1
|
Ghosh M, Chatterjee J, Panwaria P, Kudlu A, Tothadi S, Khan S. Silylene-Copper-Amide Emitters: From Thermally Activated Delayed Fluorescence to Dual Emission. Angew Chem Int Ed Engl 2024; 63:e202410792. [PMID: 39148269 DOI: 10.1002/anie.202410792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report the inaugural instance of N-heterocyclic silylene (NHSi)-coordinated copper amide emitters (2-5). These complexes exhibit thermally activated delayed fluorescence (TADF) and singlet-triplet dual emission in anaerobic conditions. The NHSi-Cu-diphenylamide (2) complex demonstrates TADF with a very small ΔEST gap (0.01 eV), an absolute quantum yield of 11 %, a radiative rate of 2.55×105 s-1, and a short τTADF of 0.45 μs in the solid state. The dual emissive complexes (3-5) achieve an absolute quantum yield of up to 20 % in the solid state with a kISC rate of 1.82×108 s-1 and exhibit room temperature phosphorescence (RTP) with lifetimes up to 9 ms. The gradual decrease in the intensity of the triplet state of complex 3 under controlled oxygen exposure demonstrates its potential for future oxygen-sensing applications. Complexes 2 and 3 have been further utilized to fabricate converted LEDs, paving the way for future OLED production using newly synthesized NHSi-Cu-amides.
Collapse
Affiliation(s)
- Moushakhi Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Joy Chatterjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Prakash Panwaria
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Ashwath Kudlu
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| |
Collapse
|
2
|
Chen X, Hou XF, Chen XM, Li Q. An ultrawide-range photochromic molecular fluorescence emitter. Nat Commun 2024; 15:5401. [PMID: 38926352 PMCID: PMC11208420 DOI: 10.1038/s41467-024-49670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Photocontrollable luminescent molecular switches capable of changing emitting color have been regarded as the ideal integration between intelligent and luminescent materials. A remaining challenge is to combine good luminescence properties with wide range of wavelength transformation, especially when confined in a single molecular system that forms well-defined nanostructures. Here, we report a π-expanded photochromic molecular photoswitch, which allows for the comprehensive achievements including wide emission wavelength variation (240 nm wide, 400-640 nm), high photoisomerization extent (95%), and pure emission color (<100 nm of full width at half maximum). We take the advantageous mechanism of modulating self-assembly and intramolecular charge transfer in the synthesis and construction, and further realize the full color emission by simple photocontrol. Based on this, both photoactivated anti-counterfeiting function and self-erasing photowriting films are achieved of fluorescence. This work will provide insight into the design of intelligent optical materials.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao-Fang Hou
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
3
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
4
|
Das B, Bora SR, Bishen SM, Mishra H, Kalita DJ, Wahab A. Photophysics of a Monoannulated Indigo: Intra- and Intermolecular Charge Transfer. J Phys Chem A 2024; 128:2565-2573. [PMID: 38513220 DOI: 10.1021/acs.jpca.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In the present work, the photoinduced charge-transfer (CT) behavior of 7-phenyl-6H-pyrido[1,2-a:3,4-b']diindole-6,13(12H)-dione (HCB) as a function of solvent polarity is reported by UV-vis absorption, steady-state and time-resolved fluorescence, and quantum chemical calculations. Calculated excited state energies of HCB at the B3PW91/6-31+G* level in vacuo and in solvents fulfill the energy requirements for singlet fission, which is the most promising path for the generation of highly efficient solar cells. The calculated potential energy curve for the compound reveals that the keto form is the predominant form in the ground state. Large bathochromic shifts in fluorescence with decreasing trends of quantum yield and lifetime indicate the occurrence of intramolecular CT from the indole bicycle to the indolinone moiety of HCB in highly polar solvents. The observed quenching of HCB fluorescence in different solvents without altering the spectral shape upon addition of a donor, triethylamine, is attributed to intermolecular CT, and it was examined in terms of the Stern-Volmer kinetics. The thermodynamics of photoinduced CT processes in HCB was analyzed using the measured photophysical data and cyclic voltammetric redox potentials via the Rehm-Weller equation. Analyses with the semiclassical Marcus theory suggest that both the CT processes fall under the Marcus normal region.
