1
|
Liu C, Kwon S, Godbold P, Johnson G, Hwang S, Sun C, Zhou H, Goddard WA, Zhang S. Surface-Controlled TiO 2 Nanocrystals with Catalytically Active Single-Site Co Incorporation for the Oxygen Evolution Reaction. J Am Chem Soc 2025. [PMID: 40420660 DOI: 10.1021/jacs.5c05795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The design of advanced electrocatalysts is often hindered by uncertainties in identifying and controlling the active surfaces and catalytic centers within heterogeneous materials. Here we present the synthesis of single-site Co catalysts, substitutionally doped into surface-controlled TiO2 anatase nanocrystals, aimed at enhancing the oxygen evolution reaction (OER). Grand canonical quantum mechanics calculations reveal that the kinetics of the OER, following an adsorbate evolution mechanism, is markedly influenced by the coordination environment of Co. The simulations suggest significantly higher turnover frequencies when Co is doped into the (001) surface of TiO2 compared to the (101) surface. Consistent with the computational findings, experimental results show that Co-doped TiO2 (Co-TiO2) nanoplates with selectively exposed {001} surfaces exhibit enhanced current densities and turnover frequencies compared to Co-TiO2 nanobipyramids with {101} surfaces. This study highlights the synergy between theoretical calculations and precision synthesis in the development of more effective catalysts.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Soonho Kwon
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Perrin Godbold
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Chengjun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Huang X, Wan M, Cao Q, Song HZ, Yang M. Z-Scheme heterostructures of 2D SnC/Sc 2CCl 2 for overall water splitting with strong redox potential under visible light. Phys Chem Chem Phys 2025; 27:6976-6983. [PMID: 40103538 DOI: 10.1039/d5cp00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The two-dimensional (2D) Z-scheme system is an effective approach for hydrogen production via photocatalytic water splitting (PWS). This study established a 2D van der Waals (vdW) SnC/Sc2CCl2 heterojunction for PWS. The electronic and optical properties of the designed heterojunction were determined using first-principles methods, showing that the heterojunction, acting as a Z-scheme photocatalyst (ZSP), formed an induced internal electric field to achieve effective electron-hole separation. The strong redox ability (∼1.5 eV) and moderate energy barrier of the SnC/Sc2CCl2 heterojunction further enabled efficient PWS. Moreover, the PWS process benefited from the heterojunction's favorable absorption coefficient (105 cm-1) and solar-to-hydrogen conversion efficiency (21.36%) under visible light. The proposed Z-scheme SnC/Sc2CCl2 heterojunction is a promising candidate for photocatalytic overall water splitting (POWS) across a pH range of 0-14.
Collapse
Affiliation(s)
- Xingyong Huang
- School of Mathematics and Physics, Yibin University, Yibin, Sichuan, 644007, China.
- Key Laboratory of Computational Physics of Sichuan Province, Yibin University, Sichuan, 644007, China
| | - Mingjie Wan
- School of Mathematics and Physics, Yibin University, Yibin, Sichuan, 644007, China.
| | - Qilong Cao
- School of Mathematics and Physics, Yibin University, Yibin, Sichuan, 644007, China.
| | - Hai-Zhi Song
- Southwest Institute of Technical Physics, Chengdu, Sichuan, 610041, China
| | - Ming Yang
- School of Mathematics and Physics, Yibin University, Yibin, Sichuan, 644007, China.
| |
Collapse
|
3
|
Han J, Liu Q, Yang Y, Wu HB. Noble-metal-free catalysts for the oxygen evolution reaction in acids. Chem Sci 2025; 16:3788-3809. [PMID: 39950065 PMCID: PMC11815483 DOI: 10.1039/d4sc08400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Oxygen evolution catalysts are critical components of proton exchange membrane water electrolysers (PEMWEs), playing a decisive role in determining both the performance and cost of these devices. Non-noble metal-based oxygen evolution catalysts have recently drawn significant attention as potential alternatives to expensive noble metal catalysts. This review systematically summarizes the mechanism of non-noble metal catalysts for the oxygen evolution reaction in acids with respect to their activity and stability, incorporating theoretical calculations and the Pourbaix diagram. Advanced in situ techniques are highlighted as powerful tools for probing intermediate evolution and valence changes and further elucidating the catalytic mechanism. Furthermore, key strategies for enhancing catalytic activity and durability, such as elemental doping, the support effect, surface protection and novel phase design, are discussed. Finally, this review provides insights into the remaining challenges and emerging opportunities for advancing practical oxygen evolution catalysts in PEMWEs.
Collapse
Affiliation(s)
- Junwei Han
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qian Liu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yue Yang
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Hao Bin Wu
- School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
4
|
Xu F, He Y, Zhang J, Liang G, Liu C, Yu J. Prolonging Charge Carrier Lifetime via Intraband Defect Levels in S-Scheme Heterojunctions for Artificial Photosynthesis. Angew Chem Int Ed Engl 2025; 64:e202414672. [PMID: 39542852 DOI: 10.1002/anie.202414672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
S-scheme heterostructure photocatalysts, distinguished by unique charge-transfer pathways and exceptional catalytic redox capabilities, have found widespread applications in addressing challenging chemical processes, including the photocatalytic reduction of CO2 with a high reaction barrier. Nevertheless, the influence of intraband defect levels within S-scheme heterojunctions on charge separation, carrier lifetime, and surface catalytic reactions has, for the most part, been overlooked. Herein, we develop a tunable defect-level-assisted strategy to construct an electron reservoir, effectively prolonging the lifetime of charge carriers through the rapid capture and gradual release of photoelectrons within WO3-x/In2S3 S-scheme heterojunctions, as authenticated by femtosecond transient absorption spectroscopy and theoretical simulations. The surface photoredox mechanism, unraveled by Gibbs free energy calculations, demonstrates that oxygen-vacancy-induced defect states in WO3-x/In2S3 heterojunctions unlock the rate-determining H2O oxidation into free oxygen molecules by forming metastable oxygen intermediates, contributing to the facilitation of H2O photooxidation. This distinct role, combined with the extended carrier lifetime, results in boosted CO2 photoreduction with nearly 100 % CO selectivity in the absence of any photosensitizer or scavenger. Our work sheds light on the role of controllable defect levels in governing charge transfer dynamics within S-scheme heterojunctions, thereby inspiring the development of more advanced photocatalysts for artificial photosynthesis.
Collapse
Affiliation(s)
- Feiyan Xu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Ying He
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, 441053, Xiangyang, P. R. China
| | - Chengyuan Liu
- National synchrotron radiation laboratory, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, 430078, Wuhan, P. R. China
| |
Collapse
|
5
|
Hartnett AC, Evenson RJ, Thorarinsdottir AE, Veroneau SS, Nocera DG. Lanthanum-Promoted Electrocatalyst for the Oxygen Evolution Reaction: Unique Catalyst or Oxide Deconstruction? J Am Chem Soc 2025; 147:1123-1133. [PMID: 39702923 DOI: 10.1021/jacs.4c14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A conventional performance metric for electrocatalysts that promote the oxygen evolution reaction (OER) is the current density at a given overpotential. However, the assumption that increased current density at lower overpotentials indicates superior catalyst design is precarious for OER catalysts in the working environment, as the crystalline lattice is prone to deconstruction and amorphization, thus greatly increasing the concentration of catalytic active sites. We show this to be the case for La3+ incorporation into Co3O4. Powder X-ray diffraction (PXRD), Raman spectroscopy and extended X-ray absorption fine structure (EXAFS) reveal smaller domain sizes with decreased long-range order and increased amorphization for La-modified Co3O4. This lattice deconstruction is exacerbated under the conditions of OER as indicated by operando spectroscopies. The overpotential for OER decreases with increasing La3+ concentration, with maximum activity achieved at 17% La incorporation. HRTEM images and electron diffraction patterns clearly show the formation of an amorphous overlayer during OER catalysis that is accelerated with La3+ addition. O 1s XPS spectra after OER show the loss of lattice-oxide and an increase in peak intensities associated with hydroxylated or defective O-atom environments, consistent with Co(O)x(OH)y species in an amorphous overlayer. Our results suggest that improved catalytic activity of oxides incorporated with La3+ ions (and likely other metal ions) is due to an increase in the number of terminal octahedral Co(O)x(OH)y edge sites upon Co3O4 lattice deconstruction, rather than enhanced intrinsic catalysis.
