
|
32
|
Characterization of the recombinant PepX peptidase from Lactobacillus fermentum and its effect on gliadin protein hydrolysis in vitro. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
A Comprehensive Review of the Neurological Manifestations of Celiac Disease and Its Treatment. Diseases 2022; 10:diseases10040111. [PMID: 36412605 PMCID: PMC9680226 DOI: 10.3390/diseases10040111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Celiac disease (CD) is a common chronic inflammatory disorder occurring in genetically predisposed individuals secondary to gluten ingestion. CD usually presents with gastrointestinal symptoms such as pain, bloating, flatulence, and constipation or diarrhea. However, individuals can present in a nonclassical manner with only extraintestinal symptoms. The neurological manifestations of CD include ataxia, cognitive impairment, epilepsy, headache, and neuropathy. A lifelong gluten-free diet is the current recommended treatment for CD. This review discusses the relevant neurological manifestations associated with CD and the novel therapeutics. Further research is required to get a better understanding of the underlying pathophysiology of the neurological manifestations associated with CD. Clinicians should keep CD in the differential diagnosis in individuals presenting with neurological dysfunction of unknown cause.
Collapse
|
34
|
Zlobin A, Golovin A. Between Protein Fold and Nucleophile Identity: Multiscale Modeling of the TEV Protease Enzyme-Substrate Complex. ACS OMEGA 2022; 7:40279-40292. [PMID: 36385818 PMCID: PMC9647873 DOI: 10.1021/acsomega.2c05201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The cysteine protease from the tobacco etch virus (TEVp) is a well-known and widely utilized enzyme. TEVp's chymotrypsin-like fold is generally associated with serine catalytic triads that differ in terms of a reaction mechanism from the most well-studied papain-like cysteine proteases. The question of what dominates the TEVp mechanism, nucleophile identity, or structural composition has never been previously addressed. Here, we use enhanced sampling multiscale modeling to uncover that TEVp combines the features of two worlds in such a way that potentially hampers its activity. We show that TEVp cysteine is strictly in the anionic form in a free enzyme similar to papain. Peptide binding shifts the equilibrium toward the nucleophile's protonated form, characteristic of chymotrypsin-like proteases, although the cysteinyl anion form is still present and interconversion is rapid. This way cysteine protonation generates enzyme states that are a diversion from the most effective course of action, with only 13.2% of Michaelis complex sub-states able to initiate the reaction. As a result, we propose an updated view on the reaction mechanism catalyzed by TEVp. We also demonstrate that AlphaFold is able to construct protease-substrate complexes with high accuracy. We propose that our findings open a way for its industrious use in enzymological tasks. Unique features of TEVp discovered in this work open a discussion on the evolutionary history and trade-offs of optimizing serine triad-associated folds to cysteine as a nucleophile.
Collapse
Affiliation(s)
- Alexander Zlobin
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- Shemyakin
and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey Golovin
- Belozersky
Institute of Physico-Chemical Biology, Lomonosov
Moscow State University, 119991 Moscow, Russia
- Shemyakin
and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius
University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
35
|
Novel Drug Therapeutics in Celiac Disease: A Pipeline Review. Drugs 2022; 82:1515-1526. [PMID: 36251239 DOI: 10.1007/s40265-022-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
Celiac disease (CeD) is a chronic, autoimmune systemic disorder triggered by the ingestion of gluten, a protein found in foods such as wheat, rye, and barley. The only effective treatment for CeD is complete removal of gluten from the diet. A strict gluten-free diet (GFD) results in symptomatic, serologic, and histologic remission in most patients. However, GFD may fail to induce clinical or histologic improvement and some patients may alternatively have difficulty strictly adhering to the GFD for other reasons. Despite this, there are currently no FDA-approved drugs for the treatment of CeD. The complex pathogenic process of CeD is becoming increasingly studied and better understood, enabling the identification of various targets for future therapies. Mechanisms under evaluation include probiotics, digestion of peptides, gluten sensitization, tight junction modulation, deamidation, and immune targets. Multiple investigational drugs are in the pipeline, and several drug candidates have entered late-phase clinical trials. Indeed, current and future studies are needed to target specific etiological mechanisms and provide an alternative to GFD alone. This review provides a broad overview of the various investigative treatment approaches for CeD, summarizing the latest progress in the pipeline.
