1
|
Li YY, Liao RZ. Exploring the Cooperation of the Redox Non-Innocent Ligand and Di-Cobalt Center for the Water Oxidation Reaction Catalyzed by a Binuclear Complex. CHEMSUSCHEM 2024; 17:e202400123. [PMID: 38664234 DOI: 10.1002/cssc.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Water oxidation is a crucial reaction in the artificial photosynthesis system. In the present work, density functional calculations were employed to decipher the mechanism of water oxidation catalyzed by a binuclear cobalt complex, which was disclosed to be a homogeneous water oxidation catalyst in pH=7 phosphate buffer. The calculations showed that the catalytic cycle starts from the CoIII,III-OH2 species. Then, a proton-coupled electron transfer followed by a one-electron transfer process leads to the generation of the formal CoIV,IV-OH intermediate. The subsequent PCET produces the active species, namely the formal CoIV,V=O intermediate (4). The oxidation processes mainly occur on the ligand moiety, including the coordinated water moiety, implying a redox non-innocent behavior. Two cobalt centers keep their oxidation states and provide one catalytic center for water activation during the oxidation process. 4 triggers the O-O bond formation via the water nucleophilic attack pathway, in which the phosphate buffer ion functions as the proton acceptor. The O-O bond formation is the rate-limiting step with a calculated total barrier of 17.7 kcal/mol. The last electron oxidation process coupled with an intramolecular electron transfer results in the generation of O2.
Collapse
Affiliation(s)
- Ying-Ying Li
- School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou, 450044, P. R. China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Gong Y, Chen Z, Wu Y, Wang A, Zhao S. Revisiting the Iron(II)/Cobalt(II)-Based Homogenous Fenton-like Processes from the Standpoint of Diverse Metal-Oxygen Complexes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16589-16599. [PMID: 39238135 DOI: 10.1021/acs.est.4c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The aqueous FeIV-oxo complex and FeIII-peroxy complex (e.g., ligand-assisted or interfacial FeIII-hydroperoxo intermediates) have been recognized as crucial reactive intermediates for decontamination in iron-based Fenton-like processes. Intermediates with terminal oxo ligands can undergo the oxygen atom exchange process with water molecules, whereas peroxides are unable to induce such exchanges. Therefore, these distinct metal-oxygen complexes can be distinguished based on the above feature. In this study, we identified previously unknown intermediates with a peroxy moiety and cobalt center that were generated during peroxymonosulfate (PMS) activation via aqueous CoII ions under acidic conditions. Results of theoretical calculations and tip-enhanced Raman spectroscopy revealed that the CoII ion tended to coordinate with the PMS anion to form a bidentate complex with a tetrahedral structure. These reactive cobalt intermediates were collectively named the CoII-PMS* complex. Depending on the inherent characteristics of the target contaminants, the CoII-PMS* complex can directly oxidize organic compounds or trigger PMS disproportionation to release hydroxyl radicals and sulfate radicals for collaborative decontamination. This work provides a comparative study between iron- and cobalt-based Fenton-like processes and proposes novel insights from the standpoint of diverse metal-oxygen complexes.
Collapse
Affiliation(s)
- Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Schneider JE, Zeng S, Anferov SW, Filatov AS, Anderson JS. Isolation and Crystallographic Characterization of an Octavalent Co 2O 2 Diamond Core. J Am Chem Soc 2024; 146:23998-24008. [PMID: 39146525 DOI: 10.1021/jacs.4c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
High-valent cobalt oxides play a pivotal role in alternative energy technology as catalysts for water splitting and as cathodes in lithium-ion batteries. Despite this importance, the properties governing the stability of high-valent cobalt oxides and specifically possible oxygen evolution pathways are not clear. One root of this limited understanding is the scarcity of high-valent Co(IV)-containing model complexes; there are no reports of stable, well-defined complexes with multiple Co(IV) centers. Here, an oxidatively robust fluorinated ligand scaffold enables the isolation and crystallographic characterization of a Co(IV)2-bis-μ-oxo complex. This complex is remarkably stable, in stark contrast with previously reported Co(IV)2 species that are highly reactive, which demonstrates that oxy-Co(IV)2 species are not necessarily unstable with respect to oxygen evolution. This example underscores a new design strategy for highly oxidizing transition-metal fragments and provides detailed data on a previously inaccessible chemical unit of relevance to O-O bond formation and oxygen evolution.