Collapse
Affiliation(s)
- Alaina C Hartnett
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Ryan J Evenson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Agnes E Thorarinsdottir
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Samuel S Veroneau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Cao H, Wen X, Luo X, Ma L, Xu Z, Zhang Z, Zhang W. Dual-Site Bridging Mechanism for Bimetallic Electrochemical Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202411683. [PMID: 39119867 DOI: 10.1002/anie.202411683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Heterogeneous dual-site electrocatalysts are emerging cutting-edge materials for efficient electrochemical water splitting. However, the corresponding oxygen evolution reaction (OER) mechanism on these materials is still unclear. Herein, based on a series of in situ spectroscopy experiments and density function theory (DFT) calculations, a new heterogeneous dual-site O-O bridging mechanism (DSBM) is proposed. This mechanism is to elucidate the sequential appearance of dual active sites through in situ construction (hybrid ions undergo reconstruction initially), determine the crucial role of hybrid dual sites in this mechanism (with Ni sites preferentially adsorbing hydroxyls for catalysis followed by proton removal at Fe sites), assess the impact of O-O bond formation on the activation state of water (inducing orderliness of activated water), and investigate the universality (with Co doping in Ni(P4O11)). Under the guidance of this mechanism, with Fe-Ni(P4O11) as pre-catalyst, the in situ formed Fe-Ni(OH)2 electrocatalyst has reached a record-low overpotential of 156.4 mV at current density of 18.0 mA cm-2. Successfully constructed Fe-Ni(P4O11)/Ti uplifting the overall efficacy of the phosphate from moderate to superior, positioning it as an innovative and highly proficient electrocatalyst for OER.
Collapse
Affiliation(s)
- Hongshuai Cao
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Xue Wen
- School of Electronics, Information and Electrical Engineering, Instrumental Analysis Center, Shanghai Jiao Tong University, Dong Chuan Road No. 800, 200240 Shanghai, China
| | - Xianzhu Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Linlin Ma
- School of Electronics, Information and Electrical Engineering, Instrumental Analysis Center, Shanghai Jiao Tong University, Dong Chuan Road No. 800, 200240 Shanghai, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 200062, Shanghai, China
| |
Collapse
|
7
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
8
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
9
|
Wang Z, Xiao H. Fleeting-Active-Site-Thrust Oxygen Evolution Reaction by Iron Cations from the Electrolyte. J Am Chem Soc 2024; 146:29540-29550. [PMID: 39411826 DOI: 10.1021/jacs.4c09585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Oxygen evolution reaction (OER) is key to sustainable energy and environmental engineering, thus necessitating rational design of high-performing electrocatalysts that requires understanding the structure-performance relationship with a possible dynamic nature under working conditions. Herein, we uncover a novel type of OER mechanisms thrust by the fleeting active sites (FASs) dynamically formed on Ni-based layered double hydroxides (Ni-LDHs) by Fe cations from the electrolyte under OER potentials. We employ grand-canonical ensemble methods and microkinetic modeling to elucidate the potential-dependent structures of FASs on Ni-LDHs and demonstrate that the fleeting-active-site-thrust (FAST) mechanism delivers superior OER activity via the FAST intramolecular oxygen coupling pathway, which also suppresses the lattice oxygen mechanism, leading to improved operando stability of Ni-LDHs. We further reveal that introducing only trace-level loadings (10-100 ppm) of FASs on Ni-LDHs can significantly boost and govern the catalytic performance for OER. This underscores the crucial importance of considering the novel FAST mechanism in OER and also suggests the electrolyte as a key part of the structure-performance relationship as well as an effective design strategy via engineering the electrolyte.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li S, Zhang Z, Marks WR, Huang X, Chen H, Stoian DC, Erni R, Triana CA, Patzke GR. {Co 4O 4} Cubanes in a conducting polymer matrix as bio-inspired molecular oxygen evolution catalysts. Nat Commun 2024; 15:8432. [PMID: 39343967 PMCID: PMC11439914 DOI: 10.1038/s41467-024-52514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Exploration of efficient molecular water oxidation catalysts for long-term application remains a key challenge for the conversion of renewable energy sources into fuels. Cuboidal {Co4O4} complexes keep attracting interest as molecular water oxidation catalysts as they combine features of both heterogeneous and homogeneous catalysis with bio-inspired motifs. However, the application of many cluster-based catalysts for the oxygen evolution reaction still requires new stabilization strategies. Drawing inspiration from the stabilizing effects of natural polymers, we introduce a conductive polymer-hybrid approach to covalently immobilize {Co4O4} cubane oxo clusters as oxygen evolution catalysts. Polypyrrole is applied as an efficient p-type conducting polymer that promotes hole transfer during the oxygen evolution reaction, resulting in higher turnover frequency compared to the pristine {Co4O4} oxo cluster and heterogeneous Co-oxide benchmarks. The asymmetric coordination of {Co4O4} not only mitigates catalyst decomposition pathways, but also increases the catalytic efficiency by exposing a directed cofacial dihydroxide motif during catalysis.
Collapse
Affiliation(s)
- Shangkun Li
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Zeyi Zhang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines - European Synchrotron Radiation Facility, BP 220, 38043, Grenoble, France
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
11
|
He L, Zhou Y, Wang M, Li S, Lai Y. Recent Progress on Stability of Layered Double Hydroxide-Based Catalysts for Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1533. [PMID: 39330689 PMCID: PMC11434886 DOI: 10.3390/nano14181533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Water electrolysis is regarded as one of the most viable technologies for the generation of green hydrogen. Nevertheless, the anodic oxygen evolution reaction (OER) constitutes a substantial obstacle to the large-scale deployment of this technology, due to the considerable overpotential resulting from the retardation kinetics associated with the OER. The development of low-cost, high-activity, and long-lasting OER catalysts has emerged as a pivotal research area. Layered double hydroxides (LDHs) have garnered significant attention due to their suitability for use with base metals, which are cost-effective and exhibit enhanced activity. However, the current performance of LDHs OER catalysts is still far from meeting the demands of industrial applications, particularly in terms of their long-term stability. In this review, we provide an overview of the causes for the deactivation of LDHs OER catalysts and present an analysis of the various mechanisms employed to improve the stability of these catalysts, including the synthesis of LDH ultrathin nanosheets, adjustment of components and doping, dissolution and redeposition, defect creation and corrosion, and utilization of advanced carbon materials.
Collapse
Affiliation(s)
- Lielie He
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Yangen Zhou
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Mengran Wang
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Simin Li
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| | - Yanqing Lai
- School of Metallurgy and Environment, National Energy Metal Resources and New Materials Key Laboratory, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Hao Y, Hung SF, Wang L, Deng L, Zeng WJ, Zhang C, Lin ZY, Kuo CH, Wang Y, Zhang Y, Chen HY, Hu F, Li L, Peng S. Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution. Nat Commun 2024; 15:8015. [PMID: 39271695 PMCID: PMC11399115 DOI: 10.1038/s41467-024-52410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Realizing an efficient turnover frequency in the acidic oxygen evolution reaction by modifying the reaction configuration is crucial in designing high-performance single-atom catalysts. Here, we report a "single atom-double site" concept, which involves an activatable inert manganese atom redox chemistry in a single-atom Ru-Mn dual-site platform with tunnel Ni ions as the trigger. In contrast to conventional single-atom catalysts, the proposed configuration allows direct intramolecular oxygen coupling driven by the Ni ions intercalation effect, bypassing the secondary deprotonation step instead of the kinetically sluggish adsorbate evolution mechanism. The strong bonding of Ni ions activates the inert manganese terminal groups and inhibits the cross-site disproportionation process inherent in the Mn scaffolding, which is crucial to ensure the dual-site platform. As a result, the single-atom Ru-Ni-Mn octahedral molecular sieves catalyst delivers a low overpotential, adequate mass activity and good stability.
Collapse
Affiliation(s)
- Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Zih-Yi Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ye Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China.
| |
Collapse
|
13
|
Zhao K, Jiang X, Wu X, Feng H, Wang X, Wan Y, Wang Z, Yan N. Recent development and applications of differential electrochemical mass spectrometry in emerging energy conversion and storage solutions. Chem Soc Rev 2024; 53:6917-6959. [PMID: 38836324 DOI: 10.1039/d3cs00840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrochemical energy conversion and storage are playing an increasingly important role in shaping the sustainable future. Differential electrochemical mass spectrometry (DEMS) offers an operando and cost-effective tool to monitor the evolution of gaseous/volatile intermediates and products during these processes. It can deliver potential-, time-, mass- and space-resolved signals which facilitate the understanding of reaction kinetics. In this review, we show the latest developments and applications of DEMS in various energy-related electrochemical reactions from three distinct perspectives. (I) What is DEMS addresses the working principles and key components of DEMS, highlighting the new and distinct instrumental configurations for different applications. (II) How to use DEMS tackles practical matters including the electrochemical test protocols, quantification of both potential and mass signals, and error analysis. (III) Where to apply DEMS is the focus of this review, dealing with concrete examples and unique values of DEMS studies in both energy conversion applications (CO2 reduction, water electrolysis, carbon corrosion, N-related catalysis, electrosynthesis, fuel cells, photo-electrocatalysis and beyond) and energy storage applications (Li-ion batteries and beyond, metal-air batteries, supercapacitors and flow batteries). The recent development of DEMS-hyphenated techniques and the outlook of the DEMS technique are discussed at the end. As DEMS celebrates its 40th anniversary in 2024, we hope this review can offer electrochemistry researchers a comprehensive understanding of the latest developments of DEMS and will inspire them to tackle emerging scientific questions using DEMS.