Collapse
Affiliation(s)
- Bidyut Das
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| | - Smiti Rani Bora
- Department of Chemistry, Gauhati University, Guwahati 781 014, Assam, India
| | - Siddharth Mall Bishen
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | - Hirdyesh Mishra
- Physics Section MMV, Department of Physics, Banaras Hindu University, Varanasi 221 005, India
| | | | - Abdul Wahab
- Department of Chemistry, Cotton University, Guwahati 781 001, Assam, India
| |
Collapse
|
5
|
Lin J, Liu S, Zhang J, Grützmacher H, Su CY, Li Z. Room temperature stable E, Z-diphosphenes: their isomerization, coordination, and cycloaddition chemistry. Chem Sci 2023; 14:10944-10952. [PMID: 37829033 PMCID: PMC10566463 DOI: 10.1039/d3sc04506d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
E,Z-isomers display distinct physical properties and chemical reactivities. However, investigations on heavy main group elements remain limited. In this work, we present the isolation and X-ray crystallographic characterization of N-heterocyclic vinyl (NHV) substituted diphosphenes as both E- and Z-isomers (L[double bond, length as m-dash]CH-P[double bond, length as m-dash]P-CH[double bond, length as m-dash]L, E,Z-2b; L = N-heterocyclic carbene). E-2b is thermodynamically more stable and undergoes reversible photo-stimulated isomerization to Z-2b. The less stable Z-isomer Z-2b can be thermally reverted to E-2b. Theoretical studies support the view that this E ↔ Z isomerization proceeds via P[double bond, length as m-dash]P bond rotation, reminiscent of the isomerization observed in alkenes. Furthermore, both E,Z-2b coordinate to an AuCl fragment affording the complex [AuCl(η2-Z-2b)] with the diphosphene ligand in Z-conformation, exclusively. In contrast, E,Z-2b undergo [2 + 4] and [2 + 1] cycloadditions with dienes or diazo compounds, respectively, yielding identical cycloaddition products in which the phosphorus bound NHV groups are in trans-position to each other. DFT calculations provide insight into the E/Z-isomerisation and stereoselective formation of Au(i) complexes and cycloaddition products.
Collapse
Affiliation(s)
- Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Jie Zhang
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
6
|
Yagura S, Hayakawa N, Kuroda A, Ota K, Tanishita R, Urasaki G, Nakahodo T, Nakai H, Hoshino M, Hashizume D, Matsuo T. A series of ( E)-1,2-diaryldigermenes incorporating bulky Eind groups: structural characteristics and absorption properties. Dalton Trans 2022; 51:18633-18641. [PMID: 36448427 DOI: 10.1039/d2dt03427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A series of (E)-1,2-diaryldigermenes, (Eind)ArGeGeAr(Eind) [Ar = phenyl (2), thiophen-2-yl (3), 9,9-dimethyl-2-fluorenyl (4) and 2,2'-bithiophen-5-yl (5)], supported by the fused-ring bulky 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl (Eind) groups, have been obtained as yellow-orange to red crystalline solids by the reaction of 1,2-dibromodigermene, (Eind)BrGeGeBr(Eind) (1), with ArLi. In the crystals of 2-5, the digermene cores show a flexible nature adopting a trans-bent geometry with the trans-bent angles (θ) between the Ge-Ge vector and the CEind-Ge-CAr plane of 34.04(12)° (2), 38.3(3)° and 38.8(3)° (3), 33.69(12)° (4) and 39.30(13)° (5). In the UV-vis spectra, strong π-π* absorptions have been observed with an absorption maximum at 451 nm (ε = 1.3 × 104) (2), 455 nm (ε = 9.7 × 103) (3), 480 nm (ε = 1.3 × 104) (4) and 497 nm (ε = 1.4 × 104) (5), retaining the GeGe double bond in solution. The absorption data and DFT calculations provide evidence for the intrinsic π-conjugation between the GeGe chromophore and aromatic rings involving the narrowing of the HOMO-LUMO gaps (ΔE) with the extension of the carbon π-electron systems.