Collapse
Affiliation(s)
- Joseph E Schneider
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shilin Zeng
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Bury G, Pushkar Y. Insights from Ca 2+→Sr 2+ substitution on the mechanism of O-O bond formation in photosystem II. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01117-2. [PMID: 39186214 DOI: 10.1007/s11120-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
In recent years, there has been a steady interest in unraveling the intricate mechanistic details of water oxidation mechanism in photosynthesis. Despite the substantial progress made over several decades, a comprehensive understanding of the precise kinetics underlying O-O bond formation and subsequent evolution remains elusive. However, it is well-established that the oxygen evolving complex (OEC), specifically the CaMn4O5 cluster, plays a crucial role in O-O bond formation, undergoing a series of four oxidative events as it progresses through the S-states of the Kok cycle. To gain further insights into the OEC, researchers have explored the substitution of the Ca2+ cofactor with strontium (Sr), the sole atomic replacement capable of retaining oxygen-evolving activity. Empirical investigations utilizing spectroscopic techniques such as XAS, XRD, EPR, FTIR, and XANES have been conducted to probe the structural consequences of Ca2+→Sr2+ substitution. In parallel, the development of DFT and QM/MM computational models has explored different oxidation and protonation states, as well as variations in ligand coordination at the catalytic center involving amino acid residues. In this review, we critically evaluate and integrate these computational and spectroscopic approaches, focusing on the structural and mechanistic implications of Ca2+→Sr2+ substitution in PS II. We contribute DFT modelling and simulate EXAFS Fourier transforms of Sr-substituted OEC, analyzing promising structures of the S3 state. Through the combination of computational modeling and spectroscopic investigations, valuable insights have been gained, developing a deeper understanding of the photosynthetic process.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Depenbrock F, Limpke T, Bill E, SantaLucia DJ, van Gastel M, Walleck S, Oldengott J, Stammler A, Bögge H, Glaser T. Reactivities and Electronic Structures of μ-1,2-Peroxo and μ-1,2-Superoxo Co IIICo III Complexes: Electrophilic Reactivity and O 2 Release Induced by Oxidation. Inorg Chem 2023; 62:17913-17930. [PMID: 37838986 DOI: 10.1021/acs.inorgchem.3c02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Peroxo complexes are key intermediates in water oxidation catalysis (WOC). Cobalt plays an important role in WOC, either as oxides CoOx or as {CoIII(μ-1,2-peroxo)CoIII} complexes, which are the oldest peroxo complexes known. The oxidation of {CoIII(μ-1,2-peroxo)CoIII} complexes had usually been described to form {CoIII(μ-1,2-superoxo)CoIII} complexes; however, recently the formation of {CoIV(μ-1,2-peroxo)CoIII} species were suggested. Using a bis(tetradentate) dinucleating ligand, we present here the synthesis and characterization of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} and {CoIII(μ-OH)2CoIII} complexes. Oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} at -40 °C in CH3CN provides the stable {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} species and activates electrophilic reactivity. Moreover, {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} catalyzes water oxidation, not molecularly but rather via CoOx films. While {CoIII(μ-1,2-peroxo)(μ-OH)CoIII} can be reversibly deprotonated with DBU at -40 °C in CH3CN, {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} undergoes irreversible conversions upon reaction with bases to a new intermediate that is also the decay product of {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} in aqueous solution at pH > 2. Based on a combination of experimental methods, the new intermediate is proposed to have a {CoII(μ-OH)CoIII} core formed by the release of O2 from {CoIII(μ-1,2-superoxo)(μ-OH)CoIII} confirmed by a 100% yield of O2 upon photocatalytic oxidation of {CoIII(μ-1,2-peroxo)(μ-OH)CoIII}. This release of O2 by oxidation of a peroxo intermediate corresponds to the last step in molecular WOC.
Collapse
Affiliation(s)
- Felix Depenbrock
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thomas Limpke
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Daniel J SantaLucia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| | - Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, Bielefeld D-33615, Germany
| |
Collapse
|
7
|
Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev 2023; 52:383-444. [PMID: 36533405 DOI: 10.1039/d2cs00582d] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-containing clusters have attracted increasing attention over the past 2-3 decades. This intense interest can be attributed to the fact that these discrete metal aggregates, whose atomically precise structures are resolved by single-crystal X-ray diffraction (SCXRD), often possess intriguing geometrical features (high symmetry, aesthetically pleasing shapes and architectures) and fascinating physical properties, providing invaluable opportunities for the intersection of different disciplines including chemistry, physics, mathematical geometry and materials science. In this review, we attempt to reinterpret and connect these fascinating clusters from the perspective of Platonic and Archimedean solid characteristics, focusing on highly symmetrical and complex metal-containing (metal = Al, Ti, V, Mo, W, U, Mn, Fe, Co, Ni, Pd, Pt, Cu, Ag, Au, lanthanoids (Ln), and actinoids) high-nuclearity clusters, including metal-oxo/hydroxide/chalcogenide clusters and metal clusters (with metal-metal binding) protected by surface organic ligands, such as thiolate, phosphine, alkynyl, carbonyl and nitrogen/oxygen donor ligands. Furthermore, we present the symmetrical beauty of metal cluster structures and the geometrical similarity of different types of clusters and provide a large number of examples to show how to accurately describe the metal clusters from the perspective of highly symmetrical polyhedra. Finally, knowledge and further insights into the design and synthesis of unknown metal clusters are put forward by summarizing these "star" molecules.
Collapse
Affiliation(s)
- Xi-Ming Luo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya-Ke Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China. .,College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Titi A, Touzani R, Moliterni A, Giacobbe C, Baldassarre F, Taleb M, Al-Zaqri N, Zarrouk A, Warad I. Ultrasonic Clusterization Process to Prepare [(NNCO) 6Co 4Cl 2] as a Novel Double-Open-Co 4O 6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity. ACS OMEGA 2022; 7:32949-32958. [PMID: 36157745 PMCID: PMC9494679 DOI: 10.1021/acsomega.1c07032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).