Collapse
Affiliation(s)
- Kai Zhao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyi Jiang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaoyu Wu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Haozhou Feng
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiude Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Yuyan Wan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| | - Zhiping Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Ning Yan
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
- Shenzhen Research Institute of Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
14
|
Nguyen TT, Sayler RI, Shoemaker AH, Zhang J, Stoll S, Winkler JR, Britt RD, Hunter BM. Oxygen Isotopologues Resolved from Water Oxidation Electrocatalysis by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2024; 146:15019-15026. [PMID: 38743719 DOI: 10.1021/jacs.3c13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Electrocatalytic water oxidation is a key transformation in many strategies designed to harness solar energy and store it as chemical fuels. Understanding the mechanism(s) of the best electrocatalysts for water oxidation has been a fundamental chemical challenge for decades. Here, we quantitate evolved dioxygen isotopologue composition via gas-phase EPR spectroscopy to elucidate the mechanisms of water oxidation on metal oxide electrocatalysts with high precision. Isotope fractionation is paired with computational and kinetic modeling, showing that this technique is sensitive enough to differentiate O-O bond-forming steps. Strong agreement between experiment and theory indicates that for the nickel-iron layered double hydroxide─one of the best earth-abundant electrocatalysts to be studied─water oxidation proceeds via a dioxo coupling mechanism to form a side-bound peroxide rather than a hydroxide attack to form an end-bound peroxide.
Collapse
Affiliation(s)
- Trisha T Nguyen
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Richard I Sayler
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Aaron H Shoemaker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jibo Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jay R Winkler
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bryan M Hunter
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Rowland Institute at Harvard, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Li L, Liu Y, Chen Y, Zhai W, Dai Z. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Trans 2024; 53:8872-8886. [PMID: 38738345 DOI: 10.1039/d4dt00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Hydrogen, highly valued for its pristine cleanliness and remarkable efficiency as an emerging energy source, is anticipated to ascend to a preeminent status within the forthcoming energy landscape. Electrocatalytic water splitting is considered a pivotal, eco-friendly, and sustainable strategy for hydrogen production. The substantial energy consumption stemming from oxygen evolution side reactions significantly impedes the commercial viability of water electrolysis. Consequently, the pursuit of a cost-effective and efficacious oxygen evolution reaction (OER) catalyst stands as an imperative strategy for realizing hydrogen production via water electrolysis. Layered metal oxides, owing to their robust anisotropic properties, versatile adjustability, and extensive surface area, have emerged as suitable candidates for OER catalysts. However, owing to the distinctive attributes of layered metal oxides, ongoing investigations into these materials are slightly fragmented, lacking universal consensus. This article comprehensively surveys the recent advancements in layered metal oxide-based OER catalysts, categorized into single metal oxides, alkali cobalt oxides, perovskites, and miscellaneous metal oxides. Initially, the main OER intermediate reaction steps of layered metal oxides are scrutinized. Subsequently, the design, mechanism, and application of several pivotal layered metal oxides in the OER are systematically delineated. Finally, a summary is provided, alongside the proposal of future research trajectories and challenges encountered by layered metal oxides, with the aspiration that this paper may serve as a valuable reference for scholars in the field.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
16
|
Li S, Liu T, Zhang W, Wang M, Zhang H, Qin C, Zhang L, Chen Y, Jiang S, Liu D, Liu X, Wang H, Luo Q, Ding T, Yao T. Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts. Nat Commun 2024; 15:3416. [PMID: 38649713 PMCID: PMC11035637 DOI: 10.1038/s41467-024-47736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
In-depth comprehension and modulation of the electronic structure of the active metal sites is crucial to enhance their intrinsic activity of electrocatalytic oxygen evolution reaction (OER) toward anion exchange membrane water electrolyzers (AEMWEs). Here, we elaborate a series of amorphous metal oxide catalysts (FeCrOx, CoCrOx and NiCrOx) with high performance AEMWEs by high-valent chromium dopant. We discover that the positive effect of the transition from low to high valence of the Co site on the adsorption energy of the intermediate and the lower oxidation barrier is the key factor for its increased activity by synchrotron radiation in-situ techniques. Particularly, the CoCrOx anode catalyst achieves the high current density of 1.5 A cm-2 at 2.1 V and maintains for over 120 h with attenuation less than 4.9 mV h-1 in AEMWE testing. Such exceptional performance demonstrates a promising prospect for industrial application and providing general guidelines for the design of high-efficiency AEMWEs systems.
Collapse
Affiliation(s)
- Sicheng Li
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Wei Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China.
| | - Mingzhen Wang
- Zhongke Enthalpy (Anhui) New Energy Technology Co. Ltd, Hefei, P.R. China
| | - Huijuan Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Chunlan Qin
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Lingling Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Yudan Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Huijuan Wang
- Experimental Center of Engineering and Materials Science, University of Science and Technology of China, Hefei, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China.
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
17
|
DeLucia AA, Olshansky L. Carboxylate Shift Dynamics in Biomimetic Co 2(μ-OH) 2 Complexes. Inorg Chem 2024; 63:1109-1118. [PMID: 38170989 DOI: 10.1021/acs.inorgchem.3c03470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Carboxylate shift mechanisms provide low-energy pathways to accommodate changes in oxidation state and coordination number required during catalysis in metalloenzyme active sites. These processes are challenging to observe in their native enzymes and molecular models can provide insight into their mechanistic details. We report here the direct observation of a carboxylate shift reaction in biomimetic yet structurally stable dicobalt complexes featuring both monodentate and bridging acetate ligands, as well as intramolecular hydrogen-bonding interactions. Subjecting the series of complexes [Co2(μ-OH)2(μ-1,3-OAc)(κ-OAc)2(pyR)4]PF6 ([1R]PF6, OAc = acetate, pyR = pyridine with para-R substituents: OMe, H, or CN) to a Lewis acid triggers conversion of a monodentate acetate to a μ-1,3 bridging mode, forming [Co2(μ-OH)2(μ-1,3-OAc)2(pyR)4]2+ ([2R]2+). [2R]2+ is susceptible to solvent binding, affording [Co2(μ-OH)2(μ-1,3-OAc)(κ-OAc)(MeCN)(pyR)4]2+ ([3R]2+) in MeCN. These reaction products and intermediates were isolated and characterized in the solid state by isotopic labeling and Fourier transform infrared (FTIR) spectroscopy, as well as by X-ray diffraction. The kinetics of the formation and decay of [1R]+, [2R]2+, and [3R]2+ were also examined in situ by 1H-NMR spectroscopy to provide a kinetic model for the carboxylate shift reaction. The rate constants extracted from global fit analyses of these reactions increase with increasing electron donation from R. Leveraging robust diamagnetic CoIII complexes, these studies provide mechanistic details of carboxylate shift reactivity and highlight the utility of ligand dynamicity in mediating the transient formation of unstable metal complexes.