Collapse
Affiliation(s)
- Shogo Yagura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Airi Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Kei Ota
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Rhota Tanishita
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Genya Urasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Tsukasa Nakahodo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Hidetaka Nakai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Manabu Hoshino
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| |
Collapse
|
7
|
Enhancing fluorescence and lowering the optical gap through C P doping of a π-conjugated molecular backbone: A computational-based design approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
8
|
Bisai MK, Das T, Vanka K, Gonnade RG, Sen SS. Unsymmetrical sp
2
‐sp
3
Disilenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Material Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Bisai MK, Das T, Vanka K, Gonnade RG, Sen SS. Unsymmetrical sp 2 -sp 3 Disilenes. Angew Chem Int Ed Engl 2021; 60:20706-20710. [PMID: 34288335 DOI: 10.1002/anie.202107847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/08/2022]
Abstract
Disilenes with differently coordinated silicon atoms are not known. Here, we have shown the high yield synthesis of a range of disilenes (2-4 and 6) upon reaction of a hypersilyl silylene PhC(NtBu)2 SiSi(SiMe3 )3 (1) with aliphatic chlorophosphines. The most striking characteristic of these disilenes is the presence of two differently coordinated Si atoms (one is three-coordinated, the other four-coordinated). The analogous reaction with Ph2 PCl did not afford the desired disilene, but, surprisingly, led to the first tetraphosphinosilane (8). DFT calculations were performed to understand the bonding in disilenes and differences in reactivity of the complexes.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tamal Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
10
|
Yan M, Huang S, Yang G. Photoluminescent Metallaprisms with (
p
‐Cymene)Ru‐Corners and Bis(β‐diketone) Pillars. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ming‐Jie Yan
- MOE Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Sheng‐Li Huang
- MOE Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Guo‐Yu Yang
- MOE Key Laboratory of Cluster Science Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
11
|
Klemmer L, Thömmes AL, Zimmer M, Huch V, Morgenstern B, Scheschkewitz D. Metathesis of Ge=Ge double bonds. Nat Chem 2021; 13:373-377. [PMID: 33649497 DOI: 10.1038/s41557-021-00639-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
The metathesis of carbon-carbon double bonds-the 'reshuffling' of their constituting carbene fragments-is a tremendously important preparative tool in industry and academia. Metathesis of heavier alkene homologues is restricted to occasional unproductive examples in phosphorus chemistry and cross-metathesis to mixed heavier alkynes. We now report the thermally induced, transition-metal-free metathesis of purpose-built unsymmetrically substituted digermenes. The A2Ge=GeAB starting materials are thus converted to symmetrically substituted derivatives of the A2Ge=GeA2 and ABGe=GeAB types. The use of tethered auxiliary donors (dimethylaniline groups) in substituents B ensures intramolecular donor-acceptor stabilization of the transient germylene fragments, the intermediacy of which is proven by trapping experiments. Density functional theory calculations shed light on the thermodynamic driving force of the metathesis and validate the crucial role of the tethered donor. With an analogously equipped bridged tetragermadiene precursor (A2Ge=GeB-X-BGe=GeA2), heavier acyclic diene metathesis polymerization occurs, in analogy to the widespread acyclic diene metathesis (ADMET) polymerization in the carbon case, yielding a polydigermene.