Collapse
Affiliation(s)
- Abderrahim Titi
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Rachid Touzani
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Anna Moliterni
- Institute
of Crystallography, CNR, Via Amendola, 122/O, Bari70126, Italy
| | - Carlotta Giacobbe
- European
Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble38040, France
| | | | - Mustapha Taleb
- Laboratory
of Engineering, Organometallic, Molecular and Environment (LIMOME),
Faculty of Science, Université Sidi
Mohamed Ben Abdellah, Fez30000, Morocco
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Abdelkader Zarrouk
- Laboratory
of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, P.O. Box 1014, Agdal-Rabat11000, Morocco
| | - Ismail Warad
- Department
of Chemistry, AN-Najah National University, P.O. Box 7, Nablus P400, Palestine
| |
Collapse
|
9
|
Gates C, Ananyev G, Roy-Chowdhury S, Cullinane B, Miller M, Fromme P, Dismukes GC. Why Did Nature Choose Manganese over Cobalt to Make Oxygen Photosynthetically on the Earth? J Phys Chem B 2022; 126:3257-3268. [PMID: 35446582 DOI: 10.1021/acs.jpcb.2c00749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All contemporary oxygenic phototrophs─from primitive cyanobacteria to complex multicellular plants─split water using a single invariant cluster comprising Mn4CaO5 (the water oxidation catalyst) as the catalyst within photosystem II, the universal oxygenic reaction center of natural photosynthesis. This cluster is unstable outside of PSII and can be reconstituted, both in vivo and in vitro, using elemental aqueous ions and light, via photoassembly. Here, we demonstrate the first functional substitution of manganese in any oxygenic reaction center by in vitro photoassembly. Following complete removal of inorganic cofactors from cyanobacterial photosystem II microcrystal (PSIIX), photoassembly with free cobalt (Co2+), calcium (Ca2+), and water (OH-) restores O2 evolution activity. Photoassembly occurs at least threefold faster using Co2+ versus Mn2+ due to a higher quantum yield for PSIIX-mediated charge separation (P*): Co2+ → P* → Co3+QA-. However, this kinetic preference for Co2+ over native Mn2+ during photoassembly is offset by significantly poorer catalytic activity (∼25% of the activity with Mn2+) and ∼3- to 30-fold faster photoinactivation rate. The resulting reconstituted Co-PSIIX oxidizes water by the standard four-flash photocycle, although they produce 4-fold less O2 per PSII, suggested to arise from faster charge recombination (Co3+QA ← Co4+QA-) in the catalytic cycle. The faster photoinactivation of reconstituted Co-PSIIX occurs under anaerobic conditions during the catalytic cycle, suggesting direct photodamage without the involvement of O2. Manganese offers two advantages for oxygenic phototrophs, which may explain its exclusive retention throughout Darwinian evolution: significantly slower charge recombination (Mn3+QA ← Mn4+QA-) permits more water oxidation at low and fluctuating solar irradiation (greater net energy conversion) and much greater tolerance to photodamage at high light intensities (Mn4+ is less oxidizing than Co4+). Future work to identify the chemical nature of the intermediates will be needed for further interpretation.
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Computational Biology & Molecular Biophysics, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Shatabdi Roy-Chowdhury
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Brendan Cullinane
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Mathias Miller
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Molecular Biology & Biochemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Resorcin[4]arene-based [Co12] supermolecule cage functionalized by bio-inspired [Co4O4] cubanes for visible light-driven water oxidation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
|
13
|
Shari'ati Y, Vura-Weis J. Polymer thin films as universal substrates for extreme ultraviolet absorption spectroscopy of molecular transition metal complexes. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1850-1857. [PMID: 34738939 DOI: 10.1107/s1600577521010596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Polystyrene and polyvinyl chloride thin films are explored as sample supports for extreme ultraviolet (XUV) spectroscopy of molecular transition metal complexes. Thin polymer films prepared by slip-coating are flat and smooth, and transmit much more XUV light than silicon nitride windows. Analytes can be directly cast onto the polymer surface or co-deposited within it. The M-edge XANES spectra (40-90 eV) of eight archetypal transition metal complexes (M = Mn, Fe, Co, Ni) are presented to demonstrate the versatility of this method. The films are suitable for pump/probe transient absorption spectroscopy, as shown by the excited-state spectra of Fe(bpy)32+ in two different polymer supports.
Collapse
Affiliation(s)
- Yusef Shari'ati
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
14
|
Ezhov R, Ravari AK, Bury G, Smith PF, Pushkar Y. Do multinuclear 3d metal catalysts achieve O-O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co 4O 4] n. CHEM CATALYSIS 2021; 1:407-422. [PMID: 37378353 PMCID: PMC10296785 DOI: 10.1016/j.checat.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Catalytic water oxidation is a required process for clean energy production based on the concept of artificial photosynthesis. Here, we provide in situ spectroscopic and computational analysis for the closest known photosystem II analog, [Co4O4]n+ ([Co4O4Py4Ac4]0, Py = pyridine and Ac = CH3COO-), which catalyzes electrochemical water oxidation. In situ extended X-ray absorption fine structure detects an ultrashort, CoIV=O (~1.67 Å) moiety, a crucial intermediate for O-O bond formation. Density function theory analyses show that the intermediate has two CoIV centers and a CoIV=O unit of strong radicaloid character sufficient to support a CoIV=O + H2O = Co-OOH + H+ transition, where the carboxyl ligand accepts the proton and the bridging oxygen stabilizes the peroxide via hydrogen bonding. The proposed water nucleophilic attack mechanism accounts for all prior spectroscopic evidence on the Co4O44+ core. Our results are important for the design and development of efficient water oxidation catalysts, which contribute to the ultimate goal of clean energy from artificial photosynthesis.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | - Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Paul F. Smith
- Department of Chemistry, Valparaiso University, Valparaiso, IN 46383, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Lead contact
| |
Collapse
|
15
|
Gutiérrez-Tarriño S, Olloqui-Sariego JL, Calvente JJ, Espallargas GM, Rey F, Corma A, Oña-Burgos P. Cobalt Metal-Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. J Am Chem Soc 2020; 142:19198-19208. [PMID: 33125226 DOI: 10.1021/jacs.0c08882] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect" during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafion-modified graphite electrode in aqueous solution improves the ionic migration and electron transfer across the film and promotes the formation of the electrocatalytically active cobalt species for the oxygen evolution reaction (OER). The so-activated 2D-Co-MOF@Nafion composite exhibits an outstanding electrocatalytic performance for the OER at neutral pH, with a TOF value (0.034 s-1 at an overpotential of 400 mV) and robustness superior to those reported for similar electrocatalysts under similar conditions. The particular topology of the delaminated nanosheets, with quite distant cobalt centers, precludes the direct coupling between the electrocatalytically active centers of the same sheet. On the other hand, the increase in ionic migration across the film during the electrochemical activation stage rules out the intersheet coupling between active cobalt centers, as this scenario would impair electrolyte permeation. Altogether, the most plausible mechanism for the O-O bond formation is the water nucleophilic attack to single Co(IV)-oxo or Co(III)-oxyl centers. Its high electrochemical efficiency suggests that the presence of nitrogen-containing aromatic equatorial ligands facilitates the water nucleophilic attack, as in the case of the highly efficient cobalt porphyrins.