Collapse
|
36
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
37
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
38
|
Liu YY, Lin IC, Chen PC, Lee CC, Meng M. Crystal structure of a Burkholderia peptidase and modification of the substrate-binding site for enhanced hydrolytic activity toward gluten-derived pro-immunogenic peptides. Int J Biol Macromol 2022; 222:2258-2269. [DOI: 10.1016/j.ijbiomac.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
39
|
Dieckman T, Koning F, Bouma G. Celiac disease: New therapies on the horizon. Curr Opin Pharmacol 2022; 66:102268. [DOI: 10.1016/j.coph.2022.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
40
|
Mamone G, Comelli MC, Vitale S, Di Stasio L, Kessler K, Mottola I, Siano F, Cavaletti L, Gianfrani C. E40 glutenase detoxification capabilities of residual gluten immunogenic peptides in in vitro gastrointestinal digesta of food matrices made of soft and durum wheat. Front Nutr 2022; 9:974771. [PMID: 36159465 PMCID: PMC9493446 DOI: 10.3389/fnut.2022.974771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Gluten degrading enzymes, which are commonly referred to as “glutenases,” represent attractive candidates for the development of a pharmacological treatment of gluten related disorders, such as coeliac disease (CeD). Endoprotease-40 (E40), a novel glutenase secreted by the actinomycete Actinoallomurus A8 and recombinantly produced in S. lividans TK24, was shown to be active at pH 3 to 6 (optimum pH 5), resistant to pepsin and trypsin degradation, able to destroy immunotoxicity of both gliadin 33-mer peptide and whole proteins and to strongly reduce the response of specific T cells when added to gliadin in in vitro gastrointestinal digestion. This study aims to functionally assess the capabilities of Endoprotease-40 (E40) to detoxify residual gluten immunogenic peptides in gastrointestinal digesta of food matrices made of soft and durum wheat. The INFOGEST harmonized protocols were applied to the multicompartmental model of simulated human gastrointestinal digestion, for the quantitative assessment of residual gluten in liquid (beer) and solid (bread and pasta) foods, made of either soft or durum wheat. Proteomic and immunological techniques, and functional assays on intestinal T cell lines from celiac disease patients were used to identify gluten-derived immunogenic peptide sequences surviving in gastric and gastrointestinal digesta after the addition of E40 at increasing enzyme: wheat proteins ratios. During the gastric phase (2 h incubation time), the addition of E40 demonstrated an extensive (≥ 95%) dose-dependent detoxification of whole gluten in real food matrices. Overall, the residual gluten content was found at, or even below, the 20 ppm gluten-free threshold for soft and durum wheat-based food. Furthermore, unlike in untreated gastrointestinal digesta, none of the immunodominant α-gliadin peptides survived in E40-treated digesta. Traces of ω- and γ-gliadin derived immunogenic peptides were still detected in E40-treated digesta, but unable to stimulate celiac-intestinal T cells. In conclusion, E40 is a promising candidate for the oral enzymatic therapy of CeD, as a stand-alone enzyme being efficient along the complete gastrointestinal digestion of gluten.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
- *Correspondence: Gianfranco Mamone,
| | | | - Serena Vitale
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Luigia Di Stasio
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
| | | | - Ilaria Mottola
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| | - Francesco Siano
- Institute of Food Science, National Research Council of Italy, Avellino, Italy
| | - Linda Cavaletti
- Fondazione Istituto Insubrico Ricerca per la Vita, Varese, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Naples, Italy
| |
Collapse
|
41
|
Recombinant Cathepsin L of Tribolium castaneum and Its Potential in the Hydrolysis of Immunogenic Gliadin Peptides. Int J Mol Sci 2022; 23:ijms23137001. [PMID: 35806001 PMCID: PMC9266932 DOI: 10.3390/ijms23137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.