Collapse
Affiliation(s)
- Lukas Klemmer
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - Anna-Lena Thömmes
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - Michael Zimmer
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - Volker Huch
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - Bernd Morgenstern
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp Chair of General and Inorganic Chemistry, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
12
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
13
|
Jones AL, Schanze KS. Fluorescent Charge-Transfer Excited States in Acceptor Derivatized Thiophene Oligomers. J Phys Chem A 2020; 124:7001-7013. [DOI: 10.1021/acs.jpca.0c05561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Austin L. Jones
- Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Florida P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Sampson J, Choi G, Akhtar MN, Jaseer E, Theravalappil R, Garcia N, Agapie T. Early Metal Di(pyridyl) Pyrrolide Complexes with Second Coordination Sphere Arene-π Interactions: Ligand Binding and Ethylene Polymerization. ACS OMEGA 2019; 4:15879-15892. [PMID: 31592458 PMCID: PMC6776977 DOI: 10.1021/acsomega.9b01788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 05/04/2023]
Abstract
Early metal complexes supported by hemilabile, monoanionic di(pyridyl) pyrrolide ligands substituted with mesityl and anthracenyl groups were synthesized to probe the possibility of second coordination sphere arene-π interactions with ligands with potential for allosteric control in coordination chemistry, substrate activation, and olefin polymerization. Yttrium alkyl, indolide, and amide complexes were prepared and structurally characterized; close contacts between the anthracenyl substituents and Y-bound ligands are observed in the solid state. Titanium, zirconium, and hafnium tris(dimethylamido) complexes were synthesized, and their ethylene polymerization activity was tested. In the solid state structure of one of the Ti tris(dimethylamido) complexes, coordination of Ti to only one of the pyridine donors is observed pointing to the hemilabile character of the di(pyridyl) pyrrolide ligands.
Collapse
Affiliation(s)
- Jessica Sampson
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Gyeongshin Choi
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Muhammed Naseem Akhtar
- Center
for Refining and Petrochemicals, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - E.A. Jaseer
- Center
for Refining and Petrochemicals, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rajesh Theravalappil
- Center
for Refining and Petrochemicals, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nestor Garcia
- Center
for Refining and Petrochemicals, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Theodor Agapie
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
- E-mail:
| |
Collapse
|
15
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
16
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
17
|
Schröder A, Denhof A, Lork E, Beckmann J. Reactivity of 2,6-Dihalophenyl Lithium Reagents Towards Chlorosilanes. Synthesis and Structure of 2,3- and 2,6-Dihalophenyl(di-)silanes. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Artem Schröder
- Institut für Anorganische Chemie und Kristallographie; Universität Bremen; Leobener Straße 7 28359 Bremen Germany
| | - Andreas Denhof
- Institut für Anorganische Chemie und Kristallographie; Universität Bremen; Leobener Straße 7 28359 Bremen Germany
| | - Enno Lork
- Institut für Anorganische Chemie und Kristallographie; Universität Bremen; Leobener Straße 7 28359 Bremen Germany
| | - Jens Beckmann
- Institut für Anorganische Chemie und Kristallographie; Universität Bremen; Leobener Straße 7 28359 Bremen Germany
| |
Collapse
|
18
|
Sarkar S, Protasiewicz JD, Dunietz BD. Controlling the Emissive Activity in Heterocyclic Systems Bearing C═P Bonds. J Phys Chem Lett 2018; 9:3567-3572. [PMID: 29905483 DOI: 10.1021/acs.jpclett.8b01045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The photophysical properties of a series of heteroatom substituted indoles are explored to identify chemical means to control their emissive activity. In particular, we consider impacts of changes in the conjugated backbone, where the C═N bonds of benzoxazoles are replaced by C═P bonds (benzoxaphospholes). The effects of extending the π-conjugation, incorporating various secondary heteroatoms (X-C═P), and enforcing planar rigidity are also examined. Our computational analysis explains the higher fluorescence efficiency observed with extended π-conjugation and highlights the importance of maintaining molecular planarity at both ground- and emissive-state geometries.