Collapse
Affiliation(s)
- Silvia Gutiérrez-Tarriño
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - José Luis Olloqui-Sariego
- Departamento de Química Física, Universidad de Sevilla. Profesor García González 1. 41012 Sevilla, Spain
| | - Juan José Calvente
- Departamento de Química Física, Universidad de Sevilla. Profesor García González 1. 41012 Sevilla, Spain
| | - Guillermo Mínguez Espallargas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán, 2, 46980 Paterna, Spain
| | - Fernando Rey
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascual Oña-Burgos
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, 46022 Valencia, Spain.,Departamento de Química y Física, Centro de Investigación CIAIMBITAL, Universidad de Almería, Ctra. Sacramento, s/n, 04120 Almería, Spain
| |
Collapse
|
16
|
Abstract
High-valent oxocobalt(IV) species have been invoked as key intermediates in oxidative catalysis, but investigations into the chemistry of proton-coupled redox reactions of such species have been limited. Herein, the reactivity of an established water oxidation catalyst, [Co4O4(OAc)4(py)4][PF6], toward H-atom abstraction reactions is described. Mechanistic analyses and density functional theory (DFT) calculations support a concerted proton-electron transfer (CPET) pathway in which the high energy intermediates formed in stepwise pathways are bypassed. Natural bond orbital (NBO) calculations point to cooperative donor-acceptor σ interactions at the transition state, whereby the H-atom of the substrate is transferred to an orbital delocalized over a Co3(μ3-O) fragment. The mechanistic insights provide design principles for the development of catalytic C-H activation processes mediated by a multimetallic oxo metal cluster.
Collapse
|
17
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
18
|
Dey A, Kumar V, Pal S, Guha A, Bawari S, Narayanan TN, Chandrasekhar V. A tetranuclear cobalt(ii) phosphate possessing a D4R core: an efficient water oxidation catalyst. Dalton Trans 2020; 49:4878-4886. [PMID: 32219286 DOI: 10.1039/d0dt00010h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of Co(OAc)2·4H2O with a sterically hindered phosphate ester, LH2, afforded a tetranuclear complex, [CoII(L)(CH3CN)]4·5CH3CN (1) [LH2 = 2,6-(diphenylmethyl)-4-isopropyl-phenyl phosphate]. The molecular structure of 1 reveals that it is a tetranuclear assembly where the Co(ii) centers are present in the alternate corners of a cube. The four Co(ii) centers are held together by four di-anionic [L]2- ligands. The fourth coordination site on Co(ii) is taken by an acetonitrile ligand. Changing the Co(ii) precursor from Co(OAc)2·4H2O to Co(NO3)2·6H2O afforded a mononuclear complex [CoII(LH)2(CH3CN)2(MeOH)2](MeOH)2 (2). In 2, the Co(ii) centre is surrounded by two monoanionic [LH]- ligands and a pair of methanol and acetonitrile solvents in a six-coordinate arrangement. 1 has been found to be an efficient catalyst for electrochemical water oxidation under highly basic conditions while the mononuclear analogue, 2, does not respond to electrochemical water oxidation. The tetranuclear catalyst has excellent electrochemical stability and longevity, as established by chronoamperometry and >1000 cycle durability tests under highly alkaline conditions. Excellent current densities of 1 and 10 mA cm-2 were achieved with overpotentials of 354 and 452 mV respectively. The turnover frequency of this catalyst was calculated to be 5.23 s-1 with an excellent faradaic efficiency of 97%, indicating the selective oxygen evolution reaction (OER) occurring with the aid of this catalyst. A mechanistic insight into the higher activity of complex 1 towards the OER compared to that of complex 2 is also provided using density functional theory based calculations.