Collapse
Affiliation(s)
- Alyssa A DeLucia
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| | - Lisa Olshansky
- Department of Chemistry, Center for Biophysics and Quantitative Biology, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3028, United States
| |
Collapse
|
18
|
Abaeva M, Ieritano C, Hopkins WS, Schipper DJ. Unsymmetrical Imidazopyrimidine-Based Ligand and Bimetallic Complexes. Inorg Chem 2024; 63:1010-1019. [PMID: 38055895 DOI: 10.1021/acs.inorgchem.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
With bimetallic catalysts becoming increasingly important, the development of electronically and structurally diverse binucleating ligands is desired. This work describes the synthesis of unsymmetric ligand 2,7-di(pyridin-2-yl)imidazo[1,2-a]pyrimidine (dpip) that is achieved in four steps on a multigram scale in an overall 54% yield. The ability of dpip to act as a scaffold for the formation of bimetallic complexes is demonstrated with the one-step syntheses of the dicopper complex [Cu2(dpip)(μ-OH)(CF3COO)3] (4), the dipalladium complex [Pd2(dpip)(μ-OH)(CF3COO)2](CF3COO)·CF3COOH (5), and the dimeric dinickel complex [Ni4(dpip)2(μ-Cl)4Cl2MeOH6][2Cl] (6) in good yields (79-92%). All bimetallic complexes were characterized by spectroscopic methods and X-ray crystallography, which revealed metal-metal distances between 3.4821(9) and 4.106(2) Å. Additionally, quantum chemical calculations were conducted on complex 4 and an analogous 1,8-naphthyridine-based dicopper complex to investigate the differences between the imidazopyrimidine motif reported here and the widely used 1,8-naphthyridine motif. Natural bonding orbital (NBO) and Mayer bond order (MBO) analyses validated the ability of dpip to coordinate metals more strongly. Finally, NBO calculations quantified the differences in the binding energy between the two pockets of the unsymmetrical dpip ligand.
Collapse
Affiliation(s)
- Mila Abaeva
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Christian Ieritano
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - W Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Watermine Innovation, Waterloo, Ontario N0B 2T0, Canada
| | - Derek J Schipper
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
19
|
Matsumoto Y, Nagatsuka K, Yamaguchi Y, Kudo A. Understanding the reaction mechanism and kinetics of photocatalytic oxygen evolution on CoOx-loaded bismuth vanadate. J Chem Phys 2023; 159:214706. [PMID: 38047512 DOI: 10.1063/5.0177506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Photocatalytic water splitting for green hydrogen production is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Loading a co-catalyst is essential for accelerating the kinetics, but the detailed reaction mechanism and role of the co-catalyst are still obscure. Here, we focus on cobalt oxide (CoOx) loaded on bismuth vanadate (BiVO4) to investigate the impact of CoOx on the OER mechanism. We employ photoelectrochemical impedance spectroscopy and simultaneous measurements of photoinduced absorption and photocurrent. The reduction of V5+ in BiVO4 promotes the formation of a surface state on CoOx that plays a crucial role in the OER. The third-order reaction rate with respect to photohole charge density indicates that reaction intermediate species accumulate in the surface state through a three-electron oxidation process prior to the rate-determining step. Increasing the excitation light intensity onto the CoOx-loaded anode improves the photoconversion efficiency significantly, suggesting that the OER reaction at dual sites in an amorphous CoOx(OH)y layer dominates over single sites. Therefore, CoOx is directly involved in the OER by providing effective reaction sites, stabilizing reaction intermediates, and improving the charge transfer rate. These insights help advance our understanding of co-catalyst-assisted OER to achieve efficient water splitting.
Collapse
Affiliation(s)
- Yoshiyasu Matsumoto
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| | - Kengo Nagatsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Yuichi Yamaguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
- Carbon Value Research Center, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
20
|
Saini A, Das C, Rai S, Guha A, Dolui D, Majumder P, Dutta A. A homogeneous cobalt complex mediated electro and photocatalytic O 2/H 2O interconversion in neutral water. iScience 2023; 26:108189. [PMID: 37920669 PMCID: PMC10618691 DOI: 10.1016/j.isci.2023.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
The O2/H2O redox couple is vital in various renewable energy conversion strategies. This work delves into the Co(L-histidine)2 complex, a functional mimic of oxygen-carrying metalloproteins, and its electrochemical behavior driving the bidirectional oxygen reduction (ORR) and oxygen evolution (OER) activity in neutral water. This complex electrocatalyzes O2 via two distinct pathways: a two-electron O2/H2O2 reduction (catalytic rate = 250 s-1) and a four-electron O2 to H2O production (catalytic rate = 66 s-1). The formation of the key trans-μ-1,2-Co(III)-peroxo intermediate expedites this process. Additionally, this complex effectively oxidizes water to O2 (catalytic rate = 15606 s-1) at anodic potentials via a Co(IV)-oxo species. Additionally, this complex executes the ORR and OER under photocatalytic conditions in neutral water in the presence of appropriate photosensitizer (Eosin-Y) and redox mediators (triethanolamine/ORR and Na2S2O8/OER) at an appreciable rate. These results highlight one of the early examples of both electro- and photoactive bidirectional ORR/OER catalysts operational in neutral water.
Collapse
Affiliation(s)
- Abhishek Saini
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Surabhi Rai
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aritra Guha
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dependu Dolui
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Piyali Majumder
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence in CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
21
|
Iwamoto T, Sotome Y, Ishii Y. Binuclear Complexes Supported by a Tetrapyridyl Ligand with a Bending Anthraquinodimethane Linker. ACS ORGANIC & INORGANIC AU 2023; 3:305-311. [PMID: 37810407 PMCID: PMC10557120 DOI: 10.1021/acsorginorgau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023]
Abstract
A tetrapyridyl ligand with a bending anthraquinodimethane linker has been synthesized, and its complexation with coinage metals has been examined. The treatment of the ligand with Ag(I) and Au(I) cations afforded binuclear complexes, wherein the two metal centers were in close proximity to the inside space of the ligand. X-ray analyses corroborated with theoretical calculations indicated that the ligand has reasonable flexibility toward a bending deformation of the linker moiety to provide a ligand pocket suitable for the proximal binuclear complexes, even though such deformations accompany a non-negligible amount of energetic cost. On the other hand, treatment with 2 equiv of Cu(I) salt afforded a binuclear complex, in which both copper atoms were coordinated at the periphery of the ligand.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Applied Chemistry,
Faculty of Science and Engineering, Chuo
University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuta Sotome
- Department of Applied Chemistry,
Faculty of Science and Engineering, Chuo
University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Youichi Ishii
- Department of Applied Chemistry,
Faculty of Science and Engineering, Chuo
University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
22
|
Wang Z, Goddard WA, Xiao H. Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nat Commun 2023; 14:4228. [PMID: 37454140 DOI: 10.1038/s41467-023-40011-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
Oxygen evolution reaction (OER) is of crucial importance to sustainable energy and environmental engineering, and layered double hydroxides (LDHs) are among the most active catalysts for OER in alkaline conditions, but the reaction mechanism for OER on LDHs remains controversial. Distinctive types of reaction mechanisms have been proposed for the O-O coupling in OER, yet they compose a coupled reaction network with competing kinetics dependent on applied potentials. Herein, we combine grand-canonical methods and micro-kinetic modeling to unravel that the nature of dominant mechanism for OER on LDHs transitions among distinctive types as a function of applied potential, and this arises from the interplay among applied potential and competing kinetics in the coupled reaction network. The theory-predicted overpotentials, Tafel slopes, and findings are in agreement with the observations of experiments including isotope labelling. Thus, we establish a computational methodology to identify and elucidate the potential-dependent mechanisms for electrochemical reactions.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
24
|
Zhang J, Li S, Fang H. C-H bond activations by the HO˙/(Salophen t-Bu)Co(II) radical pair generated via homolysis of a terminal Co(III)-OH bond. Chem Commun (Camb) 2023; 59:3245-3248. [PMID: 36815508 DOI: 10.1039/d3cc00146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The reactive HO˙/(Salophent-Bu)Co(II) radical pair was observed to be generated via homolysis of the terminal Co(III)-OH bond in transient (Salophent-Bu)(L)Co(III)(OH) (L = Py, MeOH) complexes as indicated by UV-Vis and EPR measurements. Based on this elementary process, C-H bond activations in acetone, 2-butanone, acetonitrile and benzene were achieved under ambient conditions. For the reactions of the first three substrates, the alkylcobalt(III) complexes were formed as the products.
Collapse
Affiliation(s)
- Jia Zhang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| | - Songyi Li
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
25
|
Kang W, Wei R, Yin H, Li D, Chen Z, Huang Q, Zhang P, Jing H, Wang X, Li C. Unraveling Sequential Oxidation Kinetics and Determining Roles of Multi-Cobalt Active Sites on Co 3O 4 Catalyst for Water Oxidation. J Am Chem Soc 2023; 145:3470-3477. [PMID: 36724407 DOI: 10.1021/jacs.2c11508] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The multi-redox mechanism involving multi-sites has great implications to dictate the catalytic water oxidation. Understanding the sequential dynamics of multi-steps in oxygen evolution reaction (OER) cycles on working catalysts is a highly important but challenging issue. Here, using quasi-operando transient absorption (TA) spectroscopy and a typical photosensitization strategy, we succeeded in resolving the sequential oxidation kinetics involving multi-active sites for water oxidation in OER catalytic cycle, with Co3O4 nanoparticles as model catalysts. When OER initiates from fast oxidation of surface Co2+ ions, both surface Co2+ and Co3+ ions are active sites of the multi-cobalt centers for water oxidation. In the sequential kinetics (Co2+ → Co3+ → Co4+), the key characteristic is fast oxidation and slow consumption for all the cobalt species. Due to this characteristic, the Co4+ intermediate distribution plays a determining role in OER activity and results in the slow overall OER kinetics. These insights shed light on the kinetic understanding of water oxidation on heterogeneous catalysts with multi-sites.