Collapse
Affiliation(s)
- Sunandan Sarkar
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| | - John D Protasiewicz
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , Kent , Ohio 44242 , United States
| |
Collapse
|
19
|
Maeda H, Suzuki T, Segi M. Effects of substituents in silyl groups on the absorption, fluorescence and structural properties of 1,3,6,8-tetrasilylpyrenes. Photochem Photobiol Sci 2018; 17:781-792. [PMID: 29741552 DOI: 10.1039/c8pp00135a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3,6,8-Tetrasilylpyrenes and related germyl and stannyl derivatives were synthesized, and their absorption and fluorescence spectroscopic and structural properties were elucidated. The results show that the UV-vis absorption maxima of these substances in CH2Cl2 solutions shift to longer wavelengths as the size of the alkyl groups and numbers of phenyl groups on silicon increase. Fluorescence quantum yields of tetrasilylpyrenes in cyclohexane are larger than that of pyrene, and a pentamethyldisilyl derivative has an emission efficiency of 0.79. Except in the case of the SiMe2H derivative, excimer emission was not observed in concentrated solutions of these substances. The SiMe2H and SiMe3 derivatives were shown to form CT complexes with tetracyanoethylene in CH2Cl2 solutions. The calculated energy barriers for rotation of the silyl groups about the Si-C bond increase as the steric bulk of the silyl group increases. 29Si NMR chemical shifts were found to depend on the sizes of the alkyl groups and numbers of phenyl groups. Data arising from theoretical calculations suggest that the silyl groups act as electron-donating groups, and the donating ability of the groups decreases in the order SiR3 > GeR3 > SnR3.
Collapse
Affiliation(s)
- Hajime Maeda
- Division of Material Chemistry, Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | |
Collapse
|
20
|
Yukimoto M, Minoura M. The Synthesis of a Novel Bulky Primary Alkyl Group and Its Application toward the Kinetic Stabilization of a Tetraalkyldisilene. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mariko Yukimoto
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Mao Minoura
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
21
|
Ishii A, Shibata M, Ebina R, Nakata N. Synthesis and Photophysical Properties of Dibenzobarrelene-Incorporated 1,4-Diphenyl-1,3-pentadienes and a 5-Sila Derivative Having High Fluorescence Efficiency. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akihiko Ishii
- Department of Chemistry; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo, Sakura-ku 338-8570 Saitama Japan
| | - Mari Shibata
- Department of Chemistry; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo, Sakura-ku 338-8570 Saitama Japan
| | - Ryota Ebina
- Department of Chemistry; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo, Sakura-ku 338-8570 Saitama Japan
| | - Norio Nakata
- Department of Chemistry; Graduate School of Science and Engineering; Saitama University; 255 Shimo-okubo, Sakura-ku 338-8570 Saitama Japan
| |
Collapse
|
22
|
Obeid NM, Klemmer L, Maus D, Zimmer M, Jeck J, Bejan I, White AJP, Huch V, Jung G, Scheschkewitz D. (Oligo)aromatic species with one or two conjugated Si[double bond, length as m-dash]Si bonds: near-IR emission of anthracenyl-bridged tetrasiladiene. Dalton Trans 2018; 46:8839-8848. [PMID: 28387780 DOI: 10.1039/c7dt00397h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of aryl disilenes Tip2Si[double bond, length as m-dash]Si(Tip)Ar (2a-c) and para-arylene bridged tetrasiladienes, Tip2Si[double bond, length as m-dash]Si(Tip)-LU-Si(Tip)[double bond, length as m-dash]SiTip2 (3a-d) are synthesized by the transfer of the Tip2Si[double bond, length as m-dash]SiTip unit to aryl halides and dihalides by nucleophilic disilenides Tip2Si[double bond, length as m-dash]SiTipLi (Tip = 2,4,6-iPr3C6H2, Ar = aryl substituent, LU = para-arylene linking unit). The scope of the nucleophilic Si[double bond, length as m-dash]Si transfer reaction is demonstrated to also include substrates of considerable steric bulk such as mesityl or duryl halides Ar-X (Ar = Mes = 2,4,6-Me3C6H2; Ar = Dur = 2,3,5,6-Me4C6H, X = Br or I). Bridged tetrasiladienes Tip2Si[double bond, length as m-dash]Si(Tip)-LU-Si(Tip)[double bond, length as m-dash]SiTip2 with more extended linking units surprisingly exhibit fluorescence at room temperature, albeit weak. DFT calculations suggest that partial charge transfer character of the excited state is a possible explanation.