Collapse
Affiliation(s)
- Atanu Dey
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Shubhadeep Pal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Anku Guha
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Sumit Bawari
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | | | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India. and Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
19
|
Han R, Luber S. Complete active space analysis of a reaction pathway: Investigation of the oxygen–oxygen bond formation. J Comput Chem 2020; 41:1586-1597. [DOI: 10.1002/jcc.26201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/21/2020] [Accepted: 03/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruocheng Han
- Institut für Chemie, Universität Zürich Zürich Switzerland
| | - Sandra Luber
- Institut für Chemie, Universität Zürich Zürich Switzerland
| |
Collapse
|
20
|
Liu H, Frei H. Observation of O–O Bond Forming Step of Molecular Co4O4 Cubane Catalyst for Water Oxidation by Rapid-Scan FT-IR Spectroscopy. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hongfei Liu
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Chen R, Yan Z, Kong X. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Chen
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Zhi‐Hao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiang‐Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| |
Collapse
|
22
|
Ye S, Ding C, Liu M, Wang A, Huang Q, Li C. Water Oxidation Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902069. [PMID: 31495962 DOI: 10.1002/adma.201902069] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Water oxidation is the primary reaction of both natural and artificial photosynthesis. Developing active and robust water oxidation catalysts (WOCs) is the key to constructing efficient artificial photosynthesis systems, but it is still facing enormous challenges in both fundamental and applied aspects. Here, the recent developments in molecular catalysts and heterogeneous nanoparticle catalysts are reviewed with special emphasis on biomimetic catalysts and the integration of WOCs into artificial photosystems. The highly efficient artificial photosynthesis depends largely on active WOCs integrated into light harvesting materials via rational interface engineering based on in-depth understanding of charge dynamics and the reaction mechanism.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Mingyao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Aoqi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
23
|
Dedushko MA, Schweitzer D, Blakely MN, Swartz RD, Kaminsky W, Kovacs JA. Geometric and electronic structure of a crystallographically characterized thiolate-ligated binuclear peroxo-bridged cobalt(III) complex. J Biol Inorg Chem 2019; 24:919-926. [PMID: 31342141 PMCID: PMC6948190 DOI: 10.1007/s00775-019-01686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
In order to shed light on metal-dependent mechanisms for O-O bond cleavage, and its microscopic reverse, we compare herein the electronic and geometric structures of O2-derived binuclear Co(III)- and Mn(III)-peroxo compounds. Binuclear metal peroxo complexes are proposed to form as intermediates during Mn-promoted photosynthetic H2O oxidation, and a Co-containing artificial leaf inspired by nature's photosynthetic H2O oxidation catalyst. Crystallographic characterization of an extremely activated peroxo is made possible by working with substitution-inert, low-spin Co(III). Density functional theory (DFT) calculations show that the frontier orbitals of the Co(III)-peroxo compound differ noticeably from the analogous Mn(III)-peroxo compound. The highest occupied molecular orbital (HOMO) associated with the Co(III)-peroxo is more localized on the peroxo in an antibonding π*(O-O) orbital, whereas the HOMO of the structurally analogous Mn(III)-peroxo is delocalized over both the metal d-orbitals and peroxo π*(O-O) orbital. With low-spin d6 Co(III), filled t2g orbitals prevent π-back-donation from the doubly occupied antibonding π*(O-O) orbital onto the metal ion. This is not the case with high-spin d4 Mn(III), since these orbitals are half-filled. This weakens the peroxo O-O bond of the former relative to the latter.
Collapse
Affiliation(s)
- Maksym A Dedushko
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Dirk Schweitzer
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Maike N Blakely
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Rodney D Swartz
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA
| | - Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
24
|
A strategy for stabilizing the catalyst Co
4
O
4
in a metal–organic framework. Proc Natl Acad Sci U S A 2019; 116:13719-13720. [DOI: 10.1073/pnas.1909543116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
25
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
26
|
Stabilization of reactive Co 4O 4 cubane oxygen-evolution catalysts within porous frameworks. Proc Natl Acad Sci U S A 2019; 116:11630-11639. [PMID: 31142656 DOI: 10.1073/pnas.1815013116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major challenge to the implementation of artificial photosynthesis (AP), in which fuels are produced from abundant materials (water and carbon dioxide) in an electrochemical cell through the action of sunlight, is the discovery of active, inexpensive, safe, and stable catalysts for the oxygen evolution reaction (OER). Multimetallic molecular catalysts, inspired by the natural photosynthetic enzyme, can provide important guidance for catalyst design, but the necessary mechanistic understanding has been elusive. In particular, fundamental transformations for reactive intermediates are difficult to observe, and well-defined molecular models of such species are highly prone to decomposition by intermolecular aggregation. Here, we present a general strategy for stabilization of the molecular cobalt-oxo cubane core (Co4O4) by immobilizing it as part of metal-organic frameworks, thus preventing intermolecular pathways of catalyst decomposition. These materials retain the OER activity and mechanism of the molecular Co4O4 analog yet demonstrate unprecedented long-term stability at pH 14. The organic linkers of the framework allow for chemical fine-tuning of activity and stability and, perhaps most importantly, provide "matrix isolation" that allows for observation and stabilization of intermediates in the water-splitting pathway.
Collapse
|
27
|
Zahran ZN, Tsubonouchi Y, Mohamed EA, Yagi M. Recent Advances in the Development of Molecular Catalyst-Based Anodes for Water Oxidation toward Artificial Photosynthesis. CHEMSUSCHEM 2019; 12:1775-1793. [PMID: 30793506 DOI: 10.1002/cssc.201802795] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Catalytic water oxidation represents a bottleneck for developing artificial photosynthetic systems that store solar energy as renewable fuels. A variety of molecular water oxidation catalysts (WOCs) have been reported over the last two decades. In view of their applications in artificial photosynthesis devices, it is essential to immobilize molecular catalysts onto the surfaces of conducting/semiconducting supports for fabricating efficient and stable water oxidation anodes/photoanodes. Molecular WOC-based anodes are essential for developing photovoltaic artificial photosynthesis devices and, moreover, the performance of molecular WOC on anodes will provide important insight into designing extended molecular WOC-based photoanodes for photoelectrochemical (PEC) water oxidation. This Review concerns recent progress in the development of molecular WOC-based anodes over the last two decades and looks at the prospects for using such anodes in artificial photosynthesis.
Collapse
Affiliation(s)
- Zaki N Zahran
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
- Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yuta Tsubonouchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Eman A Mohamed
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 9050-2181, Japan
| |
Collapse
|
28
|
Zhang B, Sun L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem Soc Rev 2019; 48:2216-2264. [PMID: 30895997 DOI: 10.1039/c8cs00897c] [Citation(s) in RCA: 444] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular catalysis plays an essential role in both natural and artificial photosynthesis (AP). However, the field of molecular catalysis for AP has gradually declined in recent years because of doubt about the long-term stability of molecular-catalyst-based devices. This review summarizes the development history of molecular-catalyst-based AP, including the fundamentals of AP, molecular catalysts for water oxidation, proton reduction and CO2 reduction, and molecular-catalyst-based AP devices, and it provides an analysis of the advantages, challenges, and stability of molecular catalysts. With this review, we aim to highlight the following points: (i) an investigation on molecular catalysis is one of the most promising ways to obtain atom-efficient catalysts with outstanding intrinsic activities; (ii) effective heterogenization of molecular catalysts is currently the primary challenge for the application of molecular catalysis in AP devices; (iii) development of molecular catalysts is a promising way to solve the problems of catalysis involved in practical solar fuel production. In molecular-catalysis-based AP, much has been attained, but more challenges remain with regard to long-term stability and heterogenization techniques.