Collapse
Affiliation(s)
- Wanchao Kang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Ruifang Wei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Heng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Dongfeng Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Pengfei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Huanwang Jing
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiuli Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Liang J, Zu H, Si H, Ma Y, Li M. Synthesis of ethane-disulfonate pillared layered cobalt hydroxide towards the electrocatalytic oxygen evolution reaction. Dalton Trans 2023; 52:2115-2123. [PMID: 36722796 DOI: 10.1039/d2dt03358e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the synthesis of a hybrid layered cobalt hydroxide sample and its redox behaviors in the electrochemical oxygen evolution reaction (OER). Compound Co7(OH)12(C2H4S2O6)·1.6H2O was synthesized via a homogeneous alkalization reaction using Co(SO3C2H4SO3) and hexamethylenetetramine. This compound comprises cationic host layers of {[Co7(OH)12]2+}∞, which comprise octahedrally (CoOh) and tetrahedrally (CoTd) coordinated Co cations at a CoOh : CoTd ratio of 5 : 2. The ethane-disulfonate ions are combined with the cationic host layers by electrostatic attractions and hydrogen bonding as a hybrid pillared layered framework. This hybrid sample can promote the OER in 1 M KOH with an overpotential as low as ∼410 mV (at a current density of 10 mA cm-2). In situ Raman spectroscopy showed that the sample first evolved into Co(III)-based phases comprising a mixture of layered CoOOH and spinel Co3O4, and the Co(III)-based compounds were converted into Co(IV)-O intermediates containing [CoO6] units at the onsite of the OER. The structural evolution behaviors suggest that the catalyst prefers a topotactic phase transition and the CoOh and CoTd units exhibit different activities in the electrochemical reaction. The electron transfer events involved in the electrochemical reaction were identified by Fourier-transformed alternating current voltammetry.
Collapse
Affiliation(s)
- Jianbo Liang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Hang Zu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Huiling Si
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Yanhong Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | - Mengyao Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| |
Collapse
|
27
|
Mengele A, Rau S. Learning from Nature's Example: Repair Strategies in Light-Driven Catalysis. JACS AU 2023; 3:36-46. [PMID: 36711104 PMCID: PMC9875256 DOI: 10.1021/jacsau.2c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
The continuous repair of subunits of the photosynthetic apparatus is a key factor determining the overall efficiency of biological photosynthesis. Recent concepts for repairing artificial photocatalysts and catalytically active materials within the realm of solar fuel formation show great potential in reshaping the research directions within this field. This perspective describes the latest advances, concepts, and mechanisms in the field of catalyst repair and catalyst self-healing and provides an outlook on which additional steps need to be taken to bring artificial photosynthetic systems closer to real-life applications.
Collapse
Affiliation(s)
- Alexander
K. Mengele
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Rau
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
28
|
Khosravi M, Mohammadi MR. Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. PHOTOSYNTHESIS RESEARCH 2022; 154:329-352. [PMID: 36195743 DOI: 10.1007/s11120-022-00965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
There has been a growing interest in water oxidation in recent two decades. Along with that, remarkable discovery of formation of a mysterious catalyst layer upon application of an anodic potential of 1.13 V vs. standard hydrogen electrode (SHE) to an inert indium tin oxide electrode immersed in phosphate buffer containing Co(II) ions by Nocera et.al, has greatly attracted researchers interest. These researches have oriented in two directions; one focuses on obtaining better understanding of the reported mysterious catalyst layer, further modification, and improved performance, and the second approach is about designing coordination complexes of cobalt and investigating their properties toward the application in water splitting. Although there have been critical debates on true catalysts that are responsible for water oxidation in homogeneous systems of coordination complexes of cobalt, and the case is not totally closed, in this short review, our focus will be mainly on recent major progress and developments in the design and the application of cobalt oxide-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water oxidation reaction, which have been reported since pioneering report of Nocera in 2008 (Kanan Matthew and Nocera Daniel in Science 321:1072-1075, 2008).
Collapse
Affiliation(s)
- Mehdi Khosravi
- Department of Physics, University of Sistan and Baluchestan, Zahedan, 98167-45845, Iran
| | | |
Collapse
|
29
|
Hausmann JN, Mebs S, Dau H, Driess M, Menezes PW. Oxygen Evolution Activity of Amorphous Cobalt Oxyhydroxides: Interconnecting Precatalyst Reconstruction, Long-Range Order, Buffer-Binding, Morphology, Mass Transport, and Operation Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207494. [PMID: 36189873 DOI: 10.1002/adma.202207494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanocrystalline or amorphous cobalt oxyhydroxides (CoCat) are promising electrocatalysts for the oxygen evolution reaction (OER). While having the same short-range order, CoCat phases possess different electrocatalytic properties. This phenomenon is not conclusively understood, as multiple interdependent parameters affect the OER activity simultaneously. Herein, a layered cobalt borophosphate precatalyst, Co(H2 O)2 [B2 P2 O8 (OH)2 ]·H2 O, is fully reconstructed into two different CoCat phases. In contrast to previous reports, this reconstruction is not initiated at the surface but at the electrode substrate to catalyst interface. Ex situ and in situ investigations of the two borophosphate derived CoCats, as well as the prominent CoPi and CoBi identify differences in the Tafel slope/range, buffer binding and content, long-range order, number of accessible edge sites, redox activity, and morphology. Considering and interconnecting these aspects together with proton mass-transport limitations, a comprehensive picture is provided explaining the different OER activities. The most decisive factors are the buffers used for reconstruction, the number of edge sites that are not inhibited by irreversibly bonded buffers, and the morphology. With this acquired knowledge, an optimized OER system is realized operating in near-neutral potassium borate medium at 1.62 ± 0.03 VRHE yielding 250 mA cm-2 at 65 °C for 1 month without degrading performance.
Collapse
Affiliation(s)
- J Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Material Chemistry Group for Thin Film Catalysis-CatLab, Helmholtz-Center Berlin for Materials and Energy, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
30
|
Wang S, Jiang Q, Ju S, Hsu CS, Chen HM, Zhang D, Song F. Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction. Nat Commun 2022; 13:6650. [PMCID: PMC9636199 DOI: 10.1038/s41467-022-34380-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Unraveling the precise location and nature of active sites is of paramount significance for the understanding of the catalytic mechanism and the rational design of efficient electrocatalysts. Here, we use well-defined crystalline cobalt oxyhydroxides CoOOH nanorods and nanosheets as model catalysts to investigate the geometric catalytic active sites. The morphology-dependent analysis reveals a ~50 times higher specific activity of CoOOH nanorods than that of CoOOH nanosheets. Furthermore, we disclose a linear correlation of catalytic activities with their lateral surface areas, suggesting that the active sites are exclusively located at lateral facets rather than basal facets. Theoretical calculations show that the coordinatively unsaturated cobalt sites of lateral facets upshift the O 2p-band center closer to the Fermi level, thereby enhancing the covalency of Co-O bonds to yield the reactivity. This work elucidates the geometrical catalytic active sites and enlightens the design strategy of surface engineering for efficient OER catalysts. While cobalt-based electrocatalysts demonstrate promising performances for oxygen evolution, active site identification is complicated by concurrent structural changes. Here, authors examine crystalline, well-defined cobalt oxyhydroxide nanomaterials and identify the geometric active sites.