Collapse
Affiliation(s)
- Naim M Obeid
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kosai T, Ishida S, Iwamoto T. Heteroaryldisilenes: heteroaryl groups serve as electron acceptors for Si[double bond, length as m-dash]Si double bonds in intramolecular charge transfer transitions. Dalton Trans 2018; 46:11271-11281. [PMID: 28799613 DOI: 10.1039/c7dt02357j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although many stable disilenes (silicon-silicon doubly-bonded compounds) containing organic π-electron systems have been reported, stable disilenes with heteroaromatic groups remain rare. Herein, we report the synthesis of monodisilenyl-substituted thiophene 1, anthracene 4, acridine 5, and mesitylene 7 and bis(disilenyl)-substituted thiophene 2, 2,2'-bithiophene 3, and anthracene 6via reactions of dialkylmesityldisilenide 8 with the corresponding haloarenes. Disilenes 1-7 show absorption bands with contributions of intramolecular charge transfer (ICT) transitions from π(disilene) to π*(aryl). In the ICT transitions, (bi)thienyl groups as well as anthryl and acrydinyl groups serve as electron acceptors for the Si[double bond, length as m-dash]Si double bonds.
Collapse
Affiliation(s)
- Tomoyuki Kosai
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
24
|
Matsuo T, Hayakawa N. π-Electron systems containing Si=Si double bonds. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:108-129. [PMID: 29467912 PMCID: PMC5814778 DOI: 10.1080/14686996.2017.1414552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 06/08/2023]
Abstract
Sterically large substituents can provide kinetic stabilization to various types of low-coordinate compounds. For example, regarding the chemistry of the group 14 elements, since West et al. introduced the concept of kinetic protection of the otherwise highly reactive Si=Si double bond by bulky mesityl (2,4,6-trimethylphenyl) groups in 1981, a number of unsaturated compounds of silicon and its group homologs have been successfully isolated by steric effects using the appropriate large substituents. However, the functions and applications of the Si-Si π-bonds consisting of the 3pπ electrons on the formally sp2-hybridized silicon atoms have rarely been explored until 10 years ago, when Scheschkewitz and Tamao independently reported the model systems of the oligo(p-phenylenedisilenylene)s (Si-OPVs) in 2007. This review focuses on the recent advances in the chemistry of π-electron systems containing Si=Si double bonds, mainly published in the last decade. The synthesis, characterization, and potential application of a variety of donor-free π-conjugated disilene compounds are described.
Collapse
Affiliation(s)
- Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| |
Collapse
|
25
|
Theoretical molecular design of hexasilabenzene analogues aiming for the thermodynamic and kinetic stabilization. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Morales Salazar D, Gupta AK, Orthaber A. Reactivity studies of an imine-functionalised phosphaalkene; unusual electrostatic and supramolecular stabilisation of a σ2λ3-phosphorus motif via hydrogen bonding. Dalton Trans 2018; 47:10404-10409. [DOI: 10.1039/c8dt01607k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protonation with strong acids at an imine over addition to a phosphaalkene; resulting adducts display hydrogen bonding.