Collapse
|
42
|
Klonarakis M, Andrews CN, Raman M, Panaccione R, Ma C. Review article: therapeutic targets for the pharmacologic management of coeliac disease-the future beyond a gluten-free diet. Aliment Pharmacol Ther 2022; 55:1277-1296. [PMID: 35229332 DOI: 10.1111/apt.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/03/2021] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coeliac disease (CeD) is an immune-mediated small bowel enteropathy resulting from dietary gluten exposure. Presently, the only effective treatment is adoption of a gluten-free diet (GFD), although strict adherence is challenging to maintain, and inadvertent gluten exposures are inevitable for most patients. Hence, there is substantial interest in drug development in CeD and multiple novel therapies are under investigation. AIMS To review existing and upcoming clinical trial programmes for pharmacologic agents for CeD. METHODS A narrative review was performed, informed by a search of MEDLINE, Embase, the Cochrane CENTRAL Library and clinicaltrials.gov. RESULTS We summarise the pathophysiology of CeD and the specific steps that are potentially amenable to pharmacologic treatment. We evaluate the evidence supporting existing and future drug targets, including trials of peptidases, gluten sequestrants, tight junction regulators, anti-transglutaminase 2 therapies, immune tolerizing agents, advanced biologics and small molecules, and microbiome-targeted strategies. We highlight unique considerations for conducting CeD trials, including identifying appropriate study populations, assessing results in the context of a gluten challenge, and interpreting CeD-specific clinical and histologic outcomes. Understanding these factors is crucial for accurately appraising the evidence. Finally, we outline what the future of CeD therapy may hold with the introduction of pharmacotherapies. CONCLUSIONS There is a need for pharmacologic options for CeD, either used adjunctively with a GFD for accidental or intentional gluten exposures or for refractory disease. Multiple promising agents are in development, and these trials are likely to lead to approvals for the first generation of pharmacologic agents for CeD within the next 5 years.
Collapse
Affiliation(s)
| | - Christopher N Andrews
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Maitreyi Raman
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Alberta's Collaboration of Excellence for Nutrition in Digestive Diseases, Calgary, Alberta, Canada
| | - Remo Panaccione
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Christopher Ma
- Division of Gastroenterology & Hepatology, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
44
|
ElGamacy M. Accelerating therapeutic protein design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:85-118. [PMID: 35534117 DOI: 10.1016/bs.apcsb.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein structures provide for defined microenvironments that can support complex pharmacological functions, otherwise unachievable by small molecules. The advent of therapeutic proteins has thus greatly broadened the range of manageable disorders. Leveraging the knowledge and recent advances in de novo protein design methods has the prospect of revolutionizing how protein drugs are discovered and developed. This review lays out the main challenges facing therapeutic proteins discovery and development, and how present and future advancements of protein design can accelerate the protein drug pipelines.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- University Hospital Tübingen, Division of Translational Oncology, Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
45
|
Yoosuf S, Therrien A, Leffler DA. Non-dietary therapies for celiac disease. COELIAC DISEASE AND GLUTEN-RELATED DISORDERS 2022:111-160. [DOI: 10.1016/b978-0-12-821571-5.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
46
|
|
47
|
Hennigan JN, Lynch MD. The past, present, and future of enzyme-based therapies. Drug Discov Today 2022; 27:117-133. [PMID: 34537332 PMCID: PMC8714691 DOI: 10.1016/j.drudis.2021.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Enzyme-based therapeutics (EBTs) have the potential to tap into an almost unmeasurable amount of enzyme biodiversity and treat myriad conditions. Although EBTs were some of the first biologics used clinically, the rate of development of newer EBTs has lagged behind that of other biologics. Here, we review the history of EBTs, and discuss the state of each class of EBT, their potential clinical advantages, and the unique challenges to their development. Additionally, we discuss key remaining technical barriers that, if addressed, could increase the diversity and rate of the development of EBTs.