Collapse
Affiliation(s)
- Biaobiao Zhang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| | | |
Collapse
|
29
|
Su XF, Zhu B, Liu L, Yan LK, Su ZM. DFT characterization on the effect of redox-inactive cation Ca2+ on water oxidation by CoII-based cuboidal catalyst. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Kotani H, Hong D, Satonaka K, Ishizuka T, Kojima T. Mechanistic Insight into Dioxygen Evolution from Diastereomeric μ-Peroxo Dinuclear Co(III) Complexes Based on Stoichiometric Electron-Transfer Oxidation. Inorg Chem 2019; 58:3676-3682. [PMID: 30810308 DOI: 10.1021/acs.inorgchem.8b03245] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stoichiometric electron-transfer (ET) oxidation of two diastereomeric μ-peroxo-μ-hydroxo dinuclear Co(III) complexes with tris(2-pyridylmethyl)amine (TPA) was examined to scrutinize the reaction mechanism of O2 evolution from the peroxo complexes, as seen in the final step in water oxidation by a Co(III)-TPA complex. The two isomeric Co(III)-peroxo complexes were synthesized and selectively isolated by recrystallization under different conditions. Although cyclic voltammograms of the two isomers in aqueous solutions showed one reversible wave at 1.1 V vs NHE at pH 2.0, two oxidation waves were observed at 1.0 and 1.4 V at pH 7.0 in the aqueous solutions, the latter of which is responsible for the O2-releasing process. At pH 7, one diastereomer showed higher reactivity than the other in O2 evolution, indicating the importance of structures of the μ-peroxo complexes in the reaction. In order to clarify the O2-evolving mechanism, we performed electron paramagnetic resonance (EPR) and resonance Raman (RR) measurements for characterizing one-electron oxidized species: The observed EPR and RR signals supported the formation of μ-superoxo-μ-hydroxo dinuclear Co(III) complexes; however, no characteristic difference was observed between two isomers in the EPR parameters including g values and superhyperfine coupling constants. ET-oxidation rate constants of the isomers were determined to be much faster than the O2-evolving rate constants, indicating that the O2-releasing step is the rate-determining step in the O2 evolution through the stoichiometric ET oxidation of the dinuclear Co(III)-μ-peroxo complexes. Therefore, the difference of reactivity in the O2 evolution for the two isomers should be derived from the thermodynamic stability of two-electron oxidized species of the dinuclear Co(III)-μ-peroxo complexes, μ-dioxygen-μ-hydroxo dinuclear Co(III) intermediates.
Collapse
Affiliation(s)
- Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Dachao Hong
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Kenta Satonaka
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
31
|
Natali M, Nastasi F, Puntoriero F, Sartorel A. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Francesco Nastasi
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Fausto Puntoriero
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Andrea Sartorel
- Department of Chemical Sciences Biological University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
32
|
Lloret-Fillol J, Costas M. Water oxidation at base metal molecular catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Artificial photosynthesis systems for catalytic water oxidation. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Nguyen AI, Spencer RK, Anderson CL, Zuckermann RN. A bio-inspired approach to ligand design: folding single-chain peptoids to chelate a multimetallic cluster. Chem Sci 2018; 9:8806-8813. [PMID: 30746115 PMCID: PMC6335634 DOI: 10.1039/c8sc04240c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Synthesis of biomimetic multimetallic clusters is sought after for applications such as efficient storage of solar energy and utilization of greenhouse gases. However, synthetic efforts are hampered by a dearth of ligands that are developed for multimetallic clusters due to current limitations in rational design and organic synthesis. Peptoids, a synthetic sequence-defined oligomer, enable a biomimetic strategy to rapidly synthesize and optimize large, multifunctional ligands by structural design and combinatorial screening. Here we discover peptoid oligomers (≤7 residues) that fold into a single conformation to provide unprecedented tetra- and hexadentate chelation by carboxylates to a [Co4O4] cubane cluster. The structures of peptoid-bound cubanes were determined by 2D NMR spectroscopy, and their structures reveal key steric and side-chain-to-main chain interactions that work in concert to rigidify the peptoid ligand. This efficient ligand design strategy holds promise for creating new scaffolds for the abiotic synthesis and manipulation of multimetallic clusters.
Collapse
Affiliation(s)
- Andy I Nguyen
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA .
| | - Ryan K Spencer
- Department of Chemistry , Department of Chemical Engineering & Materials Science , University of California , Irvine , CA 92697 , USA
| | | | - Ronald N Zuckermann
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA .
| |
Collapse
|
35
|
Takeuchi R, Sato T, Masaki T, Aiso K, Chandra D, Saito K, Yui T, Yagi M. An efficient catalyst film fabricated by electrophoretic deposition of cobalt hydroxide for electrochemical water oxidation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Schilling M, Luber S. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Front Chem 2018; 6:100. [PMID: 29721491 PMCID: PMC5915471 DOI: 10.3389/fchem.2018.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Zurich, Switzerland
| |
Collapse
|
37
|
Chandra D, Tanaka K, Takeuchi R, Abe N, Togashi T, Kurihara M, Saito K, Yui T, Yagi M. Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Debraj Chandra
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Kou Tanaka
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Ryouchi Takeuchi
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Naoto Abe
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Takanari Togashi
- Department of Material and Biological Chemistry, Faculty of Science; Yamagata University; 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Masato Kurihara
- Department of Material and Biological Chemistry, Faculty of Science; Yamagata University; 1-4-12 Kojirakawa-machi Yamagata 990-8560 Japan
| | - Kenji Saito
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering; Niigata University; 8050 Ikarashi-2 Niigata 950-2181 Japan
| |
Collapse
|
38
|
Clatworthy EB, Li X, Masters AF, Maschmeyer T. Electrochemical investigation of [Co 4(μ 3-O) 4(μ-OAc) 4(py) 4] and peroxides by cyclic voltammetry. Chem Commun (Camb) 2018; 52:14412-14415. [PMID: 27896338 DOI: 10.1039/c6cc08412e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two oxidative redox processes of the neutral cobalt(iii) cubane, [Co4(μ3-O)4(μ-OAc)4(py)4], were investigated by cyclic voltammetry at a glassy carbon electrode in acetonitrile. In addition to the first quasi-reversible one-electron oxidation at E1/2 = 0.283 V vs. Fc0/+, a second quasi-reversible one-electron oxidation was observed at E1/2 = 1.44 V vs. Fc0/+. Oxidation at this potential does not facilitate water oxidation. In the presence of tert-butylhydroperoxide the peak current of this second oxidation increases, suggesting oxidation of the peroxide by the doubly oxidised cubane.
Collapse
Affiliation(s)
- Edwin B Clatworthy
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xiaobo Li
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Anthony F Masters
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
39
|
Schilling M, Hodel FH, Luber S. Discovery of Open Cubane Core Structures for Biomimetic LnCo 3 (OR) 4 Water Oxidation Catalysts. CHEMSUSCHEM 2017; 10:4561-4569. [PMID: 28941193 DOI: 10.1002/cssc.201701527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Bio-mimetic catalysts such as LnCo3 (OR)4 (Ln=Er, Tm; OR=alkoxide) cubanes have recently been in the focus of research for artificial water oxidation processes. Previously, the remarkable adaptability with respect to ligand shell, nuclear structure as well as protonation and oxidation states of those catalysts has been shown to be beneficial for the water oxidation process. We further explored the structural flexibility of those catalysts and present here a series of novel structures in which one metal center is pulled out of the cubane cage. This leads to an open cubane core, which is to some extent reminiscent of observed open/closed cubane-core forms of the oxygen-evolving complex in nature's photosystem II. We investigate how those open cubane core models alter the thermodynamics of the water oxidation cycle and how different solvation approaches influence their stability.
Collapse
Affiliation(s)
- Mauro Schilling
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Florian H Hodel
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry C, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
40
|
Song F, Moré R, Schilling M, Smolentsev G, Azzaroli N, Fox T, Luber S, Patzke GR. {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. J Am Chem Soc 2017; 139:14198-14208. [DOI: 10.1021/jacs.7b07361] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fangyuan Song
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - René Moré
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mauro Schilling
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | - Thomas Fox
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R. Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
41
|
Han Z, Horak KT, Lee HB, Agapie T. Tetranuclear Manganese Models of the OEC Displaying Hydrogen Bonding Interactions: Application to Electrocatalytic Water Oxidation to Hydrogen Peroxide. J Am Chem Soc 2017; 139:9108-9111. [PMID: 28587453 DOI: 10.1021/jacs.7b03044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toward the development of structural and functional models of the oxygen evolving complex (OEC) of photosystem II, we report the synthesis of site-differentiated tetranuclear manganese complexes featuring three six-coordinate and one five-coordinate Mn centers. To incorporate biologically relevant second coordination sphere interactions, substituents capable of hydrogen bonding are included as pyrazolates with arylamine substituents. Complexes with terminal anionic ligands, OH- or Cl-, bound to the lower coordinate metal center are supported through the hydrogen-bonding network in a fashion reminiscent of the enzymatic active site. The hydroxide complex was found to be a competent electrocatalyst for O-O bond formation, a key transformation pertinent to the OEC. In an acetonitrile-water mixture, at neutral pH, electrochemical water oxidation to hydrogen peroxide was observed, albeit with low (15%) Faradaic yield, likely due to competing reactions with organics. In agreement, 9,10-dihydroanthracene is electrochemically oxidized in the presence of this cluster both via H-atom abstraction and oxygenation with ∼50% combined Faradaic yield.
Collapse
Affiliation(s)
- Zhiji Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Kyle T Horak
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Heui Beom Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
42
|
Nguyen AI, Wang J, Levine DS, Ziegler MS, Tilley TD. Synthetic control and empirical prediction of redox potentials for Co 4O 4 cubanes over a 1.4 V range: implications for catalyst design and evaluation of high-valent intermediates in water oxidation. Chem Sci 2017; 8:4274-4284. [PMID: 29081963 PMCID: PMC5635813 DOI: 10.1039/c7sc00627f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/03/2017] [Indexed: 01/12/2023] Open
Abstract
The oxo-cobalt cubane unit [Co4O4] is of interest as a homogeneous oxygen-evolution reaction (OER) catalyst, and as a functional mimic of heterogeneous cobalt oxide OER catalysts. The synthesis of several new cubanes allows evaluation of redox potentials for the [Co4O4] cluster, which are highly sensitive to the ligand environment and span a remarkable range of 1.42 V. The [CoIII4O4]4+/[CoIII3CoIVO4]5+ and [CoIII3CoIVO4]5+/[CoIII2CoIV2O4]6+ redox potentials are reliably predicted by the pKas of the ligands. Hydrogen bonding is also shown to significantly raise the redox potentials, by ∼500 mV. The potential-pKa correlation is used to evaluate the feasibility of various proposed OER catalytic intermediates, including high-valent Co-oxo species. The synthetic methods and structure-reactivity relationships developed by these studies should better guide the design of new cubane-based OER catalysts.