Collapse
Affiliation(s)
- Sihong Wang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qu Jiang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shenghong Ju
- grid.16821.3c0000 0004 0368 8293China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306 China
| | - Chia-Shuo Hsu
- grid.19188.390000 0004 0546 0241Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Hao Ming Chen
- grid.19188.390000 0004 0546 0241Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan ,grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Di Zhang
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fang Song
- grid.16821.3c0000 0004 0368 8293State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
31
|
Frei H. Time-Resolved Vibrational and Electronic Spectroscopy for Understanding How Charges Drive Metal Oxide Catalysts for Water Oxidation. J Phys Chem Lett 2022; 13:7953-7964. [PMID: 35981106 DOI: 10.1021/acs.jpclett.2c01320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Temporally resolved spectroscopy is a powerful approach for gaining detailed mechanistic understanding of water oxidation at robust Earth-abundant metal oxide catalysts for guiding efficiency improvement of solar fuel conversion systems. Beyond detecting and structurally identifying surface intermediates by vibrational and accompanying optical spectroscopy, knowledge of how charges, sequentially delivered to the metal oxide surface, drive the four-electron water oxidation cycle is critical for enhancing catalytic efficiency. Key issues addressed in this Perspective are the experimental requirements for establishing the kinetic relevancy of observed surface species and the discovery of the rate-boosting role of encounters of two or more one-electron surface hole charges, often in the form of randomly hopping metal oxo or oxyl moieties, for accessing very low-barrier O-O bond-forming pathways. Recent spectroscopic breakthroughs of metal oxide photo- and electrocatalysts inspire future research poised to take advantage of new highly sensitive spectroscopic tools and of methods for fast catalysis triggering.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Haase FT, Rabe A, Schmidt FP, Herzog A, Jeon HS, Frandsen W, Narangoda PV, Spanos I, Friedel Ortega K, Timoshenko J, Lunkenbein T, Behrens M, Bergmann A, Schlögl R, Roldan Cuenya B. Role of Nanoscale Inhomogeneities in Co 2FeO 4 Catalysts during the Oxygen Evolution Reaction. J Am Chem Soc 2022; 144:12007-12019. [PMID: 35767719 PMCID: PMC9284556 DOI: 10.1021/jacs.2c00850] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Spinel-type catalysts are promising anode materials for the alkaline oxygen evolution reaction (OER), exhibiting low overpotentials and providing long-term stability. In this study, we compared two structurally equal Co2FeO4 spinels with nominally identical stoichiometry and substantially different OER activities. In particular, one of the samples, characterized by a metastable precatalyst state, was found to quickly achieve its steady-state optimum operation, while the other, which was initially closer to the ideal crystallographic spinel structure, never reached such a state and required 168 mV higher potential to achieve 1 mA/cm2. In addition, the enhanced OER activity was accompanied by a larger resistance to corrosion. More specifically, using various ex situ, quasi in situ, and operando methods, we could identify a correlation between the catalytic activity and compositional inhomogeneities resulting in an X-ray amorphous Co2+-rich minority phase linking the crystalline spinel domains in the as-prepared state. Operando X-ray absorption spectroscopy revealed that these Co2+-rich domains transform during OER to structurally different Co3+-rich domains. These domains appear to be crucial for enhancing OER kinetics while exhibiting distinctly different redox properties. Our work emphasizes the necessity of the operando methodology to gain fundamental insight into the activity-determining properties of OER catalysts and presents a promising catalyst concept in which a stable, crystalline structure hosts the disordered and active catalyst phase.
Collapse
Affiliation(s)
- Felix Thomas Haase
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Anna Rabe
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 7 Universitätsstr., Essen 45141, Germany.,Inorganic Chemistry, Christian Albrechts University, 2 Max-Eyth-Straße, Kiel 24118, Germany
| | - Franz-Philipp Schmidt
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany.,Max Planck Institute for Chemical Energy Conversion, 34-36 Stiftstrasse, Mülheim an der Ruhr 45470, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Hyo Sang Jeon
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Wiebke Frandsen
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Praveen Vidusha Narangoda
- Max Planck Institute for Chemical Energy Conversion, 34-36 Stiftstrasse, Mülheim an der Ruhr 45470, Germany
| | - Ioannis Spanos
- Max Planck Institute for Chemical Energy Conversion, 34-36 Stiftstrasse, Mülheim an der Ruhr 45470, Germany
| | - Klaus Friedel Ortega
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 7 Universitätsstr., Essen 45141, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Malte Behrens
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 7 Universitätsstr., Essen 45141, Germany.,Inorganic Chemistry, Christian Albrechts University, 2 Max-Eyth-Straße, Kiel 24118, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany.,Max Planck Institute for Chemical Energy Conversion, 34-36 Stiftstrasse, Mülheim an der Ruhr 45470, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 4-6 Faradayweg, Berlin 14195, Germany
| |
Collapse
|
33
|
Sarkar S, Biswas A, Siddharthan EE, Thapa R, Dey RS. Strategic Modulation of Target-Specific Isolated Fe,Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn-Air Battery. ACS NANO 2022; 16:7890-7903. [PMID: 35436090 DOI: 10.1021/acsnano.2c00547] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An effective modulation of the active sites in a bifunctional electrocatalyst is essentially desired, and it is a challenge to outperform the state-of-the-art catalysts toward oxygen electrocatalysis. Herein, we report the development of a bifunctional electrocatalyst having target-specific Fe-N4/C and Co-N4/C isolated active sites, exhibiting a symbiotic effect on overall oxygen electrocatalysis performances. The dualism of N-dopants and binary metals lower the d-band centers of both Fe and Co in the Fe,Co,N-C catalyst, improving the overpotential of the overall electrocatalytic processes (ΔEORR-OER = 0.74 ± 0.02 V vs RHE). Finally, the Fe,Co,N-C showed a high areal power density of 198.4 mW cm-2 and 158 mW cm-2 in the respective liquid and solid-state Zn-air batteries (ZABs), demonstrating suitable candidature of the active material as air cathode material in ZABs.
Collapse
Affiliation(s)
- Subhajit Sarkar
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| | - Ashmita Biswas
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| | | | - Ranjit Thapa
- Department of Physics, SRM University, Andhra Pradesh 522240, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali-140306, Punjab, India
| |
Collapse
|
34
|
Yu H, Qu S, Chen PR, Ou KQ, Lin JY, Guo ZH, Zheng L, Li JK, Huang S, Teng Y, Zou L, Song JL. CO 2 bubble-assisted in-situ construction of mesoporous Co-doped Cu 2(OH) 2CO 3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N 2 in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128351. [PMID: 35149487 DOI: 10.1016/j.jhazmat.2022.128351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
The development of high-efficient and cost-effective electrocatalysts is crucial to remove nitrate pollutant in wastewater. Herein, we design and prepare mesoporous Co-doped Cu2(OH)2CO3 malachite nanosheets as an electrocatalyst toward highly efficient nitrate reduction using a facile CO2 bubble-assisted coprecipitation synthesis. The electrocatalytic performance is subject to the Co/Cu ratio of this malachite. Remarkably, compared with the pristine monometal Cu or Co-based electrocatalyst, the optimal electrocatalyst, 0.3Co@Cu2(OH)2CO3, displays fast and highly efficient removal capacity of nitrate with an impressive high total nitrogen (TN) removal of 8628.99 mg N g-1CoCu (398.79 mg N gcat-1 h-1), N2 selectivity of 97.11% as well as negligible nitrite product at 100 mg L-1 NO3--N and 2000 mg L-1 Cl- neutral electrolyte. Above all, high total nitrogen removal efficiency (81.92%) and chemical oxygen demand (73.74%) in actual wastewater. Its excellent electrocatalytic performance is achieved by regulating the electronic structure and the adsorption/desorption of the intermediate. This study discovers a new type of electrode materials for nitrate removal in wastewater.
Collapse
Affiliation(s)
- Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuang Qu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei-Ru Chen
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Kai-Qin Ou
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jie-Ying Lin
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Lei Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jin-Kun Li
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Sai Huang
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| |
Collapse
|
35
|
Wiegmann T, Pacheco I, Reikowski F, Stettner J, Qiu C, Bouvier M, Bertram M, Faisal F, Brummel O, Libuda J, Drnec J, Allongue P, Maroun F, Magnussen OM. Operando Identification of the Reversible Skin Layer on Co 3O 4 as a Three-Dimensional Reaction Zone for Oxygen Evolution. ACS Catal 2022; 12:3256-3268. [PMID: 35359579 PMCID: PMC8939430 DOI: 10.1021/acscatal.1c05169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Indexed: 01/19/2023]
Abstract
![]()
Co oxides and oxyhydroxides
have been studied extensively in the
past as promising electrocatalysts for the oxygen evolution reaction
(OER) in neutral to alkaline media. Earlier studies showed the formation
of an ultrathin CoOx(OH)y skin layer on Co3O4 at potentials
above 1.15 V vs reversible hydrogen electrode (RHE), but the precise
influence of this skin layer on the OER reactivity is still under
debate. We present here a systematic study of epitaxial spinel-type
Co3O4 films with defined (111) orientation,
prepared on different substrates by electrodeposition or physical
vapor deposition. The OER overpotential of these samples may vary
up to 120 mV, corresponding to two orders of magnitude differences
in current density, which cannot be accounted for by differences in
the electrochemically active surface area. We demonstrate by a careful
analysis of operando surface X-ray diffraction measurements
that these differences are clearly correlated with the average thickness
of the skin layer. The OER reactivity increases with the amount of
formed skin layer, indicating that the entire three-dimensional skin
layer is an OER-active interphase. Furthermore, a scaling relationship
between the reaction centers in the skin layer and the OER activity
is established. It suggests that two lattice sites are involved in
the OER mechanism.