Collapse
Affiliation(s)
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
48
|
Kulkarni A, Patel S, Khanna D, Parmar MS. Current pharmacological approaches and potential future therapies for Celiac disease. Eur J Pharmacol 2021; 909:174434. [PMID: 34418405 DOI: 10.1016/j.ejphar.2021.174434] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 01/14/2023]
Abstract
Celiac Disease (CeD) is estimated to currently affect 2 million Americans in the United States. This autoimmune disorder occurs when the consumption of gluten-based products leads to an inflammatory response in the small intestine. Over time, this inflammatory response permanently damages the villi in the small intestine. Celiac disease patients generally present with fatigue, diarrhea, and weight loss due to the disease. The current gold standard for diagnosing CeD is the endoscopy with duodenal biopsy indicating villous atrophy and crypt hyperplasia. No FDA-approved medication exists for the treatment of CeD and the only recommended course to alleviate CeD induced symptoms is to abstain from consuming any gluten-based products. There are several clinical trials actively developing and testing pharmacological approaches to treat CeD. Two of the further advanced clinical trials include AT-1001 (Larazotide acetate) and IMGX-003 (Latiglutenase; formerly known as ALV003) therapies. These drugs aim to alleviate celiac disease-induced symptoms using two different approaches. AT-1001 aims to close the villi's tight junctions, while IMGX-003 acts as a gluten endopeptidase that degrades gluten before being absorbed in the small intestine. This review article summarizes the various preclinical research and clinical trials being conducted and specifies the mechanism by which these drugs function.
Collapse
Affiliation(s)
- Arathi Kulkarni
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Shuchi Patel
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, USA
| | - Deepesh Khanna
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa Bay Campus, Clearwater, FL, USA.
| |
Collapse
|
49
|
Dunaevsky YE, Tereshchenkova VF, Belozersky MA, Filippova IY, Oppert B, Elpidina EN. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021; 13:1603. [PMID: 34683896 PMCID: PMC8541236 DOI: 10.3390/pharmaceutics13101603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
To date, there is no effective treatment for celiac disease (CD, gluten enteropathy), an autoimmune disease caused by gluten-containing food. Celiac patients are supported by a strict gluten-free diet (GFD). However, in some cases GFD does not negate gluten-induced symptoms. Many patients with CD, despite following such a diet, retain symptoms of active disease due to high sensitivity even to traces of gluten. In addition, strict adherence to GFD reduces the quality of life of patients, as often it is difficult to maintain in a professional or social environment. Various pharmacological treatments are being developed to complement GFD. One promising treatment is enzyme therapy, involving the intake of peptidases with food to digest immunogenic gluten peptides that are resistant to hydrolysis due to a high prevalence of proline and glutamine amino acids. This narrative review considers the features of the main proline/glutamine-rich proteins of cereals and the conditions that cause the symptoms of CD. In addition, we evaluate information about peptidases from various sources that can effectively break down these proteins and their immunogenic peptides, and analyze data on their activity and preliminary clinical trials. Thus far, the data suggest that enzyme therapy alone is not sufficient for the treatment of CD but can be used as a pharmacological supplement to GFD.
Collapse
Affiliation(s)
- Yakov E. Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | | | - Mikhail A. Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| | - Irina Y. Filippova
- Chemical Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.F.T.); (I.Y.F.)
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS 66502, USA
| | - Elena N. Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (Y.E.D.); (M.A.B.); (E.N.E.)
| |
Collapse
|
50
|
Chen X, Deng X, Zhang Y, Wu Y, Yang K, Li Q, Wang J, Yao W, Tong J, Xie T, Hou S, Yao J. Computational Design and Crystal Structure of a Highly Efficient Benzoylecgonine Hydrolase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiabin Chen
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Xingyu Deng
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yun Zhang
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yanan Wu
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Kang Yang
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| | - Qiang Li
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College Hangzhou Zhejiang 310053 China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College Hangzhou Zhejiang 310053 China
| | - Junsen Tong
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Tian Xie
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Shurong Hou
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Jianzhuang Yao
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| |
Collapse
|