Collapse
Affiliation(s)
- Daniel Morales Salazar
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| | - Arvind Kumar Gupta
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| | - Andreas Orthaber
- Molecular Inorganic Chemistry
- Department of Chemistry - Ångström Laboratories
- Uppsala University
- Sweden
| |
Collapse
|
27
|
Kosai T, Iwamoto T. Stable Push-Pull Disilene: Substantial Donor-Acceptor Interactions through the Si═Si Double Bond. J Am Chem Soc 2017; 139:18146-18149. [PMID: 29192775 DOI: 10.1021/jacs.7b09989] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The push-pull effect has been widely used to effectively tune π-electron systems. Herein, we report the synthesis and properties of 1-amino-2-boryldisilene 1 as the first push-pull disilene. Its spectroscopic and structural features show substantial interactions between the Si═Si double bond and the amino and boryl substituents. The π → π* absorption band of 1 is remarkably red-shifted compared to that of the corresponding alkyl-substituted disilene 2. Treatment of 1 with H2 resulted in the cleavage of two molecules of H2 under concomitant formation of the corresponding trihydridodisilane and hydroborane.
Collapse
Affiliation(s)
- Tomoyuki Kosai
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
28
|
Hayakawa N, Nishimura S, Kazusa N, Shintani N, Nakahodo T, Fujihara H, Hoshino M, Hashizume D, Matsuo T. π-Conjugation between a Si═Si Double Bond and Thiophene Rings: Synthesis, Structural Characteristics, and Photophysical Properties of 1,2-Bis(thiophen-2-yl)disilene and 1,2-Bis(2,2′-bithiophen-5-yl)disilene. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naoki Hayakawa
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shogo Nishimura
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Nobuhiro Kazusa
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Nozomu Shintani
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tsukasa Nakahodo
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hisashi Fujihara
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Manabu Hoshino
- Materials
Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Materials
Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tsukasa Matsuo
- Department
of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
29
|
Otani T, Miyoshi M, Shibata T, Matsuo T, Hashizume D, Tamao K. Thermally Stable Monosubstituted Thiophene 1-Oxide and 1-Imides Stabilized by a Bulky Rind Group at Their 3-Position: Synthesis, Structure, and Inversion Barriers on the Sulfur Atom. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takashi Otani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198
- Course of Chemical Engineering, National Institute of Technology, Anan College, 265 Aoki Minobayashi, Anan, Tokushima 774-0017
| | - Mayu Miyoshi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555
| | - Takanori Shibata
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555
| | - Tsukasa Matsuo
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502
| | - Daisuke Hashizume
- Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Kohei Tamao
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198
- RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198
| |
Collapse
|
30
|
Zhang M, Saha ML, Wang M, Zhou Z, Song B, Lu C, Yan X, Li X, Huang F, Yin S, Stang PJ. Multicomponent Platinum(II) Cages with Tunable Emission and Amino Acid Sensing. J Am Chem Soc 2017; 139:5067-5074. [DOI: 10.1021/jacs.6b12536] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingming Zhang
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Manik Lal Saha
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Ming Wang
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Zhixuan Zhou
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Bo Song
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Chenjie Lu
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Xuzhou Yan
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Xiaopeng Li
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Shouchun Yin
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
- College
of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
31
|
Wu Z, Sun J, Zhang Z, Yang H, Xue P, Lu R. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids. Chemistry 2017; 23:1901-1909. [DOI: 10.1002/chem.201604573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Zhu Wu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Hao Yang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Pengchong Xue
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| |
Collapse
|
32
|
Chen J, Chen Y, Wu Y, Wang X, Yu Z, Xiao L, Liu Y, Tian H, Yao J, Fu H. Modulated emission from dark triplet excitons in aza-acene compounds: fluorescence versus phosphorescence. NEW J CHEM 2017. [DOI: 10.1039/c6nj02747d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The enhanced charge-transfer interaction from DBP to TBP leads to higher energy triplet states, which reinforces reverse intersystem crossing.
Collapse
|
33
|
Su MD. CASSCF and CASMP2 study on the photoisomerization mechanisms of [tris(trialkylsilyl)silyl]cyclotetrasilene and related cyclobutene molecules. RSC Adv 2017. [DOI: 10.1039/c7ra00506g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The photo-isomerization reaction mechanisms for both cyclotetrasilene and cyclobutene are theoretically studied. The model computations show that the conical intersection mechanism plays a key role in these photochemical reactions and that there are no radicals.