Collapse
Affiliation(s)
- Tim Wiegmann
- Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Ivan Pacheco
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Finn Reikowski
- Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Jochim Stettner
- Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Canrong Qiu
- Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| | - Mathilde Bouvier
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Manon Bertram
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Firas Faisal
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Olaf Brummel
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jakub Drnec
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Philippe Allongue
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Fouad Maroun
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Olaf M. Magnussen
- Institute of Experimental and Applied Physics, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
36
|
Abstract
Electrochemical and photoelectrochemical water splitting offers a scalable approach to producing hydrogen from renewable sources for sustainable energy storage. Depending on the applications, oxygen evolution catalysts (OECs) may perform water splitting under a variety of conditions. However, low stability and/or activity present challenges to the design of OECs, prompting the design of self-healing OECs composed of earth-abundant first-row transition metal oxides. The concept of self-healing catalysis offers a new tool to be employed in the design of stable and functionally active OECs under operating conditions ranging from acidic to basic solutions and from a variety of water sources. Large scale sustainable energy storage by water splitting benefits from performing the oxygen evolution reaction under a variety of conditions. Here, the authors discuss self-healing catalysis as a new tool in the design of stable and functionally active catalysts in acidic to basic solutions, and a variety of water sources
Collapse
|
37
|
Das M, Biswas A, Dey RS. Electronic interplay: synergism of binary transition metals and role of M-N-S site towards oxygen electrocatalysis. Chem Commun (Camb) 2022; 58:1934-1937. [PMID: 35043128 DOI: 10.1039/d1cc06050c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Towards rational catalyst development, a binary Fe-Co centre has been coordinated with S and N in a nanocarbon matrix. An electronic drift between Fe-Co and an extended +R effect from the S dopants towards the metals through the pz orbital of N are beneficial for oxygen electrocatalysis and a zinc-air battery.
Collapse
Affiliation(s)
- Manisha Das
- Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.
| | - Ashmita Biswas
- Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
38
|
Misawa-Suzuki T, Ikeda R, Komatsu R, Toriba R, Miyamoto R, Nagao H. Geometry and Electronic Structures of Cobalt(II) and Iron(III) Complexes Bearing Bis(2-pyridylmethyl)ether or Alkylbis(2-pyridylmethyl)amine. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Nocera DG. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. J Am Chem Soc 2022; 144:1069-1081. [PMID: 35023740 DOI: 10.1021/jacs.1c10444] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proton-coupled electron transfer (PCET) underpins energy conversion in chemistry and biology. Four energy systems are described whose discoveries are based on PCET: the water splitting chemistry of the Artificial Leaf, the carbon fixation chemistry of the Bionic Leaf-C, the nitrogen fixation chemistry of the Bionic Leaf-N and the Coordination Chemistry Flow Battery (CCFB). Whereas the Artificial Leaf, Bionic Leaf-C, and Bionic Leaf-N require strong coupling between electron and proton to reduce energetic barriers to enable high energy efficiencies, the CCFB requires complete decoupling of the electron and proton so as to avoid parasitic energy-wasting reactions. The proper design of PCET in these systems facilitates their implementation in the areas of (i) centralized large scale grid storage of electricity and (ii) decentralized energy storage/conversion using only sunlight, air and any water source to produce fuel and food within a sustainable cycle for the biogenic elements of C, N and P.
Collapse
Affiliation(s)
- Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
40
|
Amtawong J, Nguyen AI, Tilley TD. Mechanistic Aspects of Cobalt–Oxo Cubane Clusters in Oxidation Chemistry. J Am Chem Soc 2022; 144:1475-1492. [DOI: 10.1021/jacs.1c11445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- Department of Chemistry, University of Illinois, Chicago, Chicago, Illinois 60607, United States
| | - T. Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Xie Y, Miao Q, Deng W, Lu Y, Yang Y, Chen X, Liao RZ, Ye S, Tung CH, Wang W. Facile Transformations of a Binuclear Cp*Co(II) Diamidonaphthalene Complex to Mixed-Valent Co(II)Co(III), Co(III)(μ-H)Co(III), and Co(III)(μ-OH)Co(III) Derivatives. Inorg Chem 2022; 61:2204-2210. [PMID: 35049285 DOI: 10.1021/acs.inorgchem.1c03451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A diamido-bridged dicobalt complex supported by a diamidonaphthalene ligand, Cp*2Co2(μ-1,8-C10H8(NH)2) (1), was synthesized, and the reactivity relevant to redox transformations of the Co2N2 core was investigated. It was found that the Co(II)-Co(II) bond allows for protonation by [HPPh3][BF4] resulting in a bridging hydride, [1H]+, with pKa ∼ 7.6 in CH2Cl2. The diamidonaphthalene ligand can stabilize the binuclear system in the Co(II)Co(III) mixed-valent state (1+), which is capable of binding CO to afford [1-CO]+. Surprisingly, the mixed-valent complex also activates H2O to furnish a Co(III)Co(III) hydroxy complex [1-OH]+ accompanied by release of H2. The hydroxy ligand in [1-OH]+ is exchangeable, as demonstrated by 18O-labeling experiments on [1-OH]+ with H218O that led to the heavier isotopolog [1-18OH]+.
Collapse
Affiliation(s)
- Yufang Xie
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qiyi Miao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhao Deng
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilei Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yinuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaohui Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
42
|
DeLucia AA, Kelly KA, Herrera KA, Gray DL, Olshansky L. Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes. Inorg Chem 2021; 60:15599-15609. [PMID: 34606250 DOI: 10.1021/acs.inorgchem.1c02210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active site hydrogen-bond (H-bond) networks represent a key component by which metalloenzymes control the formation and deployment of high-valent transition metal-oxo intermediates. We report a series of dinuclear cobalt complexes that serve as structural models for the nonheme diiron enzyme family and feature a Co2(μ-OH)2 diamond core stabilized by intramolecular H-bond interactions. We define the conditions required for the kinetically controlled synthesis of these complexes: [Co2(μ-OH)2(μ-OAc)(κ1-OAc)2(pyR)4][PF6] (1R), where OAc = acetate and pyR = pyridine with para-substituent R, and we describe a homologous series of 1R in which the para-R substituent on pyridine is modulated. The solid state X-ray diffraction (XRD) structures of 1R are similar across the series, but in solution, their 1H NMR spectra reveal a linear free energy relationship (LFER) where, as R becomes increasingly electron-withdrawing, the intramolecular H-bond interaction between bridging μ-OH and κ1-acetate ligands results in increasingly "oxo-like" μ-OH bridges. Deprotonation of the bridging μ-OH results in the quantitative conversion to corresponding cubane complexes: [Co4(μ-O)4(μ3-OAc)4(pyR)4] (2R), which represent the thermodynamic sink of self-assembly. These reactions are unusually slow for rate-limiting deprotonation events, but rapid-mixing experiments reveal a 6000-fold rate acceleration on going from R = OMe to R = CN. These results suggest that we can tune reactivity by modulating the μ-OH pKa in the presence of intramolecular H-bond interactions to maintain stability as the octahedral d6 centers become increasingly acidic. Nature may similarly employ dynamic carboxylate-mediated H-bond interactions to control the reactivity of acidic transition metal-oxo intermediates.