Collapse
Affiliation(s)
- Andy I Nguyen
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - Jianing Wang
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA .
| | - Daniel S Levine
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA .
| | - Micah S Ziegler
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - T Don Tilley
- Department of Chemistry , University of California , Berkeley , California 94720-1460 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| |
Collapse
|
43
|
Zahariou G. Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorg Chem 2017; 56:6105-6113. [DOI: 10.1021/acs.inorgchem.7b00079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Georgia Zahariou
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
44
|
Nguyen AI, Suess DLM, Darago LE, Oyala PH, Levine DS, Ziegler MS, Britt RD, Tilley TD. Manganese-Cobalt Oxido Cubanes Relevant to Manganese-Doped Water Oxidation Catalysts. J Am Chem Soc 2017; 139:5579-5587. [PMID: 28347135 DOI: 10.1021/jacs.7b01792] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Incorporation of Mn into an established water oxidation catalyst based on a Co(III)4O4 cubane was achieved by a simple and efficient assembly of permanganate, cobalt(II) acetate, and pyridine to form the cubane oxo cluster MnCo3O4(OAc)5py3 (OAc = acetate, py = pyridine) (1-OAc) in good yield. This allows characterization of electronic and chemical properties for a manganese center in a cobalt oxide environment, and provides a molecular model for Mn-doped cobalt oxides. The electronic properties of the cubane are readily tuned by exchange of the OAc- ligand for Cl- (1-Cl), NO3- (1-NO3), and pyridine ([1-py]+). EPR spectroscopy, SQUID magnetometry, and DFT calculations thoroughly characterized the valence assignment of the cubane as [MnIVCoIII3]. These cubanes are redox-active, and calculations reveal that the Co ions behave as the reservoir for electrons, but their redox potentials are tuned by the choice of ligand at Mn. This MnCo3O4 cubane system represents a new class of easily prepared, versatile, and redox-active oxido clusters that should contribute to an understanding of mixed-metal, Mn-containing oxides.
Collapse
Affiliation(s)
- Andy I Nguyen
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Daniel L M Suess
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - Lucy E Darago
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Paul H Oyala
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - Daniel S Levine
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - Micah S Ziegler
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| | - R David Britt
- Department of Chemistry, University of California at Davis , Davis, California 95616, United States
| | - T Don Tilley
- Department of Chemistry, University of California at Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
45
|
Synthesis, crystal structure, and magnetic property of a stepped tetranuclear copper(II) complex of 3,5-diisopropylpyrazole-1-methoxide. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
In situ characterization of cofacial Co(IV) centers in Co 4O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proc Natl Acad Sci U S A 2017; 114:3855-3860. [PMID: 28348217 DOI: 10.1073/pnas.1701816114] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.
Collapse
|
47
|
Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nat Commun 2017; 8:14839. [PMID: 28337985 PMCID: PMC5376677 DOI: 10.1038/ncomms14839] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Terminal cobalt(IV)-oxo (CoIV-O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co-O vibration band at 770 cm-1, which provides the conclusive evidence for the presence of a terminal Co-O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C-H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV-O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen.
Collapse
|
48
|
Sun H, Zhang J, Cai Y, Liu W, Zhang X, Dong Y, Li Y. Syntheses, structures, and magnetic properties of a cubane-like {Co4O4} cluster and a dinuclear CuII compound constructed from a tridentate Schiff base ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Zhang M, Frei H. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates. Annu Rev Phys Chem 2017; 68:209-231. [PMID: 28226220 DOI: 10.1146/annurev-physchem-052516-050655] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Water oxidation is an essential reaction of an artificial photosystem for solar fuel generation because it provides electrons needed to reduce carbon dioxide or protons to a fuel. Earth-abundant metal oxides are among the most attractive catalytic materials for this reaction because of their robustness and scalability, but their efficiency poses a challenge. Knowledge of catalytic surface intermediates gained by vibrational spectroscopy under reaction conditions plays a key role in uncovering kinetic bottlenecks and provides a basis for catalyst design improvements. Recent dynamic infrared and Raman studies reveal the molecular identity of transient surface intermediates of water oxidation on metal oxides. Combined with ultrafast infrared observations of how charges are delivered to active sites of the metal oxide catalyst and drive the multielectron reaction, spectroscopic advances are poised to play a key role in accelerating progress toward improved catalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Miao Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720;
| | - Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720;
| |
Collapse
|
50
|
Aiso K, Takeuchi R, Masaki T, Chandra D, Saito K, Yui T, Yagi M. Carbonate Ions Induce Highly Efficient Electrocatalytic Water Oxidation by Cobalt Oxyhydroxide Nanoparticles. CHEMSUSCHEM 2017; 10:687-692. [PMID: 27987267 DOI: 10.1002/cssc.201601494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Synthetic models of oxygen evolving complex (OEC) are used not only to gain better understanding of the mechanism and the roles of cofactors for water oxidation in photosynthesis, but also as water oxidation catalysts to realize artificial photosynthesis, which is anticipated as a promising solar fuel production system. However, although much attention has been paid to the composition and structure of active sites for development of heterogeneous OEC models, the cofactors, which are essential for water oxidation by the photosynthetic OEC, remain little studied. The high activity of CoO(OH) nanoparticles for electrocatalytic water oxidation is shown to be induced by a CO32- cofactor. The possibility of CO32- ions acting as proton acceptors for O-O bond formation based on the proton-concerted oxygen atom transfer mechanism is proposed. The O-O bond formation is supposed to be accelerated due to effective proton acceptance by adjacent CO32- ions coordinated on the CoIV center in the intermediate, which is consistent with Michaelis-Menten-type kinetics and the significant H/D isotope effect observed in electrocatalysis.
Collapse
Affiliation(s)
- Kaoru Aiso
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Ryouchi Takeuchi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Takeshi Masaki
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Debraj Chandra
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Kenji Saito
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata, 950-2181, Japan
| |
Collapse
|