Collapse
Affiliation(s)
- Ming-Der Su
- Department of Applied Chemistry
- National Chiayi University
- Chiayi 60004
- Taiwan
- Department of Medicinal and Applied Chemistry
| |
Collapse
|
34
|
Wang Z, Zhang J, Li J, Cui C. NHC-Stabilized Silicon–Carbon Mixed Cumulene. J Am Chem Soc 2016; 138:10421-4. [DOI: 10.1021/jacs.6b06960] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhendong Wang
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianying Zhang
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Li
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Chunming Cui
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
35
|
Kanazawa S, Ohira T, Goda S, Hayakawa N, Tanikawa T, Hashizume D, Ishida Y, Kawaguchi H, Matsuo T. Synthesis and Structural Characterization of Lithium and Titanium Complexes Bearing a Bulky Aryloxide Ligand Based on a Rigid Fused-Ring s-Hydrindacene Skeleton. Inorg Chem 2016; 55:6643-52. [PMID: 27284975 DOI: 10.1021/acs.inorgchem.6b00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bulky aryl alcohols, (Rind)OH (1) [Rind = EMind (a) and Eind (b)], based on the rigid fused-ring 1,1,3,3,5,5,7,7-octa-R-substituted s-hydrindacene skeleton were prepared by the reaction of (Rind)Li with nitrobenzene followed by protonation. The treatment of 1 with (n)BuLi affords the lithium aryloxide dimers [(Rind)OLi(THF)]2 (2) or trimers [(Rind)OLi]3 (3), depending on the employed solvents (THF = tetrahydrofuran). The salt metathesis reaction of [(EMind)OLi(THF)]2 (2a) with TiCl4(THF)2 leads to the formation of the mononuclear diamagnetic mono- and bis(aryloxide) Ti(IV) complexes, [(EMind)O]TiCl3(THF) (4a) and [(EMind)O]2TiCl2 (5a). We also isolated a trace amount of the tris(aryloxide) Ti(IV) complex, [(EMind)O]3TiCl (6a). The reaction between 2a and TiCl3(THF)3 resulted in the isolation of the mononuclear paramagnetic mono- and bis(aryloxide) Ti(III) complexes, [(EMind)O]TiCl2(THF)2 (7a) and [(EMind)O]2TiCl(THF)2 (8a). The discrete monomeric structures of the titanium complexes 4a, 5a, 6a, 7a, and 8a were determined by X-ray crystallography.
Collapse
Affiliation(s)
- Shoya Kanazawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Taishi Ohira
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shun Goda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naoki Hayakawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Tomoharu Tanikawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Daisuke Hashizume
- Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yutaka Ishida
- Department of Chemistry, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroyuki Kawaguchi
- Department of Chemistry, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.,Japan Science and Technology Agency, ACT-C , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University , 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.,Japan Science and Technology Agency, ACT-C , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
36
|
Goda S, Nikai M, Ito M, Hashizume D, Tamao K, Okazawa A, Kojima N, Fueno H, Tanaka K, Kobayashi Y, Matsuo T. Synthesis and Magnetic Properties of Linear Two-coordinate Monomeric Diaryliron(II) Complexes Bearing Fused-ring Bulky “Rind” Groups. CHEM LETT 2016. [DOI: 10.1246/cl.160216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shun Goda
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University
| | - Masanori Nikai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University
| | - Mikinao Ito
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute (ASI)
| | - Daisuke Hashizume
- Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS)
| | - Kohei Tamao
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute (ASI)
| | - Atsushi Okazawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Norimichi Kojima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo
| | - Hiroyuki Fueno
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Kazuyoshi Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University
| | - Yoshio Kobayashi
- Department of Applied Physics and Chemistry, The University of Electro-Communications
| | - Tsukasa Matsuo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University
- Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute (ASI)
- JST, PRESTO
| |
Collapse
|