Collapse
Affiliation(s)
- Alyssa A DeLucia
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Kimberly A Kelly
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Kevin A Herrera
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Danielle L Gray
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Li X, Zhang XP, Guo M, Lv B, Guo K, Jin X, Zhang W, Lee YM, Fukuzumi S, Nam W, Cao R. Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex. J Am Chem Soc 2021; 143:14613-14621. [PMID: 34469154 DOI: 10.1021/jacs.1c05204] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water nucleophilic attack (WNA) on high-valent terminal Mn-oxo species is proposed for O-O bond formation in natural and artificial water oxidation. Herein, we report an electrocatalytic water oxidation reaction with MnIII tris(pentafluorophenyl)corrole (1) in propylene carbonate (PC). O2 was generated at the MnV/IV potential with hydroxide, but a more anodic potential was required to evolve O2 with only water. With a synthetic MnV(O) complex of 1, a second-order rate constant, k2(OH-), of 7.4 × 103 M-1 s-1 was determined in the reaction of the MnV(O) complex of 1 with hydroxide, whereas its reaction with water occurred much more slowly with a k2(H2O) value of 4.4 × 10-3 M-1 s-1. This large reactivity difference of MnV(O) with hydroxide and water is consistent with different electrocatalytic behaviors of 1 with these two substrates. Significantly, during the electrolysis of 1 with water, a MnIV-peroxo species was identified with various spectroscopic methods, including UV-vis, electron paramagnetic resonance, and infrared spectroscopy. Isotope-labeling experiments confirmed that both O atoms of this peroxo species are derived from water, suggesting the involvement of the WNA mechanism in water oxidation by a Mn complex. Density functional theory calculations suggested that the nucleophilic attack of hydroxide on MnV(O) and also WNA to 1e--oxidized MnV(O) are feasibly involved in the catalytic cycles but that direct WNA to MnV(O) is not likely to be the main O-O bond formation pathway in the electrocatalytic water oxidation by 1.
Collapse
Affiliation(s)
- Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xue-Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Mian Guo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| |
Collapse
|
44
|
Bio-Inspired Molecular Catalysts for Water Oxidation. Catalysts 2021. [DOI: 10.3390/catal11091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic tetranuclear manganese-calcium-oxo cluster in the photosynthetic reaction center, photosystem II, provides an excellent blueprint for light-driven water oxidation in nature. The water oxidation reaction has attracted intense interest due to its potential as a renewable, clean, and environmentally benign source of energy production. Inspired by the oxygen-evolving complex of photosystem II, a large of number of highly innovative synthetic bio-inspired molecular catalysts are being developed that incorporate relatively cheap and abundant metals such as Mn, Fe, Co, Ni, and Cu, as well as Ru and Ir, in their design. In this review, we briefly discuss the historic milestones that have been achieved in the development of transition metal catalysts and focus on a detailed description of recent progress in the field.
Collapse
|
45
|
Amtawong J, Skjelstad BB, Handford RC, Suslick BA, Balcells D, Tilley TD. C-H Activation by RuCo 3O 4 Oxo Cubanes: Effects of Oxyl Radical Character and Metal-Metal Cooperativity. J Am Chem Soc 2021; 143:12108-12119. [PMID: 34318666 DOI: 10.1021/jacs.1c04069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-valent multimetallic-oxo/oxyl species have been implicated as intermediates in oxidative catalysis involving proton-coupled electron transfer (PCET) reactions, but the reactive nature of these oxo species has hindered the development of an in-depth understanding of their mechanisms and multimetallic character. The mechanism of C-H oxidation by previously reported RuCo3O4 cubane complexes bearing a terminal RuV-oxo ligand, with significant oxyl radical character, was investigated. The rate-determining step involves H atom abstraction (HAA) from an organic substrate to generate a Ru-OH species and a carbon-centered radical. Radical intermediates are subsequently trapped by another equivalent of the terminal oxo to afford isolable radical-trapped cubane complexes. Density functional theory (DFT) reveals a barrierless radical combination step that is more favorable than an oxygen-rebound mechanism by 12.3 kcal mol-1. This HAA reactivity to generate organic products is influenced by steric congestion and the C-H bond dissociation energy of the substrate. Tuning the electronic properties of the cubane (i.e., spin density localized on terminal oxo, basicity, and redox potential) by varying the donor ability of ligands at the Co sites modulates C-H activations by the RuV-oxo fragment and enables construction of structure-activity relationships. These results reveal a mechanistic pathway for C-H activation by high-valent metal-oxo species with oxyl radical character and provide insights into cooperative effects of multimetallic centers in tuning PCET reactivity.
Collapse
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bastian Bjerkem Skjelstad
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Benjamin A Suslick
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Lang C, Li J, Yang KR, Wang Y, He D, Thorne JE, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig GW, Batista VS, Waegele MM, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021. [DOI: 10.1016/j.chempr.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Ezhov R, Ravari AK, Bury G, Smith PF, Pushkar Y. Do multinuclear 3d metal catalysts achieve O-O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co 4O 4] n. CHEM CATALYSIS 2021; 1:407-422. [PMID: 37378353 PMCID: PMC10296785 DOI: 10.1016/j.checat.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Catalytic water oxidation is a required process for clean energy production based on the concept of artificial photosynthesis. Here, we provide in situ spectroscopic and computational analysis for the closest known photosystem II analog, [Co4O4]n+ ([Co4O4Py4Ac4]0, Py = pyridine and Ac = CH3COO-), which catalyzes electrochemical water oxidation. In situ extended X-ray absorption fine structure detects an ultrashort, CoIV=O (~1.67 Å) moiety, a crucial intermediate for O-O bond formation. Density function theory analyses show that the intermediate has two CoIV centers and a CoIV=O unit of strong radicaloid character sufficient to support a CoIV=O + H2O = Co-OOH + H+ transition, where the carboxyl ligand accepts the proton and the bridging oxygen stabilizes the peroxide via hydrogen bonding. The proposed water nucleophilic attack mechanism accounts for all prior spectroscopic evidence on the Co4O44+ core. Our results are important for the design and development of efficient water oxidation catalysts, which contribute to the ultimate goal of clean energy from artificial photosynthesis.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | | - Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Paul F. Smith
- Department of Chemistry, Valparaiso University, Valparaiso, IN 46383, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
- Lead contact
| |
Collapse
|
48
|
Li N, Hadt RG, Hayes D, Chen LX, Nocera DG. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nat Commun 2021; 12:4218. [PMID: 34244515 PMCID: PMC8270959 DOI: 10.1038/s41467-021-24453-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly identify Fe4+ in mixed-metal Co-Fe oxides. The highest Fe4+ population is obtained in the 40–60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeOx films in 1 M KOH, tracks the absolute concentration of Fe4+. The results reported herein suggest an important role for the formation of the Fe4+ redox state in activating cobaltate OER catalysts at high iron loadings. The capturing of high valent iron in a catalytic reaction is important but difficult task. Here, the authors report identification of a high-valent Fe(IV)-species with different spectroscopic tools such as Mössbauer spectroscopy and X-ray absorption spectroscopy during the course of an oxygen evolving reaction.
Collapse
Affiliation(s)
- Nancy Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Ryan G Hadt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA. .,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Dugan Hayes
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA. .,Department of Chemistry, University of Rhode Island, Kingston, RI, USA.
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.,Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
49
|
Askins EJ, Zoric MR, Li M, Luo Z, Amine K, Glusac KD. Toward a mechanistic understanding of electrocatalytic nanocarbon. Nat Commun 2021; 12:3288. [PMID: 34078884 PMCID: PMC8172927 DOI: 10.1038/s41467-021-23486-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Electrocatalytic nanocarbon (EN) is a class of material receiving intense interest as a potential replacement for expensive, metal-based electrocatalysts for energy conversion and chemical production applications. The further development of EN will require an intricate knowledge of its catalytic behaviors, however, the true nature of their electrocatalytic activity remains elusive. This review highlights work that contributed valuable knowledge in the elucidation of EN catalytic mechanisms. Experimental evidence from spectroscopic studies and well-defined molecular models, along with the survey of computational studies, is summarized to document our current mechanistic understanding of EN-catalyzed oxygen, carbon dioxide and nitrogen electrochemistry. We hope this review will inspire future development of synthetic methods and in situ spectroscopic tools to make and study well-defined EN structures.
Collapse
Affiliation(s)
- Erik J. Askins
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| | - Marija R. Zoric
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| | - Matthew Li
- grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA ,grid.46078.3d0000 0000 8644 1405Chemical Engineering Department, University of Waterloo, Waterloo, ON Canada
| | - Zhengtang Luo
- grid.24515.370000 0004 1937 1450Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Hong Kong
| | - Khalil Amine
- grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA ,grid.168010.e0000000419368956Department of Material Science and Engineering, Stanford University, Stanford, CA USA ,grid.411975.f0000 0004 0607 035XInstitute for Research and Medical Consultants (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Al Safa, Dammam, Saudi Arabia
| | - Ksenija D. Glusac
- grid.185648.60000 0001 2175 0319Department of Chemistry, University of Illinois at Chicago, Chicago, IL USA ,grid.187073.a0000 0001 1939 4845Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL USA
| |
Collapse
|
50
|
Zhang H, Su X, Xie F, Liao R, Zhang M. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hong‐Tao Zhang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiao‐Jun Su
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Fei Xie
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rong‐Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming‐Tian Zhang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|